CN111892420A - 块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法 - Google Patents

块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法 Download PDF

Info

Publication number
CN111892420A
CN111892420A CN202010744777.4A CN202010744777A CN111892420A CN 111892420 A CN111892420 A CN 111892420A CN 202010744777 A CN202010744777 A CN 202010744777A CN 111892420 A CN111892420 A CN 111892420A
Authority
CN
China
Prior art keywords
aerogel
sol
tio
titanium
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010744777.4A
Other languages
English (en)
Other versions
CN111892420B (zh
Inventor
孔勇
唐金琼
沈晓冬
赵志扬
江幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Ruiying New Material Technology Development Co ltd
Nanjing Tech University
Original Assignee
Jiangsu Ruiying New Material Technology Development Co ltd
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Ruiying New Material Technology Development Co ltd, Nanjing Tech University filed Critical Jiangsu Ruiying New Material Technology Development Co ltd
Priority to CN202010744777.4A priority Critical patent/CN111892420B/zh
Publication of CN111892420A publication Critical patent/CN111892420A/zh
Application granted granted Critical
Publication of CN111892420B publication Critical patent/CN111892420B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • C04B35/58021Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON based on titanium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法。以间苯二酚‑甲醛(RF)和钛酸四丁酯分别作为碳源和钛源、醇为溶剂、去离子水为水解剂,通过分别加入酸催化剂一步溶胶‑凝胶工艺制备湿凝胶,湿凝胶经过溶剂置换和超临界干燥得到RF/TiO2复合气凝胶前驱体,在通过惰性气氛控制高温碳热还原及煅烧除碳制得块状碳化钛、氮化钛或碳氮化钛气凝胶材料。本发明操作简便,由于采用溶胶‑凝胶工艺,反应颗粒尺寸更小,颗粒之间的接触面积大,反应更加彻底,且利用有机气凝胶(RF气凝胶)热解自生成的碳进行碳热还原反应,无需额外添加碳还原剂,大大简化了工艺过程,降低了生产成本,增加了工艺的可操作性和可控性。

Description

块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法
技术领域
本发明属于块状碳氮化物介孔材料的制备工艺领域,具体涉及一种块状碳化钛(TiC)、氮化钛(TiN)或碳氮化钛[Ti(C,N)]气凝胶的制备方法。
背景技术
