CN116099544A - 一种矿渣基Fe2O3/MnO2复合光-Fenton催化剂及其制备方法和应用 - Google Patents

一种矿渣基Fe2O3/MnO2复合光-Fenton催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN116099544A
CN116099544A CN202310114117.1A CN202310114117A CN116099544A CN 116099544 A CN116099544 A CN 116099544A CN 202310114117 A CN202310114117 A CN 202310114117A CN 116099544 A CN116099544 A CN 116099544A
Authority
CN
China
Prior art keywords
slag
mno
fenton catalyst
preparation
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310114117.1A
Other languages
English (en)
Other versions
CN116099544B (zh
Inventor
黄祖强
蔡秀楠
张燕娟
胡华宇
甘涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN202310114117.1A priority Critical patent/CN116099544B/zh
Publication of CN116099544A publication Critical patent/CN116099544A/zh
Application granted granted Critical
Publication of CN116099544B publication Critical patent/CN116099544B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开一种矿渣基Fe2O3/MnO2复合光‑Fenton催化剂及其制备方法和应用,属于废水处理技术领域。本发明将锰矿渣进行氧化焙烧制备矿渣基Fe2O3,通过浸渍吸附和过硫酸盐氧化法原位生长Na+掺杂的低导带无定形MnO2,构建具有氧化和还原性能的直接Z型复合光‑Fenton催化剂。该催化剂的制备方法为:(1)将锰矿渣粉碎,将粉碎后的锰矿渣氧化焙烧,得到矿渣基Fe2O3;(2)将矿渣基Fe2O3加到硫酸锰溶液中浸渍吸附,过滤,得到滤渣Ⅰ;(3)将滤渣Ⅰ加到NaCl水溶液中,并加入过硫酸盐溶液,搅拌,得到悬浮液;(4)将悬浮液剧烈搅拌,过滤,将所得滤渣Ⅱ进行干燥,得到复合催化剂。该催化剂可应用于盐酸环丙沙星和Cr(VI)的同时去除,对复合污染物的降解和去除具有很好的应用价值。

Description

一种矿渣基Fe2O3/MnO2复合光-Fenton催化剂及其制备方法和应用
技术领域
本发明属于废水处理技术领域,具体涉及一种矿渣基Fe2O3/MnO2复合光-Fenton催化剂及其制备方法和应用。
背景技术
抗生素与重金属成为典型的复合污染类型之一,主要来源于畜禽养殖粪污的排放、粪污农用、污水灌溉等。其中,六价铬毒性最大,是三价铬的100多倍。从废水中排放的过量铬会造成土壤污染、植物失活和死亡,被人体吸收后甚至会致癌。复合体系中抗生素与重金属之间产生复杂存在形式,对生物机体产生不同程度的联合毒性效应如相加、协同、拮抗作用等。
光催化技术因其高效、简便、环保、经济等优点,已被证明是修复含上述污染物废水的一种有效的技术。它能够在环境温度和大气压条件下实现有机污染物的完全矿化,同时产生低毒的副产物。如果提供足够的光能,电子和空穴可以同时产生,因此光催化剂可以在一个反应体系中同时实现氧化和还原。其中,光-Fenton法作为环境修复中的一种突出方法,越来越受到人们的关注。光生电子,Fe2+/Fe3+的循环和Fenton体系中的H2O2都能将重金属还原为低价态,而体系中产生的自由基·OH,·O2 -和h+则倾向于降解有机污染物,从而达到同时去除两种污染物的目的。
赤铁矿(α-Fe2O3)是一种化学性质稳定、无毒、成本低廉的n型半导体材料,由于其禁带宽度较窄(Eg=2.2eV),对可见光有较好的吸收特性,在pH大于3的水溶液中具有化学稳定性等优点,被广泛的运用于光催化和光Fenton体系。特别的,其VB边缘位置较低,在太阳光照射下,表现出较高的氧化性能,使其更容易降解有机污染物。但是,其导带(CB)电位较弱,因此光催化反应中的一部分能量无法充分利用且还原性较差。此外,光生电子和空穴对容易重新组合,这严重降低了反应效率。为了克服这些缺点,人们采取了许多方法来解决这些问题,通过构建Z型光催化剂改善光生电荷的分离和延长电子寿命的作用,以及抑制光生电荷的界面复合的能力而备受关注。改进合适的带隙半导体具有足够的价带(VB)和导带(CB),对于在太阳能照明下有序的光催化降解至关重要。
MnO2是一种结构多样的过渡金属氧化物,由于价格低廉,含量丰富,优异的价态可调节性和晶体结构可控性使其被广泛运用于热催化、电催化和光催化领域。不同合成工艺制备得到不同晶型和表面结构的MnO2表现出较大差异的表面氧空位含量和催化性能。α-MnO2的催化活性最高,其常用的制备方法有溶胶-凝胶法,水热法,还原法和过硫酸盐氧化法。其中,过硫酸盐氧化法由于具有反应条件温和,可通过改变溶液中碱金属离子的种类制备出带隙宽度可调的锰氧化物而被广泛运用。基于此,采用合适的方法制备出具有较低还原电位的MnO2纳米颗粒锚定在α-Fe2O3上以提高其光催化活性的一个很有意义的研究。
锰矿渣是利用软锰矿和硫铁矿为主要原料采用酸浸法生产硫酸锰过程中产生的工业废弃物,其主要成分为SiO2和黄钾铁钒渣,未经有效处理会对生态系统造成严重的危害。经氧化焙烧后的矿渣中的主要成分为SiO2和Fe2O3,金属阳离子可通过离子交换、浸渍进入矿渣中或吸附于矿渣表面,改善催化剂的催化性能,溶液中的Na+可有效的调控MnO2的晶体生长。
因此,本发明以锰矿渣为主要原料采用氧化焙烧制备出矿渣基Fe2O3化合物,通过浸渍吸附和过硫酸盐氧化法原位生长Na+掺杂的低导带无定形MnO2,构建具有较高氧化和还原性能的直接Z型光Fenton催化剂用于同时氧化降解盐酸环丙沙星和还原Cr(VI)。这将为工业废弃物的资源化利用以及利用取之不尽的太阳能进行环境修复开辟新的途径。
发明内容
针对以上问题,本发明提供一种矿渣基Fe2O3/MnO2复合光-Fenton催化剂及其制备方法和应用,以锰矿渣为主要原料采用氧化焙烧制备出矿渣基Fe2O3化合物,通过浸渍吸附和过硫酸盐氧化法原位生长Na+掺杂的低导带无定形MnO2,构建具有较高氧化和还原性能的直接Z型光Fenton催化剂,应用于光-Fenton高效降解盐酸环丙沙星和还原Cr(VI),解决了矿渣基Fe2O3比表面积小,光还原能力不足,光吸收能力有限以及光生电子-空穴对容易复合的问题。
本发明通过以下技术方案实现:
一种矿渣基Fe2O3/MnO2复合光-Fenton催化剂,是将锰矿渣进行氧化焙烧制备出矿渣基Fe2O3,通过浸渍吸附和过硫酸盐氧化法原位生长Na+掺杂的低导带无定形MnO2,构建具有氧化和还原性能的直接Z型矿渣基Fe2O3/MnO2复合光-Fenton催化剂。
本发明的矿渣基Fe2O3/MnO2复合光-Fenton催化剂的比表面积为55~56m2/g,孔隙体积为0.10~0.11cm3/g,平均孔径为10~11nm。
一种如上所述的矿渣基Fe2O3/MnO2复合光-Fenton催化剂的制备方法,包括以下步骤:
(1)将锰矿渣进行粉碎,将粉碎后的锰矿渣进行氧化焙烧,得到矿渣基Fe2O3
(2)将所得矿渣基Fe2O3加到硫酸锰溶液中进行浸渍吸附,过滤,得到滤渣Ⅰ;
(3)将所得滤渣Ⅰ加到NaCl水溶液中,并加入过硫酸盐溶液,搅拌,得到悬浮液;
(4)将所得悬浮液进行剧烈搅拌,过滤,将所得滤渣Ⅱ进行干燥,得到矿渣基Fe2O3/MnO2复合光-Fenton催化剂。
进一步地,步骤(2)中,所述矿渣基Fe2O3与硫酸锰溶液的质体比为1g:45~50mL,所述硫酸锰溶液的浓度为0.5~1.5mol/L。
进一步地,步骤(2)中,所述浸渍吸附为在转速150~160rpm和温度25~26℃的摇床中浸渍吸附11~12h。
进一步地,步骤(3)中,所述NaCl水溶液的浓度为0.01~0.07mol/L,所述过硫酸盐溶液的浓度为1.25~1.75mol/L。
进一步地,步骤(4)中,所述剧烈搅拌为将悬浮液置于80~90℃的恒温水浴锅中剧烈搅拌3~4h。
进一步地,步骤(4)中,所述干燥为将滤渣Ⅱ置于真空干燥箱中干燥11~12h。
进一步地,步骤(1)中,所述氧化焙烧为将粉碎后的锰矿渣置于马弗炉中在空气氛围中于400~700℃下氧化焙烧1~2.5h。
进一步地,步骤(1)中,所述锰矿渣的粉碎程度为300目以上。
进一步地,步骤(1)中,所述锰矿渣是以软锰矿、硫铁矿和烷基化废硫酸为主要原料制备硫酸锰过程中产生的固体废弃物,其主要成分为黄钾铁钒渣和SiO2
一种如上所述的矿渣基Fe2O3/MnO2复合光-Fenton催化剂在去除废水中盐酸环丙沙星和Cr(VI)的应用。
与现有技术相比,本发明的优点及有益效果为:
1、本发明将锰矿渣进行氧化焙烧制备出矿渣基Fe2O3,通过浸渍吸附和过硫酸盐氧化法原位生长Na+掺杂的低导带无定形MnO2,构建具有氧化和还原性能的直接Z型矿渣基Fe2O3/MnO2复合光-Fenton催化剂。在该过程中,锰离子通过浸渍吸附法锚定在矿渣基Fe2O3的内外表面,在钠离子溶液中进行锰离子氧化,钠离子可以调控MnO2的生长并进入MnO2的晶格中,取代一部分锰离子,使得生成的MnO2为含有大量结构缺陷的无定形结构,呈现绣球花状的MnO2原位生长并锚定在矿渣基Fe2O3上,这种绣球形的形状可以大大的增加矿渣基Fe2O3的比表面积,增强光吸收和利用率,并暴露出大量的活性位点,从而加速电子迁移效率,提高光催化活性。
2、本发明的复合材料制备过程中,原位生长的钠离子掺杂无定形MnO2由于具有无序的空间结构,使得其通过非自由基途径激活H2O2的机会更大以及反应活性更高,可以有效的减轻活性自由基的碰撞和无效消耗。低结晶度和低导带电位的绣球形的MnO2不仅能捕获和加速电子转移,还能作为电子导电桥和表面吸氧位点,使光电子空穴(e-h+)分离更强,电子利用率更高,光催化活性更强。
3、本发明将具有较高氧化还原性能和反应活性的矿渣基Fe2O3/MnO2复合材料作为光-Fenton催化剂应用于盐酸环丙沙星和Cr(VI)的同时去除,对盐酸环丙沙星的降解率为81.9%以上,对Cr(VI)去除率为85.2%以上,可以有效的减少复合污染物对环境造成的危害,对复合污染物的降解和去除具有很好的应用价值。
4、本发明的复合材料的制备方法为浸渍吸附-过硫酸盐氧化法,操作简单,反应条件温和、原料易得,生产成本低,适合大规模工业化生产。锰矿渣是利用软锰矿和硫铁矿为主要原料采用酸浸法生产硫酸锰过程中产生的工业废弃物,未经有效处理会对生态系统造成严重的危害。本发明以锰矿渣为主要原料进行氧化焙烧制备矿渣基Fe2O3化合物,可以减少原料生产成本的同时,也促进锰矿渣的高效利用,减少工业废弃物对环境的污染。
附图说明
图1为实施例4制备的矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂的XRD图。
图2为实施例4制备的矿渣基Fe2O3的SEM图以及矿渣基Fe2O3/MnO2复合光-Fenton催化剂的SEM图和EDS图。
图3为实施例4制备的矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂的N2吸附脱附曲线图。
图4为实施例4制备的矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂的紫外-可见漫反射图。
图5为实施例4制备的矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂的光致发光光谱图。
图6为实施例4制备的矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂对盐酸环丙沙星和Cr(VI)的去除效果图。
具体实施方式
下面通过实施例对本发明做进一步地详细说明,这些实施例仅用来说明本发明,并不限制本发明的保护范围。
实施例1
矿渣基Fe2O3/MnO2复合光-Fenton催化剂的制备:
将锰矿渣粉碎至300目,取一定量粉碎后的锰矿渣在空气氛围中于400℃下煅烧1h,得到矿渣基Fe2O3;称取1g矿渣基Fe2O3于50mL浓度为0.5mol/L的硫酸锰溶液中,在转速为150rpm和恒温25℃的摇床中浸渍吸附12h,过滤,将所得滤渣Ⅰ加到0.01mol/L的氯化钠溶液中,再加入1.25mol/L过硫酸铵,常温搅拌15min后,将所得悬浮液在80℃恒温水浴锅中剧烈搅拌4h,过滤,将所得滤渣Ⅱ在真空干燥箱中干燥12h,得到矿渣基Fe2O3/MnO2复合光-Fenton催化剂。
实施例2
矿渣基Fe2O3/MnO2复合光-Fenton催化剂的制备:
将锰矿渣粉碎至500目,取一定量粉碎后的锰矿渣在空气氛围中于500℃下煅烧1.5h,得到矿渣基Fe2O3;称取1g矿渣基Fe2O3于50mL浓度为1.0mol/L的硫酸锰溶液中,在转速为150rpm和恒温25℃的摇床中浸渍吸附12h,过滤,将所得滤渣Ⅰ加入到0.03mol/L的氯化钠溶液中,再加入1.5mol/L的过硫酸铵,常温搅拌15min后,将所得悬浮液在80℃恒温水浴锅中剧烈搅拌4h,过滤,将所得滤渣Ⅱ在真空干燥箱中干燥12h,得到矿渣基Fe2O3/MnO2复合光-Fenton催化剂。
实施例3
矿渣基Fe2O3/MnO2复合光-Fenton催化剂的制备:
将锰矿渣粉碎至700目,取一定量粉碎后的锰矿渣在空气氛围中于600℃下煅烧2h,得到矿渣基Fe2O3;称取1g矿渣基Fe2O3于50mL浓度为1.5mol/L的硫酸锰溶液中,在转速为150rpm和恒温25℃的摇床中浸渍吸附12h,过滤,将所得滤渣Ⅰ加入到0.05mol/L的氯化钠溶液中,再加入1.75mol/L的过硫酸铵,常温搅拌15min后,将所得悬浮液在80℃恒温水浴锅中剧烈搅拌4h,过滤,将所得滤渣Ⅱ在真空干燥箱中干燥12h,得到矿渣基Fe2O3/MnO2复合光-Fenton催化剂。
实施例4
矿渣基Fe2O3/MnO2复合光-Fenton催化剂的制备:
将锰矿渣粉碎至900目,取一定量粉碎后的锰矿渣在空气氛围中于700℃下煅烧2h,得到矿渣基Fe2O3;称取1g矿渣基Fe2O3于50mL浓度为1.5mol/L的硫酸锰溶液中,在转速为150rpm和恒温25℃的摇床中浸渍吸附12h,过滤,将所得滤渣Ⅰ加入到0.07mol/L的氯化钠溶液中,再加入1.75mol/L的过硫酸铵,常温搅拌15min后,将所得悬浮液在80℃恒温水浴锅中剧烈搅拌4h,过滤,将所得滤渣Ⅱ在真空干燥箱中干燥12h,得到矿渣基Fe2O3/MnO2复合光-Fenton催化剂。
矿渣基Fe2O3/MnO2复合光-Fenton催化剂的表征分析
(一)化学组成分析
本发明实施例4制备的矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂的晶型结构如图1所示。从图1中可以看出,氧化焙烧预处理后的矿渣主要由和SiO2和Fe2O3组成,通过浸渍吸附和过硫酸盐氧化法原位生长了无定形MnO2后复合材料晶型结构与矿渣基Fe2O3相比没有发生明显的改变,复合材料中没有出现MnO2的衍射峰,说明生成的是无定形MnO2
(二)宏观形貌和表面元素分析
本发明实施例4制备的矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂的宏观形貌如图2所示,其中,图(a)为矿渣基Fe2O3的SEM图,图(b)为矿渣基Fe2O3/MnO2复合光-Fenton催化剂的SEM图,图(c)为矿渣基Fe2O3/MnO2复合光-Fenton催化剂的EDS图。从图(a)和图(b)中可以看出,在矿渣基Fe2O3上原位生长MnO2后,MnO2呈现出绣球花状锚定在矿渣基Fe2O3的表面。这种花状结构的形成可以简单地解释为由S2O8 2-和Mn2+与去离子水配位形成MnO6前驱体作为MnO2纳米晶的晶核,在熟化过程中,初级粒子自发聚集成纤维单元以降低表面能,这些纤维单元自组装成MnO2微球的层次结构分级分支的生长最终转变为花状结构。这种特殊结构能增强了金属氧化物与载体的相互作用,有效的阻止金属氧化物的聚集,大大的提高复合材料的比表面积。通过图(c)的EDS分析表明,矿渣基Fe2O3/MnO2复合光-Fenton催化剂中相对均匀的分布着C、O、Na、Si、Mn和Fe元素。
(三)比表面积及孔体积
通过氮气等温吸附-脱附曲线来表征实施例4制备的矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂的比表面积及其孔径分布,结果如图3所示,其中,图(a)表示矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂的比表面积,图(b)为表示矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂的孔径分布。从图3中可以看出,矿渣基Fe2O3的孔结构主要是孔径在11nm左右的介孔组成,其比表面积仅为3.21m2/g。而绣球花状无定形MnO2修饰后的复合材料比表面积从3.21m2/g上升到55.47m2/g,增大了17.3倍,较大的比表面积有利于吸附反应的进行,为催化反应提供更多的反应活性位点。
(四)紫外可见漫反射光谱
采用紫外-可见漫反射对实施例4所制备的矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂进行光学性能研究,其结果如图4所示。从图4中可以看出,矿渣基Fe2O3在小于550nm波长范围内有较好的光吸收能力,当在Na+溶液中原位生长了MnO2后,复合材料的吸光能力得到明显的提升,说明MnO2能有效的提高矿渣基Fe2O3的可见光吸收能力。
(五)电化学性质
采用光致发光光谱(PL)表征了实施例4制备的矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂的光生电子-空穴的分离效率,分离效率越高,PL发射峰强度越弱,结果如图5所示。从图5可以看出,矿渣基Fe2O3在460nm处显示强烈的发射峰,光生电子-空穴的复合速率较快。当在矿渣基Fe2O3上原位生长了绣球花状的MnO2后,矿渣基Fe2O3/MnO2显示出最优异的光生电子-空穴的分离效率,这可能是由于Fe2O3和MnO2间形成了异质结,加速载流子的转移,大大提高了光生电子-空穴的分离效率。
(六)去除效果对比图
将实施例4制备的矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂运用于光-Fenton反应去除盐酸环丙沙星和Cr(VI),其结果如图6所示,其中,图(a)和图(b)分别为矿渣基Fe2O3和矿渣基Fe2O3/MnO2复合光-Fenton催化剂对Cr(VI)和盐酸环丙沙星的去除效果图。从图6可以看出,当在矿渣基Fe2O3上原位生长了绣球花状的MnO2后,复合材料对对盐酸环丙沙星和Cr(VI)的去除效率都得到了明显的提升,在反应条件(催化剂用量为0.5g/L,H2O2用量为50μL,反应时间为1h,初始pH为5)下,盐酸环丙沙星的降解率为81.9%,Cr(VI)去除率为85.2%,而当以矿渣基Fe2O3为催化剂时,盐酸环丙沙星的降解率为56.8%,Cr(VI)去除率为67.9%。
应用实施例1
将实施例1制得的矿渣基Fe2O3/MnO2复合光-Fenton催化剂应用于废水中盐酸环丙沙星和Cr(VI)的同时去除,在反应条件(催化剂用量为0.5g/L,H2O2用量为50μL,反应时间为1h,溶液初始pH为5)下,盐酸环丙沙星的降解率为90.4%,Cr(VI)去除率为91.2%。
应用实施例2
将实施例2制得的矿渣基Fe2O3/MnO2复合光-Fenton催化剂应用于废水中盐酸环丙沙星和Cr(VI)的同时去除,在反应条件(催化剂用量为0.5g/L,H2O2用量为50μL,反应时间为1h,初始pH为5)下,盐酸环丙沙星的降解率为93.6%,Cr(VI)去除率为95.3%。
应用实施例3
将实施例3制得的矿渣基Fe2O3/MnO2复合光-Fenton催化剂应用于废水中盐酸环丙沙星和Cr(VI)的同时去除,在反应条件(催化剂用量为0.5g/L,H2O2用量为50μL,反应时间为1h,初始pH为5)下,盐酸环丙沙星的降解率为98.9%,Cr(VI)去除率为99.2%。
应用实施例4
将实施例4制得的矿渣基Fe2O3/MnO2复合光-Fenton催化剂应用于废水中盐酸环丙沙星和Cr(VI)的单独去除,在反应条件(催化剂用量为1g/L,H2O2用量为150μL,反应时间为1h,初始pH为5)下,盐酸环丙沙星的降解率为96.6%,Cr(VI)去除率为97.5%。

Claims (10)

1.一种矿渣基Fe2O3/MnO2复合光-Fenton催化剂,其特征在于,将锰矿渣进行氧化焙烧制备出矿渣基Fe2O3,通过浸渍吸附和过硫酸盐氧化法原位生长Na+掺杂的低导带无定形MnO2,构建具有氧化和还原性能的直接Z型矿渣基Fe2O3/MnO2复合光-Fenton催化剂。
2.根据权利要求1所述的矿渣基Fe2O3/MnO2复合光-Fenton催化剂,其特征在于,所述矿渣基Fe2O3/MnO2复合光-Fenton催化剂的比表面积为55~56m2/g,孔隙体积为0.10~0.11cm3/g,平均孔径为10~11nm。
3.一种如权利要求1或2所述的矿渣基Fe2O3/MnO2复合光-Fenton催化剂的制备方法,其特征在于,包括以下步骤:
(1)将锰矿渣进行粉碎,将粉碎后的锰矿渣进行氧化焙烧,得到矿渣基Fe2O3
(2)将所得矿渣基Fe2O3加到硫酸锰溶液中进行浸渍吸附,过滤,得到滤渣Ⅰ;
(3)将所得滤渣Ⅰ加到NaCl水溶液中,并加入过硫酸盐溶液,搅拌,得到悬浮液;
(4)将所得悬浮液进行剧烈搅拌,过滤,将所得滤渣Ⅱ进行干燥,得到矿渣基Fe2O3/MnO2复合光-Fenton催化剂。
4.根据权利要求3所述的矿渣基Fe2O3/MnO2复合光-Fenton催化剂的制备方法,其特征在于,步骤(2)中,所述矿渣基Fe2O3与硫酸锰溶液的质体比为1g:45~50mL,所述硫酸锰溶液的浓度为0.5~1.5mol/L。
5.根据权利要求3所述的矿渣基Fe2O3/MnO2复合光-Fenton催化剂的制备方法,其特征在于,步骤(2)中,所述浸渍吸附为在转速150~160rpm和温度25~26℃的摇床中浸渍吸附11~12h。
6.根据权利要求3所述的矿渣基Fe2O3/MnO2复合光-Fenton催化剂的制备方法,其特征在于,步骤(3)中,所述NaCl水溶液的浓度为0.01~0.07mol/L,所述过硫酸盐溶液的浓度为1.25~1.75mol/L。
7.根据权利要求3所述的矿渣基Fe2O3/MnO2复合光-Fenton催化剂的制备方法,其特征在于,步骤(4)中,所述剧烈搅拌为将悬浮液置于80~90℃的恒温水浴锅中剧烈搅拌3~4h。
8.根据权利要求3所述的矿渣基Fe2O3/MnO2复合光-Fenton催化剂的制备方法,其特征在于,步骤(4)中,所述干燥为将滤渣Ⅱ置于真空干燥箱中干燥11~12h。
9.根据权利要求3所述的矿渣基Fe2O3/MnO2复合光-Fenton催化剂的制备方法,其特征在于,步骤(1)中,所述氧化焙烧为将粉碎后的锰矿渣置于马弗炉中在空气氛围中于400~700℃下氧化焙烧1~2.5h。
10.一种如权利要求1或2所述的矿渣基Fe2O3/MnO2复合光-Fenton催化剂在去除废水中盐酸环丙沙星和Cr(VI)的应用。
CN202310114117.1A 2023-02-15 2023-02-15 一种矿渣基Fe2O3/MnO2复合光-Fenton催化剂及其制备方法和应用 Active CN116099544B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310114117.1A CN116099544B (zh) 2023-02-15 2023-02-15 一种矿渣基Fe2O3/MnO2复合光-Fenton催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310114117.1A CN116099544B (zh) 2023-02-15 2023-02-15 一种矿渣基Fe2O3/MnO2复合光-Fenton催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116099544A true CN116099544A (zh) 2023-05-12
CN116099544B CN116099544B (zh) 2024-10-29

Family

ID=86253936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310114117.1A Active CN116099544B (zh) 2023-02-15 2023-02-15 一种矿渣基Fe2O3/MnO2复合光-Fenton催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116099544B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539521A (ja) * 1991-08-02 1993-02-19 Nippon Steel Corp 含クロム溶鋼の脱炭精錬法
KR20120131921A (ko) * 2011-05-27 2012-12-05 한국지질자원연구원 마그네타이트와 버네사이트의 입단 형태의 혼합물, 그 합성방법 및 그 혼합물을 이용한 수처리방법
CN103084184A (zh) * 2011-10-27 2013-05-08 常州牛翼环保科技有限公司 室内空气中臭氧去除的锰铁复合氧化物负载型催化剂
CN103594695A (zh) * 2012-08-13 2014-02-19 深圳华粤宝电池有限公司 一种锂离子电池正极材料锰酸锂及其制备方法
CN106621779A (zh) * 2017-01-09 2017-05-10 昆明理工大学 一种用于同时脱除硫化氢、磷化氢和氰化氢的锰矿渣浆液的制备方法
CN106799235A (zh) * 2017-02-28 2017-06-06 河南理工大学 一种以蛋白土为载体的非均相Fenton催化剂的制备方法
CN106955716A (zh) * 2017-03-29 2017-07-18 重庆大学 一种磁性复合硅藻土材料及其制备方法
CN107754811A (zh) * 2017-11-13 2018-03-06 河南理工大学 一种以蛭石为载体的非均相光Fenton催化剂的制备方法
CN107754757A (zh) * 2017-10-16 2018-03-06 北京工业大学 一种纳米Fe3O4修饰硅藻土的复合材料及其制备方法
CN111450855A (zh) * 2020-03-14 2020-07-28 中南民族大学 一种改性电解锰渣的制备方法及其在高效降解x-3b中的应用
CN114394771A (zh) * 2022-01-04 2022-04-26 广西大学 一种硫酸锰生产过程中产生的锰矿渣资源化利用的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539521A (ja) * 1991-08-02 1993-02-19 Nippon Steel Corp 含クロム溶鋼の脱炭精錬法
KR20120131921A (ko) * 2011-05-27 2012-12-05 한국지질자원연구원 마그네타이트와 버네사이트의 입단 형태의 혼합물, 그 합성방법 및 그 혼합물을 이용한 수처리방법
CN103084184A (zh) * 2011-10-27 2013-05-08 常州牛翼环保科技有限公司 室内空气中臭氧去除的锰铁复合氧化物负载型催化剂
CN103594695A (zh) * 2012-08-13 2014-02-19 深圳华粤宝电池有限公司 一种锂离子电池正极材料锰酸锂及其制备方法
CN106621779A (zh) * 2017-01-09 2017-05-10 昆明理工大学 一种用于同时脱除硫化氢、磷化氢和氰化氢的锰矿渣浆液的制备方法
CN106799235A (zh) * 2017-02-28 2017-06-06 河南理工大学 一种以蛋白土为载体的非均相Fenton催化剂的制备方法
CN106955716A (zh) * 2017-03-29 2017-07-18 重庆大学 一种磁性复合硅藻土材料及其制备方法
CN107754757A (zh) * 2017-10-16 2018-03-06 北京工业大学 一种纳米Fe3O4修饰硅藻土的复合材料及其制备方法
CN107754811A (zh) * 2017-11-13 2018-03-06 河南理工大学 一种以蛭石为载体的非均相光Fenton催化剂的制备方法
CN111450855A (zh) * 2020-03-14 2020-07-28 中南民族大学 一种改性电解锰渣的制备方法及其在高效降解x-3b中的应用
CN114394771A (zh) * 2022-01-04 2022-04-26 广西大学 一种硫酸锰生产过程中产生的锰矿渣资源化利用的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEINA LIANG: "Preparation and Characterization of Fe-Mn Binary Oxide/Mulberry Stem Biochar Composite Adsorbent and Adsorption of Cr(VI) from Aqueous Solution", 《INT. J. ENVIRON. RES. PUBLIC HEALTH》, vol. 17, 21 January 2020 (2020-01-21), pages 676 *
XIUNAN CAI等: "In-situ growth of amorphous MnO2 on C-decorated Fe-based geopolymer sphere with rich structure defects for efficient solar light-induced photo-thermal-Fenton reaction", 《CHEMICAL ENGINEERING JOURNAL》, vol. 449, 30 June 2022 (2022-06-30), pages 137857 *
蔡秀楠: "氧化降解-吸附法处理烷基化废硫酸制备硫酸锰及其废渣资源化利用", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 06, 15 June 2019 (2019-06-15), pages 015 - 108 *

Also Published As

Publication number Publication date
CN116099544B (zh) 2024-10-29

Similar Documents

Publication Publication Date Title
Kumar et al. Wide spectral degradation of Norfloxacin by Ag@ BiPO4/BiOBr/BiFeO3 nano-assembly: elucidating the photocatalytic mechanism under different light sources
Cheng et al. Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation
CN102580742B (zh) 一种活性炭负载氧化亚铜光催化剂及其制备方法
CN109847786B (zh) 一种Z型光催化剂MgAlLDH/CN-H的制备方法及应用
Sun et al. Mechanism insights into the enhanced activity and stability of hierarchical bismuth oxyiodide microspheres with selectively exposed (0 0 1) or (1 1 0) facets for photocatalytic oxidation of gaseous mercury
CN112156803B (zh) 光催化复合材料及其制备方法和应用
CN107837816B (zh) Fe2O3/g-C3N4复合体系及制备方法和应用
CN113426467B (zh) 一种z型硼掺杂氮化碳与碘化银复合可见光催化剂及其制备方法
CN109603803A (zh) 一种可降解甲基橙有机染料的稀土掺杂改性纳米氧化钛光催化剂制备方法
CN109569673B (zh) 一种具有优异光催化性能的缺陷BiOI-BiOBr复合光催化材料的制备方法
Bhapkar et al. A review on ZnO and its modifications for photocatalytic degradation of prominent textile effluents: Synthesis, mechanisms, and future directions
CN107684918A (zh) 一种多孔中空PbBiO2Cl光催化材料的制备方法及其用途
CN114768839B (zh) 一种铋系复合光催化剂及其制备方法和应用
Peng et al. ZnInGaS4 heterojunction with sulfide vacancies for efficient solar-light photocatalytic water splitting and Cr (VI) reduction
Wei et al. A stable and efficient La-doped MIL-53 (Al)/ZnO photocatalyst for sulfamethazine degradation
CN106984298B (zh) 一种纳米片状氧化铋的制法和用途
Plubphon et al. Rapid preparation of g-C3N4/Bi2O2CO3 composites and their enhanced photocatalytic performance
Bekena et al. Universal and highly efficient degradation performance of novel Bi2 (O, S) 3/Mo (O, S) 2 nanocomposite photocatalyst under visible light
CN102698727A (zh) 一种制备高热稳定性的负载型TiO2光催化剂的方法
Wang et al. Construction of a Z-scheme Cu2O/SrBi4Ti4O15 p–n heterojunction for enhanced visible light photocatalytic performance for doxycycline degradation
Li et al. Morphology-controlled fabrication of Nb5+ doped SrTiO3 for promoting photocatalytic reduction of Cr (VI)
Mei et al. Ce-Doped Brookite TiO2 Quasi-Nanocubes for Efficient Visible Light Catalytic Degradation of Tetracycline
CN115814829B (zh) 一种Co与Mo2C共掺杂的生物炭基复合材料及其制备方法与应用
CN116099544B (zh) 一种矿渣基Fe2O3/MnO2复合光-Fenton催化剂及其制备方法和应用
CN103007951B (zh) 一种处理水面上石油类污染物的光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant