CN107684918A - 一种多孔中空PbBiO2Cl光催化材料的制备方法及其用途 - Google Patents

一种多孔中空PbBiO2Cl光催化材料的制备方法及其用途 Download PDF

Info

Publication number
CN107684918A
CN107684918A CN201710683460.2A CN201710683460A CN107684918A CN 107684918 A CN107684918 A CN 107684918A CN 201710683460 A CN201710683460 A CN 201710683460A CN 107684918 A CN107684918 A CN 107684918A
Authority
CN
China
Prior art keywords
pbbio
porous hollow
preparation
catalysis materials
1mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710683460.2A
Other languages
English (en)
Inventor
尹盛
吴婷
夏杰祥
季梦夏
徐丽
李明
李华明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710683460.2A priority Critical patent/CN107684918A/zh
Publication of CN107684918A publication Critical patent/CN107684918A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化材料领域,特指一种多孔中空PbBiO2Cl光催化材料的制备方法及其用途。所述PbBiO2Cl材料,制备步骤如下:将Bi(NO3)3·5H2O和1mmol Pb(NO3)2完全溶解于乙二醇溶剂后,将一定量的[C16mim]Cl加入到上述溶解液中,搅拌,待其完全溶解后,再加入一定质量的聚乙烯吡咯烷酮(PVP),继续搅拌,将溶液转移至聚四氟乙烯内衬反应釜中反应,将反应釜自然冷却至室温,离心得到固体催化剂,并水洗、醇洗,干燥,即得到PbBiO2Cl样品。本发明采用溶剂热法合成了多孔中空PbBiO2Cl光催化剂,制备方法简单,成本低廉,对环境无污染,且具有较好的光催化性能,在可见光下对有机污染物降解方面具有良好的应用前景。

Description

一种多孔中空PbBiO2Cl光催化材料的制备方法及其用途
技术领域
本发明涉及光催化材料的制备,特指一种多孔中空PbBiO2Cl光催化材料的制备方法及其应用,属于材料制备及光催化技术应用领域。
背景技术
作为最有前景的技术之一,半导体光催化技术利用一种简单的能源如自然光或室内人工照明,在治理环境污染和解决能源危机方面已经得到广泛关注。光催化技术在机污染物降解、二氧化碳转化成可再生燃料、光分解水产生氢气等方面应用都比较广泛。然而通过大量的实验发现多孔中空结构的光催化剂具有优良的吸附性能有助于提高光催化活性。因此,人们一直努力致力于可控合成多孔,中空结构的光催化材料,由于这种结构具有低密度、高的比表面积、能量转换效率高以及大容量光收获能力。最近,复合金属氧化物吸引了人们越来越多的关注,因为它们的电子和晶体结构的多样性,导致更高的载流子迁移率和可见光响应,从而提高了光催化材料的性能。一些金属和铋氧化物的复合物在可见光下表现出良好的光催化性能。目前,各种复合金属氧化物材料制备的也很多,如Bi24Ga2O39,Bi3NbO7,SrBiO2Br,BaBiO2Br,ABiO2X(A=Cd,Ca,Sr,Ba,Pb;X=halogen),CaBiO2Cl,Bi4TaO8Cl,MBiO2Cl(M=Sr,Ba)等。
最近发现的一种新型的PbBiO2X光催化剂,其具有可控的形貌,合适的禁带宽度,较高的稳定性以及快的电子空穴对分离效率,从而表现出较好的光催化性能。已经报道的PbBiO2X材料有PbBiO2Cl,PbBiO2Br,PbBiO2I。其中PbBiO2Cl作为铋基多金属复合材料在可见光下吸收范围广泛引起人们的极大兴趣。目前对PbBiO2Cl的报道主要都是运用煅烧法合成,形貌不可控且性能较差,所以我们希望利用简单的溶剂热法合成一种多孔中空结构的PbBiO2Cl微球,从而改善其光催化活性。
作为全球关注的新型环境污染物,抗生素残留给水生生态系统带来不良影响,导致多种耐药性细菌的产生,也使水生动物生命活动受到影响,同时通过饮水、食物链等方式对人体健康构成潜在威胁。并且抗生素在环境中的半衰期各不相同,其中一些是高度持久的,长期暴露在此环境中的动植物、微生物还是会受到影响,比如耐药性微生物、抑制植物根芽伸长和动物生长等,因此它们在环境污染水平上不断增加。因此,寻找一种有效降解抗生素的途径迫在眉睫。在以前的报道中,离子液体和PVP复合体系能够调节催化剂的形貌为中空和多孔结构。结果表明,这种结构具有均匀的形貌、较大的比表面积、有效的界面电荷转移速率、较小的颗粒尺寸以及较宽的可见光吸收范围,在可见光下显示出良好的光催化性能。
发明内容
本发明的目的是提供一种反应条件温和、操作简便、成本低廉、高效的PbBiO2Cl光催化剂及其制备方法,实现了在溶剂热过程中对PbBiO2Cl形貌的有效调控,能有效降解环境中残留的有色污染物罗丹明B和无色抗生素。
一种多孔中空PbBiO2Cl光催化材料,是由Bi(NO3)3·5H2O和Pb(NO3)2在乙二醇溶剂环境中,通过离子液体[C16mim]Cl和表面活性剂PVP共同作用形成特定的多孔中空微球,直径为500-800nm;所述多孔中空微球由厚度为5-30nm的纳米片组成。
一种多孔中空PbBiO2Cl光催化材料的制备方法,包括如下步骤:
将Bi(NO3)3·5H2O和Pb(NO3)2完全溶解于乙二醇溶剂后,将[C16mim]Cl加入到上述溶解液中,搅拌,待其完全溶解后,在搅拌条件加入一定质量的PVP,继续搅拌直到完全溶解,将溶液转移至聚四氟乙烯内衬反应釜中,反应结束后,将反应釜自然冷却至室温,离心得到固体催化剂,经水洗、醇洗,干燥,即得到PbBiO2Cl固体样品。
所述Bi(NO3)3·5H2O、Pb(NO3)2、[C16mim]Cl和乙二醇的用量比例为1mmol:1mmol:1mmol:20mL。
所述PVP与Bi(NO3)3·5H2O用量比例为0.1~0.25g:1mmol。
所述反应釜中的反应温度为140~180℃,反应时间为12~24h。
所述干燥温度为60℃,干燥时间为12h。
本发明制备的一种多孔中空PbBiO2Cl光催化材料的用途,在可见光照射下,用于对环丙沙星或四环素进行光催化降解,75分钟降解率达到80%以上。
本发明的有益效果为:
(1)已报道的PbBiO2Cl合成条件比较苛刻,高温,调节手段复杂。本发明的PbBiO2Cl合成方法简便,条件温和,且具有很好的可控性。
(2)本发明利用离子液体和PVP的协同作用,可控合成了具有多孔中空结构的PbBiO2Cl微球。
(3)本发明制备的PbBiO2Cl材料在可见光下对降解无色抗生素具有较高的活性。
(4)采用溶剂热法制备催化剂,方法过程简单、成本较低,可用于大量制备。
附图说明
图1为所制得PbBiO2Cl光催化剂的XRD图。
图2为PbBiO2Cl材料在可见光下降解CIP(a),TC(b)的曲线。
图3为所制得PbBiO2Cl光催化剂的SEM(a)和TEM(b、c、d)图。
图4为PbBiO2Cl材料降解CIP的循环活性图(a)和循环后XRD图(b)。
具体实施方式
下面结合说明书附图和具体实施例对本发明做进一步详细说明。
实施例1:
PbBiO2Cl的制备及其光催化性能研究,包括以下步骤:
(1)将0.4850g Bi(NO3)3·5H2O和0.3312g Pb(NO3)2溶解在20ml乙二醇中,再加入0.3430g[C16mim]Cl,搅拌,直至完全溶解,搅拌30min。
(2)将溶液转移至25mL聚四氟乙烯内衬反应釜中,在160℃下反应24h后,将反应釜自然冷却至室温,离心得到固体催化剂,并水洗、醇洗各五遍。在60℃下干燥12h,得到PbBiO2Cl-0。
实施例2:
(1)将0.4850g Bi(NO3)3·5H2O和0.3312g Pb(NO3)2溶解在20ml乙二醇中,再加入0.3430g[C16mim]Cl,搅拌,直至完全溶解,最后再加入0.1g PVP,搅拌30min。
(2)将溶液转移至25mL聚四氟乙烯内衬反应釜中,在160℃下反应24h后,将反应釜自然冷却至室温,离心得到固体催化剂,并水洗、醇洗各五遍。在60℃下干燥12h,得到PbBiO2Cl-0.1。
实施例3:
(1)将0.4850g Bi(NO3)3·5H2O和0.3312g Pb(NO3)2溶解在20ml乙二醇中,再加入0.3430g[C16mim]Cl,搅拌,直至完全溶解,最后再加入0.15g PVP,搅拌30min。
(2)将溶液转移至25mL聚四氟乙烯内衬反应釜中,在160℃下反应24h后,将反应釜自然冷却至室温,离心得到固体催化剂,并水洗、醇洗各五遍。在60℃下干燥12h,得到PbBiO2Cl-0.15。
实施例4:
(1)将0.4850g Bi(NO3)3·5H2O和0.3312g Pb(NO3)2溶解在20ml乙二醇中,再加入0.3430g[C16mim]Cl,搅拌,直至完全溶解,最后再加入0.20g PVP,搅拌30min。
(2)将溶液转移至25mL聚四氟乙烯内衬反应釜中,在160℃下反应24h后,将反应釜自然冷却至室温,离心得到固体催化剂,并水洗、醇洗各五遍。在60℃下干燥12h,得到PbBiO2Cl-0.20。
实施例5:
(1)将0.4850g Bi(NO3)3·5H2O和0.3312g Pb(NO3)2溶解在20ml乙二醇中,再加入0.3430g[C16mim]Cl,搅拌,直至完全溶解,最后再加入0.25g PVP,搅拌30min。
(2)将溶液转移至25mL聚四氟乙烯内衬反应釜中,在160℃下反应24h后,将反应釜自然冷却至室温,离心得到固体催化剂,并水洗、醇洗各五遍。在60℃下干燥12h,得到PbBiO2Cl-0.25。
实施例6:
(1)将0.4850g Bi(NO3)3·5H2O和0.3312g Pb(NO3)2溶解在20ml乙二醇中,再加入0.3430g[C16mim]Cl,搅拌,直至完全溶解,最后再加入0.15g PVP,搅拌30min。
(2)将溶液转移至25mL聚四氟乙烯内衬反应釜中,在180℃下反应12h后,将反应釜自然冷却至室温,离心得到固体催化剂,并水洗、醇洗各五遍。在60℃下干燥12h,得到PbBiO2Cl。
图1为本发明实施例1~5利用不同量的PVP所制备的PbBiO2Cl光催化剂的XRD图谱;通过比较看出引入PVP制备的PbBiO2Cl催化材料并没有改变晶型结构的变化,主峰与标准卡片JCPDS No.13-0352基本一致,说明合成了纯相的PbBiO2Cl材料。
图2(a)和(b)分别为实例1、2、3、4、5所制备出的PbBiO2Cl可见光催化剂在可见光下对浓度为10mg/L的环丙沙星和20mg/L的四环素光催化降解曲线图。
从图2中可以看出,本发明所制备的PbBiO2Cl材料对降解CIP和TC都具有很好的性能,其中PbBiO2Cl-0.15表现出最好的光催化活性,在可见光的照射下,75分钟内可实现对抗生素CIP,TC接近89%,81%的降解。
图3为所制备性能最优的PbBiO2Cl-0.15材料的SEM(a)和TEM(b)。如图3(a),可以看出PbBiO2Cl-0.15室友纳米片组成的球,表面有很多孔,尺寸在几百纳米。图3(b),(c),(d)是PbBiO2Cl-0.15的TEM图,从图中可以看出样片是中间部分透亮,说明是中空结构。
图4是PbBO2Cl-0.15降解CIP的循环活性图(a)和循环后XRD图(b)。从图4(a)中可以看出经过5次循环后材料仍然保持着较好的催化活性;从图4(b)中可以看出经过5次循环后与循环前保持一致的晶型,这说明PbBO2Cl-0.15材料是一种比较稳定的光催化剂。

Claims (7)

1.一种多孔中空PbBiO2Cl光催化材料,其特征在于:是由Bi(NO3)3·5H2O和Pb(NO3)2在乙二醇溶剂环境中,通过离子液体[C16mim]Cl和表面活性剂PVP共同作用形成特定的多孔中空微球,直径为500-800nm;所述多孔中空微球由厚度为5-30nm的纳米片组成。
2.如权利要求1所述的一种多孔中空PbBiO2Cl光催化材料的制备方法,其特征在于:包括如下步骤:
将Bi(NO3)3·5H2O和Pb(NO3)2完全溶解于乙二醇溶剂后,将[C16mim]Cl加入到上述溶解液中,搅拌,待其完全溶解后,在搅拌条件加入一定质量的PVP,继续搅拌直到完全溶解,将溶液转移至聚四氟乙烯内衬反应釜中,反应结束后,将反应釜自然冷却至室温,离心得到固体催化剂,经水洗、醇洗,干燥,即得到PbBiO2Cl固体样品。
3.如权利要求1所述的一种多孔中空PbBiO2Cl光催化材料的制备方法,其特征在于:所述Bi(NO3)3·5H2O、Pb(NO3)2、[C16mim]Cl和乙二醇的用量比例为1mmol:1mmol:1mmol:20mL。
4.如权利要求1所述的一种多孔中空PbBiO2Cl光催化材料的制备方法,其特征在于:所述PVP与Bi(NO3)3·5H2O用量比例为0.1~0.25g:1mmol。
5.如权利要求1所述的一种多孔中空PbBiO2Cl光催化材料的制备方法,其特征在于:所述反应釜中的反应温度为140~180℃,反应时间为12~24h。
6.如权利要求1所述的一种多孔中空PbBiO2Cl光催化材料的制备方法,其特征在于:所述干燥温度为60℃,干燥时间为12h。
7.如权利要求1所述的一种多孔中空PbBiO2Cl光催化材料的用途,其特征在于,在可见光照射下,用于对环丙沙星或四环素进行光催化降解,75分钟降解率达到80%以上。
CN201710683460.2A 2017-08-11 2017-08-11 一种多孔中空PbBiO2Cl光催化材料的制备方法及其用途 Pending CN107684918A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710683460.2A CN107684918A (zh) 2017-08-11 2017-08-11 一种多孔中空PbBiO2Cl光催化材料的制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710683460.2A CN107684918A (zh) 2017-08-11 2017-08-11 一种多孔中空PbBiO2Cl光催化材料的制备方法及其用途

Publications (1)

Publication Number Publication Date
CN107684918A true CN107684918A (zh) 2018-02-13

Family

ID=61153255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710683460.2A Pending CN107684918A (zh) 2017-08-11 2017-08-11 一种多孔中空PbBiO2Cl光催化材料的制备方法及其用途

Country Status (1)

Country Link
CN (1) CN107684918A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109806893A (zh) * 2019-01-08 2019-05-28 江苏理工学院 一种用聚丙烯酰胺凝胶制备PbBiO2Br纳米材料的方法及应用
CN113398955A (zh) * 2021-05-31 2021-09-17 江苏大学 一种用于抗生素降解的Sillén型双金属卤氧化物的制备方法
CN113786850A (zh) * 2021-10-14 2021-12-14 昆明理工大学 一种光催化剂及其制备方法和应用
CN114618535A (zh) * 2022-02-14 2022-06-14 江苏大学 一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化co2还原应用
TWI776041B (zh) * 2019-04-08 2022-09-01 鋐錕實業股份有限公司 還原二氧化碳產製碳化合物之方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHENG YIN, ET AL.: "Controllable synthesis of perovskite-like PbBiO2Cl hollow microspheres with enhanced photocatalytic activity for antibiotic removal", 《CRYSTENGCOMM》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109806893A (zh) * 2019-01-08 2019-05-28 江苏理工学院 一种用聚丙烯酰胺凝胶制备PbBiO2Br纳米材料的方法及应用
TWI776041B (zh) * 2019-04-08 2022-09-01 鋐錕實業股份有限公司 還原二氧化碳產製碳化合物之方法
CN113398955A (zh) * 2021-05-31 2021-09-17 江苏大学 一种用于抗生素降解的Sillén型双金属卤氧化物的制备方法
CN113398955B (zh) * 2021-05-31 2023-02-17 江苏大学 一种用于抗生素降解的Sillén型双金属卤氧化物的制备方法
CN113786850A (zh) * 2021-10-14 2021-12-14 昆明理工大学 一种光催化剂及其制备方法和应用
CN114618535A (zh) * 2022-02-14 2022-06-14 江苏大学 一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化co2还原应用

Similar Documents

Publication Publication Date Title
CN107684918A (zh) 一种多孔中空PbBiO2Cl光催化材料的制备方法及其用途
Wei et al. Novel pn heterojunction photocatalyst fabricated by flower-like BiVO4 and Ag2S nanoparticles: Simple synthesis and excellent photocatalytic performance
Guo et al. Fabrication of a direct Z-scheme heterojunction between MoS2 and B/Eu-g-C3N4 for an enhanced photocatalytic performance toward tetracycline degradation
Cao et al. A novel Z-scheme CdS/Bi4O5Br2 heterostructure with mechanism analysis: Enhanced photocatalytic performance
Cheng et al. Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation
CN106215958B (zh) 一种可循环利用的光催化材料的制备方法
CN109847786B (zh) 一种Z型光催化剂MgAlLDH/CN-H的制备方法及应用
Chen et al. Adsorption, photocatalytic and sunlight-driven antibacterial activity of Bi2WO6/graphene oxide nanoflakes
Zhao et al. Synthesis of one-dimensional α-Fe2O3/Bi2MoO6 heterostructures by electrospinning process with enhanced photocatalytic activity
CN110227453B (zh) 一种AgCl/ZnO/GO复合可见光催化剂的制备方法
CN105728010A (zh) 一种抗菌钼酸银石墨相氮化碳复合可见光催化剂的制备方法
CN106378160B (zh) 一种制备CdS/MoS2复合空心方块光催化剂的方法
CN102580742A (zh) 一种活性炭负载氧化亚铜光催化剂及其制备方法
CN107837816B (zh) Fe2O3/g-C3N4复合体系及制备方法和应用
Hu et al. Preparation, performance and mechanism of p-Ag3PO4/n-ZnO/C heterojunction with IRMOF-3 as precursor for efficient photodegradation of norfloxacin
CN105013511A (zh) 一种以聚乙烯吡咯烷酮为分散剂的硫化镉量子点/碳纳米管光催化剂的制备方法
Cao et al. Preparation, suppressed the charge carriers recombination, and improved photocatalytic performance of g-C3N4/MoS2 pn heterojunction photocatalyst for tetracycline and dyes degradation upon visible light
Wang et al. In-situ preparation of mossy tile-like ZnIn2S4/Cu2MoS4 S-scheme heterojunction for efficient photocatalytic H2 evolution under visible light
Zhang et al. Enhanced photocatalytic activities of CdS-BiOCl/PAN composites towards photocatalytic hydrogen evolution
CN108295872A (zh) 一种水热法制备Bi2S3/1T@2H-MoS2的方法
CN106268891A (zh) 一种莲藕状多孔碳/卤氧铋半导体复合光催化材料、制备及应用
CN107876069A (zh) 具有高光催化活性的BiOCl光催化剂及其合成方法
CN107362814B (zh) 一种氧化钨/溴氧化铋复合材料的制备方法与用途
Hou et al. Fabrication and photocatalytic activity of core@ shell Ag3PO4@ Cu2O heterojunction
Sharma et al. Advances in photocatalytic NO oxidation by Z-scheme heterojunctions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180213