气凝胶是一种纳米颗粒相互聚集而成的纳米多孔材料,具有如高比表面积、低密度、高孔隙率、低热导率等优异性能,是目前发现的最轻、隔热效果最好的固体材料,因而在隔热、吸附、催化和阻抗耦合领域有着广泛的应用前景。尤其是在隔热方面,其结构特性使其具备极低的热导率,与传统隔热材料相比优势明显,人们把这种热导率极低的气凝胶材料成为“超级隔热材料”。目前报道的气凝胶有数十种,根据其成分可分为氧化物气凝胶、有机炭气凝胶和碳化物气凝胶三大类。在隔热应用方面,目前研究最多的是SiO2气凝胶、Al2O3气凝胶和炭气凝胶。SiO2气凝胶及其复合材料的正常使用温度最高在800℃,800℃以上孔结构明显减少,材料趋于致密,1000℃以上孔结构完全消失。Al2O3气凝胶虽然可以承受更高的温度,但是在1000℃时易发生晶型转变,生成α-Al2O3(勃姆石相),导致气凝胶收缩,造成破坏。炭气凝胶在惰性气氛中则具有更高的耐温性,经过特殊处理可以在3000℃下正常使用,然而在空气中容易氧化,导致隔热性能变差,影响正常使用。随着技术的发展,对材料的使用温度要求越来越高,很多场合下需要材料在有氧条件下满足耐温性良好的同时,具有好的强度。传统的氧化物气凝胶、氧化铝气凝胶和炭气凝胶以无法满足应用的需求,需要开发一种可以在有氧条件下正常使用的耐高温高强度的气凝胶隔热材料。
同时,在制备过程中由于传统气凝胶密度小,强度低,制备的气凝胶产品容易碎裂,无法得到具备完整外形的块状气凝胶;由于表面张力的作用,导致湿凝胶在干燥过程中溶液产生孔结构的坍塌,这些因素一方面影响了气凝胶的比表面积、孔体积和孔隙率,特别限制了气凝胶在隔热材料方面的应用。
碳氮化钛[Ti(C,N)]作为一种高熔点(3000℃以上)的材料,同时兼具碳化钛(TiC)和氮化钛(TiN)的优点,如高熔点、高硬度、耐磨损、耐腐蚀、抗氧化、化学稳定性好等,是一种潜在耐高温气凝胶材料基体。
发明内容
本发明的目的是为了改进现有技术存在的不足而提供一种耐高温高强度的块状碳化钛(TiC)、氮化钛(TiN)或碳氮化钛[Ti(C,N)]气凝胶的制备方法,该方法用料和工艺简单。
本发明的技术方案为:一种块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法,其具体步骤如下:
(1)间苯二酚:甲醛:乙醇:酸按摩尔比为1:(2~3):(8~10):(0.04~0.06)一锅法混合均匀制备间苯二酚-甲醛RF溶胶;
(2)乙醇:去离子水:钛源:硝酸按摩尔比为(26~30):(4~6):(1~2):(0.4~0.6)配制溶液;首先将乙醇:去离子水按摩尔比为(13~15):(4~6)混合制备溶液1,然后乙醇:钛源:硝酸按摩尔比(13~15):(1~2):(0.4~0.6)混合制备溶液2;再将溶液1和溶液2混合得到TiO2溶胶;
(3)按间苯二酚:钛源的摩尔比为1:(1~2),将步骤(1)中的RF溶胶和步骤(2)中的TiO2溶胶混合均匀后得到RF-TiO2溶胶;
(4)RF-TiO2溶胶于50~70℃反应得到RF-TiO2湿凝胶;
(5)将步骤(4)中的湿凝胶经老化、溶剂置换和CO2超临界干燥得到块状RF-TiO2复合气凝胶;
(6)将步骤(5)中得到的RF-TiO2复合气凝胶在氩气气氛下升温到1500~1600℃,保温5~10个小时得到块状碳-碳化钛C-TiC;或将步骤(5)中得到的RF-TiO2复合气凝胶在氮气气氛下升温到1000~1400℃,保温5~10小时得到块状碳-氮化钛C-TiN;或将步骤(5)中得到的RF-TiO2复合气凝胶在氮气气氛下升温到1600~1700℃,保温5~10个小时得到块状碳-碳氮化钛C-Ti(C,N);
(7)将步骤(6)中得到的C-TiC、C-TiN或C-Ti(C,N)复合气凝胶煅烧除炭得到相应的块状TiC、TiN或Ti(C,N)气凝胶。
优选步骤(1)中所述的酸为盐酸或氢氟酸。
优选步骤(2)中所述的钛源为钛酸四丁酯或钛酸四乙酯。
优选步骤(4)中所述的溶胶-凝胶反应的时间为6~8小时。
优选步骤(5)中所述的湿凝胶老化条件为:在50~80℃下老化2~5天。
优选步骤(6)中所述的升温速率为2~5℃/min。
优选步骤(7)中所制得的TiC、TiN或Ti(C,N)气凝胶的形态均为灰黑色块体;表观密度为0.200~0.300g/cm3;孔径分布在1~100nm;比表面积180~310m2/g。
有益效果:
本发明方法以及由该方法制备出的TiC、TiN和Ti(C,N)材料具有如下特点:
(1)采用新的方法(溶胶-凝胶法)制备出TiC、TiN和Ti(C,N)材料。本发明方法采用酸催化一步溶胶-凝胶法,与其它气凝胶的制备方法相比操作简便,减少了实验中的操作步骤,通过有机气凝胶(RF气凝胶)的热解生成的碳进行碳热还原反应,无需额外添加碳还原剂,大大简化了工艺过程,降低了生产成本,增加了工艺的可操作性和可控性。
(2)设备简单,原料易得,成本低廉,容易实现规模化生产。
(3)耐高温性能好。由于热处理过程中脱出了气凝胶中的氧、氢等元素,高温下发生碳热还原反应生成了更加稳定的块体气凝胶材料,与传统的气凝胶相比,本发明制备的块状耐高温气凝胶材料可以长时间在1200℃以上高温条件下使用而保持结构和性能无明显变化,在耐高温性能上与其它气凝胶相比具有无可比拟的优势。
(4)强度高。Ti(C,N)同时兼具TiC和TiN的优点,如高熔点、高硬度、耐磨损、耐腐蚀、抗氧化、化学稳定性好。
(5)应用范围广。本发明制备的块状TiC、TiN和Ti(C,N)气凝胶材料应用范围更广,如作为隔热材料。另外,本发明制备的块状碳氮化钛材料还可用于高温催化、高温电子材料、电池催化电极、抗辐射电子材料高频大功率器件等领域。
附图说明
图1是实施例4和实施例7中碳热还原制得的块体气凝胶的实物照片。
图2是实施例4和实施例7中碳热还原制得的块体气凝胶的XRD表征图。
具体实施方式
实例1
把间苯二酚、甲醛、乙醇、盐酸按摩尔比为1:2:8:0.04混合均匀制备间苯二酚-甲醛(RF)溶胶;以间苯二酚的摩尔量为基准,乙醇和去离子水按摩尔比(13:4)混合制备溶液1,钛酸四丁酯、硝酸、乙醇按摩尔比(1:0.4:13)混合制备溶液2,将溶液1和溶液2(按摩尔比钛酸四丁酯:去离子水=1:4)混合均匀,得到TiO2溶胶,将RF溶胶和TiO2溶胶(按摩尔比间苯二酚:钛酸四丁酯=1:1)经磁力搅拌混合均匀,得到RF/TiO2复合溶胶,密封后置于烘箱50℃下进行溶胶-凝胶反应得到湿凝胶,得到的湿凝胶在50℃烘箱中老化5天,将密封的湿凝胶取出后,经过乙醇溶剂置换3天后,再由CO2超临界干燥12小时得到块状RF/TiO2复合气凝胶,将RF/TiO2复合气凝胶置于管式炉中,在N2气氛下以2℃/min的升温速率升温到1000℃,保温10小时后将温度降至室温得到块状C/TiN气凝胶材料,得到的C/TiN复合气凝胶煅烧除炭得到块状TiN气凝胶。所制备材料的表观密度为0.242g/cm3,BET比表面积310m2/g,孔径分布在10~80nm。
实例2
把间苯二酚、甲醛、乙醇、盐酸按摩尔比为1:3:10:0.06混合均匀制备间苯二酚-甲醛(RF)溶胶;以间苯二酚的摩尔量为基准,乙醇和去离子水按摩尔比(14:4)混合制备溶液1,钛酸四丁酯、硝酸、乙醇按摩尔比(1:0.5:14)混合制备溶液2,将溶液1和溶液2(按摩尔比钛酸四丁酯:去离子水=1:4)混合均匀,得到TiO2溶胶,将RF溶胶和TiO2溶胶(按摩尔比间苯二酚:钛酸四丁酯=1:1)经磁力搅拌混合均匀,得到RF/TiO2复合溶胶,密封后置于烘箱50℃下进行溶胶-凝胶反应得到湿凝胶,得到的湿凝胶在60℃烘箱中老化4天,将密封的湿凝胶取出后,经过乙醇溶剂置换3天后,再由CO2超临界干燥12小时得到块状RF/TiO2复合气凝胶,将RF/TiO2复合气凝胶置于管式炉中,在N2气氛下以3℃/min的升温速率升温到1200℃,保温7小时后将温度降至室温得到块状C/TiN气凝胶材料,得到的C/TiN复合气凝胶煅烧除炭得到块状TiN气凝胶。所制备材料的表观密度为0.251g/cm3,BET比表面积为274m2/g,孔径分布在10~90nm。
实例3
把间苯二酚、甲醛、乙醇、氢氟酸按摩尔比为1:3:10:0.06混合均匀制备间苯二酚-甲醛(RF)溶胶;以间苯二酚的摩尔量为基准,乙醇和去离子水按摩尔比(14:5)混合制备溶液1,钛酸四乙酯、硝酸、乙醇按摩尔比(1:0.6:14)混合制备溶液2,将溶液1和溶液2(按摩尔比钛酸四乙酯:去离子水=1:5)混合均匀,得到TiO2溶胶,将RF溶胶和TiO2溶胶(按摩尔比间苯二酚:钛酸四乙酯=1:1)经磁力搅拌混合均匀,得到RF/TiO2复合溶胶,密封后置于烘箱60℃下进行溶胶-凝胶反应得到湿凝胶,得到的湿凝胶在60℃烘箱中老化4天,将密封的湿凝胶取出后,经过乙醇溶剂置换3天后,再由CO2超临界干燥12小时得到块状RF/TiO2复合气凝胶,将RF/TiO2复合气凝胶置于管式炉中,在N2气氛下以5℃/min的升温速率升温到1400℃,保温5小时后将温度降至室温得到块状C/TiN气凝胶材料,得到的C/TiN复合气凝胶煅烧除炭得到块状TiN气凝胶。所制备材料的表观密度为0.263g/cm3,BET比表面积为254m2/g,孔径分布在10~80nm。
实例4
把间苯二酚、甲醛、乙醇、盐酸按摩尔比为1:3:9:0.05混合均匀制备间苯二酚-甲醛(RF)溶胶;以间苯二酚的摩尔量为基准,乙醇和去离子水按摩尔比(15:5)混合制备溶液1,钛酸四乙酯、硝酸、乙醇按摩尔比(2:0.6:14)混合制备溶液2,将溶液1和溶液2(按摩尔比钛酸四乙酯:去离子水=2:5)混合均匀,得到TiO2溶胶,将RF溶胶和TiO2溶胶(按摩尔比间苯二酚:钛酸四乙酯=1:2)经磁力搅拌混合均匀,得到RF/TiO2复合溶胶,密封后置于烘箱60℃下进行溶胶-凝胶反应得到湿凝胶,得到的湿凝胶在60℃烘箱中老化4天,将密封的湿凝胶取出后,经过乙醇溶剂置换3天后,再由CO2超临界干燥12小时得到块状RF/TiO2复合气凝胶,将RF/TiO2复合气凝胶置于管式炉中,在Ar气氛下以2℃/min的升温速率升温到1500℃,保温10小时后将温度降至室温得到块状C/TiC气凝胶材料,得到的C/TiC复合气凝胶煅烧除炭得到块状TiC气凝胶。所制备材料的表观密度为0.267g/cm3,BET比表面积为279m2/g,孔径分布在10~100nm。
图1(左)和图2分别给出了本实例制得的的C/TiC复合气凝胶材料的实物照片和XRD表征,制得的的C/TiC复合气凝胶表面无裂纹,成块性能良好,颜色为灰黑色且表面有金属光泽。XRD测试采用组合式多功能X射线衍射仪Ultima IV,采用CuKα衍射,λ=0.15406nm,扫描速率10(°)/min,范围为10°~80°出现的特征峰,通过检索PDF库卡片,所得XRD特征峰表明:1500℃,Ar气氛下,间苯二酚-甲醛(RF)气凝胶完全热解成碳,与TiO2发生碳热还原反应生成TiC。
实例5
把间苯二酚、甲醛、乙醇、盐酸按摩尔比为1:3:8:0.05混合均匀制备间苯二酚-甲醛(RF)溶胶;以间苯二酚的摩尔量为基准,乙醇和去离子水按摩尔比(15:6)混合制备溶液1,钛酸四乙酯、硝酸、乙醇按摩尔比(2:0.6:14)混合制备溶液2,将溶液1和溶液2(按摩尔比钛酸四乙酯:去离子水=2:6)混合均匀,得到TiO2溶胶,将RF溶胶和TiO2溶胶(按摩尔比间苯二酚:钛酸四乙酯=1:2)经磁力搅拌混合均匀,得到RF/TiO2复合溶胶,密封后置于烘箱60℃下进行溶胶-凝胶反应得到湿凝胶,得到的湿凝胶在70℃烘箱中老化4天,将密封的湿凝胶取出后,经过乙醇溶剂置换3天后,再由CO2超临界干燥12小时得到块状RF/TiO2复合气凝胶,将RF/TiO2复合气凝胶置于管式炉中,在Ar气氛下以3℃/min的升温速率升温到1550℃,保温7小时后将温度降至室温得到块状C/TiC气凝胶材料,得到的C/TiC复合气凝胶煅烧除炭得到块状TiC气凝胶。所制备材料的表观密度为0.278g/cm3,BET比表面积为251m2/g,孔径分布在10~100nm。
实例6
把间苯二酚、甲醛、乙醇、氢氟酸按摩尔比为1:2:9:0.06混合均匀制备间苯二酚-甲醛(RF)溶胶;以间苯二酚的摩尔量为基准,乙醇和去离子水按摩尔比(15:6)混合制备溶液1,钛酸四丁酯、硝酸、乙醇按摩尔比(2:0.5:15)混合制备溶液2,将溶液1和溶液2(按摩尔比钛酸四丁酯:去离子水=2:6)混合均匀,得到TiO2溶胶,将RF溶胶和TiO2溶胶(按摩尔比间苯二酚:钛酸四丁酯=1:2)经磁力搅拌混合均匀,得到RF/TiO2复合溶胶,密封后置于烘箱60℃下进行溶胶-凝胶反应得到湿凝胶,得到的湿凝胶在70℃烘箱中老化5天,将密封的湿凝胶取出后,经过乙醇溶剂置换3天后,再由CO2超临界干燥12小时得到块状RF/TiO2复合气凝胶,将RF/TiO2复合气凝胶置于管式炉中,在Ar气氛下以5℃/min的升温速率升温到1600℃,保温5小时后将温度降至室温得到块状C/TiC气凝胶材料,得到的C/TiC复合气凝胶煅烧除炭得到块状TiC气凝胶。所制备材料的表观密度为0.291g/cm3,BET比表面积为235m2/g,孔径分布在1~90nm。
实例7
把间苯二酚、甲醛、乙醇、盐酸按摩尔比为1:2:10:0.05混合均匀制备间苯二酚-甲醛(RF)溶胶;以间苯二酚的摩尔量为基准,乙醇和去离子水按摩尔比(13:6)混合制备溶液1,钛酸四乙酯、硝酸、乙醇按摩尔比(2:0.6:15)混合制备溶液2,将溶液1和溶液2(按摩尔比钛酸四乙酯:去离子水=2:6)混合均匀,得到TiO2溶胶,将RF溶胶和TiO2溶胶(按摩尔比间苯二酚:钛酸四乙酯=1:2)经磁力搅拌混合均匀,得到RF/TiO2复合溶胶,密封后置于烘箱70℃下进行溶胶-凝胶反应得到湿凝胶,得到的湿凝胶在80℃烘箱中老化3天,将密封的湿凝胶取出后,经过乙醇溶剂置换3天后,再由CO2超临界干燥12小时得到块状RF/TiO2复合气凝胶,将RF/TiO2复合气凝胶置于管式炉中,在N2气氛下以2℃/min的升温速率升温到1600℃,保温10小时后将温度降至室温得到块状C/Ti(C,N)气凝胶材料,得到的C/Ti(C,N)复合气凝胶煅烧除炭得到块状Ti(C,N)气凝胶。所制备材料的表观密度为0.297g/cm3,BET比表面积为252m2/g,孔径分布在10~80nm。
图1(右)和图2分别给出了本实例制得的C/Ti(C,N)气凝胶材料的实物照片和XRD表征,制得的的C/Ti(C,N)复合气凝胶表面无裂纹,成块性能良好,颜色为灰黑色且表面有金属光泽。XRD测试采用组合式多功能X射线衍射仪Ultima IV,采用CuKα衍射,λ=0.15406nm,扫描速率10(°)/min,范围为10°~80°出现的特征峰,通过检索PDF库卡片,所得XRD特征峰表明:1600℃,N2气氛下,在氮热还原过程中,C成功固溶到了TiN当中,形成了Ti(C,N)固溶体,且C与N的比例为0.2:0.8。
实例8
把间苯二酚、甲醛、乙醇、盐酸按摩尔比为1:3:10:0.04混合均匀制备间苯二酚-甲醛(RF)溶胶;以间苯二酚的摩尔量为基准,乙醇和去离子水按摩尔比(14:6)混合制备溶液1,钛酸四乙酯、硝酸、乙醇按摩尔比(1:0.4:14)混合制备溶液2,将溶液1和溶液2(按摩尔比钛酸四乙酯:去离子水=1:6)混合均匀,得到TiO2溶胶,将RF溶胶和TiO2溶胶(按摩尔比间苯二酚:钛酸四乙酯=1:1)经磁力搅拌混合均匀,得到RF/TiO2复合溶胶,密封后置于烘箱70℃下进行溶胶-凝胶反应得到湿凝胶,得到的湿凝胶在80℃烘箱中老化2天,将密封的湿凝胶取出后,经过乙醇溶剂置换3天后,再由CO2超临界干燥12小时得到块状RF/TiO2复合气凝胶,将RF/TiO2复合气凝胶置于管式炉中,在N2气氛下以3℃/min的升温速率升温到1650℃,保温8小时后将温度降至室温得到块状C/Ti(C,N)气凝胶材料,得到的C/Ti(C,N)复合气凝胶煅烧除炭得到块状Ti(C,N)气凝胶。所制备材料的表观密度为0.295g/cm3,BET比表面积为212m2/g,孔径分布在1~100nm。
实例9
把间苯二酚、甲醛、乙醇、氢氟酸按摩尔比为1:2:10:0.05混合均匀制备间苯二酚-甲醛(RF)溶胶;以间苯二酚的摩尔量为基准,乙醇和去离子水按摩尔比(13:6)混合制备溶液1,钛酸四丁酯、硝酸、乙醇按摩尔比(1:0.6:15)混合制备溶液2,将溶液1和溶液2(按摩尔比钛酸四丁酯:去离子水=1:6)混合均匀,得到TiO2溶胶,将RF溶胶和TiO2溶胶(按摩尔比间苯二酚:钛酸四丁酯=1:1)经磁力搅拌混合均匀,得到RF/TiO2复合溶胶,密封后置于烘箱70℃下进行溶胶-凝胶反应得到湿凝胶,得到的湿凝胶在80℃烘箱中老化2天,将密封的湿凝胶取出后,经过乙醇溶剂置换3天后,再由CO2超临界干燥12小时得到块状RF/TiO2复合气凝胶,将RF/TiO2复合气凝胶置于管式炉中,在N2气氛下以5℃/min的升温速率升温到1700℃,保温5小时后将温度降至室温得到块状C/Ti(C,N)气凝胶材料,得到的C/Ti(C,N)复合气凝胶煅烧除炭得到块状Ti(C,N)气凝胶。所制备材料的表观密度为0.298g/cm3,BET比表面积为182m2/g,孔径分布在1~100nm。

Claims (7)

1.一种块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法,其具体步骤如下:
(1)间苯二酚:甲醛:乙醇:酸按摩尔比为1:(2~3):(8~10):(0.04~0.06)一锅法混合均匀制备间苯二酚-甲醛RF溶胶;
(2)乙醇:去离子水:钛源:硝酸按摩尔比为(26~30):(4~6):(1~2):(0.4~0.6)配制溶液;首先将乙醇:去离子水按摩尔比为(13~15):(4~6)混合制备溶液1,然后乙醇:钛源:硝酸按摩尔比(13~15):(1~2):(0.4~0.6)混合制备溶液2;再将溶液1和溶液2混合得到TiO2溶胶;
(3)按间苯二酚:钛源的摩尔比为1:(1~2),将步骤(1)中的RF溶胶和步骤(2)中的TiO2溶胶混合均匀后得到RF-TiO2溶胶;
(4)RF-TiO2溶胶于50~70℃反应得到RF-TiO2湿凝胶;
(5)将步骤(4)中的湿凝胶经老化、溶剂置换和CO2超临界干燥得到块状RF-TiO2复合气凝胶;
(6)将步骤(5)中得到的RF-TiO2复合气凝胶在氩气气氛下升温到1500~1600℃,保温5~10个小时得到块状碳-碳化钛C-TiC;或将步骤(5)中得到的RF-TiO2复合气凝胶在氮气气氛下升温到1000~1400℃,保温5~10小时得到块状碳-氮化钛C-TiN;或将步骤(5)中得到的RF-TiO2复合气凝胶在氮气气氛下升温到1600~1700℃,保温5~10个小时得到块状碳-碳氮化钛C-Ti(C,N);
(7)将步骤(6)中得到的C-TiC、C-TiN或C-Ti(C,N)复合气凝胶煅烧除炭得到相应的块状TiC、TiN或Ti(C,N)气凝胶。
2.根据权利要求1所述的制备方法,其特征在于步骤(1)中所述的酸为盐酸或氢氟酸。
3.根据权利要求1所述的制备方法,其特征在于步骤(2)中所述的钛源为钛酸四丁酯或钛酸四乙酯。
4.根据权利要求1所述的制备方法,其特征在于步骤(4)中所述的溶胶-凝胶反应的时间为6~8小时。
5.根据权利要求1所述的制备方法,其特征在于步骤(5)中所述的湿凝胶老化条件为:在50~80℃下老化2~5天。
6.根据权利要求1所述的制备方法,其特征在于步骤(6)中所述的升温速率为2~5℃/min。
7.根据权利要求1所述的制备方法,其特征在于步骤(7)中所制得的TiC、TiN或Ti(C,N)气凝胶的形态均为灰黑色块体;表观密度为0.200~0.300g/cm3;孔径分布在1~100nm;比表面积180~310m2/g。
CN202010744777.4A 2020-07-29 2020-07-29 块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法 Active CN111892420B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010744777.4A CN111892420B (zh) 2020-07-29 2020-07-29 块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010744777.4A CN111892420B (zh) 2020-07-29 2020-07-29 块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN111892420A true CN111892420A (zh) 2020-11-06
CN111892420B CN111892420B (zh) 2022-05-03

Family

ID=73182518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010744777.4A Active CN111892420B (zh) 2020-07-29 2020-07-29 块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN111892420B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409012A (zh) * 2020-11-25 2021-02-26 南京工业大学 一种块状碳化钛-碳化硅复合气凝胶材料及其制备方法
CN112844374A (zh) * 2021-01-22 2021-05-28 上海应用技术大学 一种Mn-Ce-Ti氧化物气凝胶脱硝催化剂及其制备方法和应用
CN113808859A (zh) * 2021-09-08 2021-12-17 青岛科技大学 一种二维层状MXene复合TiN电极材料的制备方法
CN115849314A (zh) * 2022-12-16 2023-03-28 常州工学院 一种氮化钛气凝胶的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4343534A1 (de) * 1993-12-15 1995-06-22 Henry Dr Preiss Formlinge aus Carbiden oder Nitriden mit großer spezifischer Oberfläche
CN101060037A (zh) * 2007-05-11 2007-10-24 合肥工业大学 一种炭基金属氮化物、碳化物超电容材料的制备方法
CN102092708A (zh) * 2010-12-20 2011-06-15 北京化工大学 一种低碱下制备苯酚-甲醛炭气凝胶的方法
CN102674350A (zh) * 2012-05-11 2012-09-19 南京工业大学 一种碳化钛纳米颗粒的制备方法
US20140287641A1 (en) * 2013-03-15 2014-09-25 Aerogel Technologies, Llc Layered aerogel composites, related aerogel materials, and methods of manufacture
CN106587146A (zh) * 2016-12-19 2017-04-26 南京工业大学 氧化钛纳米晶气凝胶材料及其制备方法
CN106629733A (zh) * 2016-12-22 2017-05-10 北京光华纺织集团有限公司 一种碳化硅纳米材料的制备方法
CN109956750A (zh) * 2019-03-28 2019-07-02 西北工业大学 碱金属热电转换器多孔碳化钛电极材料的制备方法
US20190308912A1 (en) * 2018-04-06 2019-10-10 The Curators Of The University Of Missouri Novel highly porous ceramic and metal aerogels from xerogel powder precursors, and methods for their production and use

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4343534A1 (de) * 1993-12-15 1995-06-22 Henry Dr Preiss Formlinge aus Carbiden oder Nitriden mit großer spezifischer Oberfläche
CN101060037A (zh) * 2007-05-11 2007-10-24 合肥工业大学 一种炭基金属氮化物、碳化物超电容材料的制备方法
CN102092708A (zh) * 2010-12-20 2011-06-15 北京化工大学 一种低碱下制备苯酚-甲醛炭气凝胶的方法
CN102674350A (zh) * 2012-05-11 2012-09-19 南京工业大学 一种碳化钛纳米颗粒的制备方法
US20140287641A1 (en) * 2013-03-15 2014-09-25 Aerogel Technologies, Llc Layered aerogel composites, related aerogel materials, and methods of manufacture
CN106587146A (zh) * 2016-12-19 2017-04-26 南京工业大学 氧化钛纳米晶气凝胶材料及其制备方法
CN106629733A (zh) * 2016-12-22 2017-05-10 北京光华纺织集团有限公司 一种碳化硅纳米材料的制备方法
US20190308912A1 (en) * 2018-04-06 2019-10-10 The Curators Of The University Of Missouri Novel highly porous ceramic and metal aerogels from xerogel powder precursors, and methods for their production and use
CN109956750A (zh) * 2019-03-28 2019-07-02 西北工业大学 碱金属热电转换器多孔碳化钛电极材料的制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
KONG YONG 等: "Direct synthesis of anatase TiO2 aerogel resistant to high temperature under supercritical ethanol", 《MATERIALS LETTERS》 *
MARCUS A. WORSLEY 等: "Route to high surface area TiO2/C and TiCN/C composites", 《JOURNAL OF MATERIALS CHEMISTRY》 *
NIU TINGTING 等: "Low-Temperature Synthesis of Monolithic Titanium Carbide/Carbon Composite Aerogel", 《NANOMATERIALS》 *
刘盼 等: "还原氮化法制备多孔氮化钛粉体及其电化学性能", 《材料导报A:综述篇》 *
吴晓栋 等: "气凝胶材料的研究进展", 《南京工业大学学报( 自然科学版)》 *
张娟 等: "干燥方式对RDX/RF复合含能材料结构性能影响", 《含能材料》 *
张泽 等: "气凝胶材料及其应用", 《硅酸盐学报》 *
黎茂祥 等: "溶胶-凝胶和碳热还原法制备碳化钛的研究", 《无机盐工业》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409012A (zh) * 2020-11-25 2021-02-26 南京工业大学 一种块状碳化钛-碳化硅复合气凝胶材料及其制备方法
CN112844374A (zh) * 2021-01-22 2021-05-28 上海应用技术大学 一种Mn-Ce-Ti氧化物气凝胶脱硝催化剂及其制备方法和应用
CN113808859A (zh) * 2021-09-08 2021-12-17 青岛科技大学 一种二维层状MXene复合TiN电极材料的制备方法
CN113808859B (zh) * 2021-09-08 2022-11-11 青岛科技大学 一种二维层状MXene复合TiN电极材料的制备方法
CN115849314A (zh) * 2022-12-16 2023-03-28 常州工学院 一种氮化钛气凝胶的制备方法

Also Published As

Publication number Publication date
CN111892420B (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
CN111892420B (zh) 块状碳化钛、氮化钛或碳氮化钛气凝胶的制备方法
CN109704296B (zh) 柔性氮化硼纳米带气凝胶及其制备方法
CN108658615B (zh) 一种高导热石墨烯基复合薄膜及其制备方法
CN111925194B (zh) 一种耐高温高性能气凝胶复合材料及其制备方法
CN104891479B (zh) 植物基类石墨烯及其制备方法
CN111943654B (zh) 一种耐高温抗辐射气凝胶复合材料及其制备方法
CN110510617B (zh) 一种大尺寸氧化铝-二氧化硅气凝胶的常压干燥制备方法
CN111463019B (zh) 一种核-壳结构电极材料的制备方法
CN110562959B (zh) 一种碳纳米管-多孔炭复合材料的制备方法
CN110590394A (zh) 一种大尺寸SiC纳米线气凝胶的低成本制备方法
CN110548528A (zh) 一种核壳结构SiO2/SiC材料及其制备方法与用途
CN107572509B (zh) 一种氮掺杂空心碳/石墨球纳米材料及其制备方法
CN103626510A (zh) 原位生长制备硼酸镁晶须多孔陶瓷的方法
CN112093801A (zh) 一种稻壳基纳米碳化硅/碳复合吸波材料及其制备方法
CN110655056A (zh) 一种多孔纳米硅碳复合材料的制备方法
CN107459028B (zh) 一种杂原子掺杂的碳气凝胶及其制备方法
CN117263706A (zh) 一种耐磨低电阻碳材料及其制备方法
CN105016773A (zh) 反应烧结及微氧化处理制备多孔碳化硅陶瓷的方法
CN111574204A (zh) 氧化铝陶瓷气凝胶纤维及其溶胶-凝胶纺丝制备方法
CN101723701B (zh) 钛酸盐多孔隔热材料的制备方法
CN112409012A (zh) 一种块状碳化钛-碳化硅复合气凝胶材料及其制备方法
WO2017211227A1 (zh) 高强度大尺寸块状炭气凝胶及其制备方法和应用
CN109052374B (zh) 一种杂多酸催化快速制备石墨烯气凝胶的方法
CN114058328A (zh) 一种吸波复合材料及其制备方法
CN113461020A (zh) 一种柔性疏水的块体二氧化硅气凝胶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant