CN110227453B - 一种AgCl/ZnO/GO复合可见光催化剂的制备方法 - Google Patents

一种AgCl/ZnO/GO复合可见光催化剂的制备方法 Download PDF

Info

Publication number
CN110227453B
CN110227453B CN201910308158.8A CN201910308158A CN110227453B CN 110227453 B CN110227453 B CN 110227453B CN 201910308158 A CN201910308158 A CN 201910308158A CN 110227453 B CN110227453 B CN 110227453B
Authority
CN
China
Prior art keywords
zno
agcl
visible light
preparation
light catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910308158.8A
Other languages
English (en)
Other versions
CN110227453A (zh
Inventor
朱秋蓉
宋小宝
何世颖
俞映倞
冯彦房
赵晓蕾
薛利红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Academy of Agricultural Sciences
Original Assignee
Jiangsu Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Academy of Agricultural Sciences filed Critical Jiangsu Academy of Agricultural Sciences
Priority to CN201910308158.8A priority Critical patent/CN110227453B/zh
Publication of CN110227453A publication Critical patent/CN110227453A/zh
Application granted granted Critical
Publication of CN110227453B publication Critical patent/CN110227453B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种AgCl/ZnO/GO复合可见光催化剂的制备方法,包括以下步骤:步骤(1)采用锌盐和尿素为前驱体,柠檬酸三钠为结构导向剂,通过水热法制备出球形氧化锌;步骤(2)以银盐为前驱体,通过化学沉积法制备出AgCl/ZnO二元复合材料;步骤(3)将上述AgCl/ZnO二元复合材料加入到氧化石墨烯(GO)分散液中进行加热负载,制得所述AgCl/ZnO/GO三元复合可见光催化剂。本发明制备用于制备具有更高可见光催化活性的光催化剂。

Description

一种AgCl/ZnO/GO复合可见光催化剂的制备方法
技术领域
本发明涉及一种AgCl/ZnO/GO复合可见光催化剂的制备方法,属于光催化复合材料技术领域。
背景技术
水污染是当今社会面临的一大亟待解决的问题,不仅对人类的身体健康有害,也影响了社会的可持续发展。造纸业和纺织业排放的废弃染料是水体中一种主要的污染物。光催化技术是降解水中有机污染物的一个比较有前途且有效的方法。诸如TiO2、ZnO、SnO2、WO3、Bi2O3等半导体都被广泛的研究以用于光催化降解水中的染料。
其中ZnO因其具有直接带隙、高电子迁移率、良好的物理和化学稳定性、廉价且无毒、反应速度快、能使有机物彻底矿化、无二次污染等优异的性能而被广泛研究,但是其禁带宽度宽,只能吸收紫外光,对太阳能利用率低;光生载流子的复合几率较高;稳定性差,易被光腐蚀,且不易分离回收,针对以上不足,目前提出了很多的改性方法,如掺入金属或非金属、贵金属沉积、与其他半导体复合形成异质结、与碳材料复合(碳纳米管、碳纳米球、C60、石墨烯等)等。ZnO与其他半导体结合可以形成异质结,不同半导体之间的界面的相互作用会产生不属于任何一种半导体的新特性,而且形成异质结后,窄带隙半导体作为增感剂,通过吸收可见光,将电子注入ZnO的导带。这些注入的电子可以移动到氧化锌的表面并产生活性的氧化产物。因此,耦合半导体大大降低了光生电子-空穴对的复合速率,从而提高了光催化效率。
近年来,AgX (X = Cl, Br, I)材料被证明是一种新型高效的可见光光催化剂,但由于其价格昂贵而且性质不稳定,使其在光催化领域的应用受到了很大的限制。将它与ZnO半导体复合,不仅能改善ZnO光催化剂的性质,也能提升自身稳定性。
2014年Mahsa Pirhashemi等(Journal of Alloys and Compounds, 2014, 601:1-8.)通过水浴加热回流制备出了呈颗粒状的AgCl/ZnO材料。由于AgCl的负载,使ZnO对光的响应范围红移到了可见光区,提高了对太阳光的利用率,从而使得其光催化性能得到大大的提高。
2015年Randeep Lamba 等(Journal of Molecular Catalysis A: Chemical,2015:S1381116915300273.)使用简单的化学沉积法制备出了菜花状AgCl/ZnO光催化剂,得到的催化剂具有良好的可见光催化性能,在可见光照射下150 min内能将MG染料的降解掉85%。
虽然如今成功地制备出了AgCl/ZnO光催化剂,但是其稳定性跟光催化活性有待进一步提高,寻找一种能有效提高ZnO光催化剂活性和稳定性的方法势在必行。
发明内容
本发明所要解决的技术问题是,提供一种可见光催化活性更高的AgCl/ZnO/GO复合可见光催化剂的制备方法 。
为解决上述技术问题,本发明采用的技术方案为:
一种AgCl/ZnO/GO复合可见光催化剂的制备方法,包括以下步骤:
步骤(1)采用锌盐和尿素为前驱体,柠檬酸三钠为结构导向剂,通过水热法制备出球形氧化锌;
步骤(2)以银盐为前驱体,通过化学沉积法制备出AgCl/ZnO二元复合材料;
步骤(3)将上述AgCl/ZnO二元复合材料加入到氧化石墨烯(GO)分散液中进行加热负载,制得所述AgCl/ZnO/GO三元复合可见光催化剂。
进一步的,步骤(1)中锌盐、尿素和柠檬酸三钠的摩尔比为13~16:60:2~5。
进一步的,步骤(1)具体步骤如下:将锌盐、尿素和柠檬酸三钠溶于去离子水中,经磁力搅拌、超声混合均匀后,于反应釜中经120℃水热反应6~8h,离心,洗涤,干燥,300℃下煅烧1~3h,即得所述球形氧化锌。
进一步的,步骤(2)中ZnO与银盐摩尔比为0.5~4:1。
进一步的,步骤(2)具体步骤如下:将所述球形氧化锌溶于去离子水中,调节pH至碱性,超声分散均匀,加入AgNO3溶液,在避光条件下磁力搅拌20~60min,再逐滴加入与AgNO3溶液同浓度的盐酸盐溶液,磁力搅拌1~6h,将所得产物洗涤,离心,真空干燥。
进一步的,步骤(2)中ZnO与去离子水的量为0.005~0.01g/L,采用氨水调节pH至8~10。
进一步的,步骤(3)中氧化石墨烯与AgCl/ZnO二元复合材料质量比为1: 1~20。
进一步的,步骤(3)中氧化石墨烯与AgCl/ZnO二元复合材料质量比为1: 10。
进一步的,步骤(3)具体步骤如下:将氧化石墨烯超声分散在DMF中,加入所述AgCl/ZnO二元复合材料,超声分散,在100~180℃油浴锅中反应1~3h,将产物用去离子水和无水乙醇多次洗涤,离心,真空干燥,即得所述AgCl/ZnO/GO三元复合可见光催化剂。
本发明所达到的有益效果:本发明中将AgCl/ZnO复合负载在氧化石墨烯上制得的三元复合光催化剂可提高ZnO的可见光催化活性,增加了对太阳光的利用;可显著提高对污染物的吸附,改善材料稳定性,从而进一步改善了材料的光催化性能;本发明制备方法简单,所用原料无毒无害,绿色环保。
附图说明
图1是实施例1制备的球形ZnO的SEM图;
图2是实施例1制备的球形ZnO的XRD图;
图3是实施例2制备的AgCl/ZnO的SEM图;
图4是实施例3制备的AgCl(a)、球形ZnO(b)、AgCl/ZnO(c)和AgCl/ZnO/GO(d)的SEM图;
图5是实施例3制备的球形ZnO(a)以及ZnO与AgCl摩尔比分别为4:1(b)、2:1(c)、1:1(d)、1:2(e)的AgCl/ZnO/GO三元复合材料的XRD图谱;
图6是不同催化剂在可见光照射下催化降解甲基橙的降解图;
图7是不同催化剂的紫外-可见吸收光谱图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1
将1.8520g 二水合乙酸锌,0.5018g 二水合柠檬酸三钠,2.0270g尿素溶于180mL去离子水中;磁力搅拌30min,超声20min,形成混合均匀的溶液,然后将其倒入200mL聚四氟乙烯水热反应釜中,填充度为80%,120℃下恒温反应8h,然后将产物用去离子水和无水乙醇各洗三次、离心,于100℃鼓风干燥箱中干燥12h,然后在300℃下煅烧3h,得到球形ZnO。
所制备的球形ZnO不同放大倍数的SEM如图1所示,其XRD如图2所示,从图2可以看出通过水热法制备的球形ZnO呈六方纤锌矿结构,其衍射峰与标准图谱(JCPDS 00-036-1415)的峰位完全一致。
实施例2
将1.1156g 六水合硝酸锌,0.2206g 二水合柠檬酸三钠,0.9009g尿素溶于80mL去离子水中;磁力搅拌50min,超声15min,形成混合均匀的溶液,然后将其倒入100mL聚四氟乙烯水热反应釜中,填充度为80%,120℃下恒温反应8h,然后将产物用去离子水和无水乙醇各洗三次、离心,于90℃鼓风干燥箱中干燥12h,然后在300℃下煅烧3h,得到球形ZnO。
将0.2g球形ZnO溶于40mL去离子水中,用氨水调节pH为8,超声10min,;再加入0.4175gAgNO3,然后在黑暗条件下磁力搅拌40min,再逐滴加入40mL与AgNO3浓度相同的KCl溶液,磁力搅拌3h,最后将产物用去离子水和无水乙醇各洗三次、离心,于55℃真空干燥箱中干燥12h。
所制备的AgCl/ZnO的SEM图如3所示,AgCl均匀地负载在球形ZnO表面。
实施例3
将2.2312g六水合硝酸锌,0.4412g二水合柠檬酸三钠,1.8018g尿素溶于160mL去离子水中;磁力搅拌60min,超声10min,形成混合均匀的溶液,然后将其倒入200mL聚四氟乙烯水热反应釜中,填充度为80%,120℃下恒温反应6h,然后将产物用去离子水和无水乙醇各洗三次、离心,于80℃鼓风干燥箱中干燥12h,然后在300℃下煅烧2h,得到球形ZnO。
将0.2g球形ZnO溶于20mL去离子水中,用氨水调节pH为10,超声10min,;然后加入不同量的AgNO3(ZnO:AgNO3的摩尔比为4:1、2:1、1:1、1:2),在黑暗条件下磁力搅拌60min,再逐滴加入20mL与AgNO3浓度相同的NaCl溶液,磁力搅拌1h,最后将产物用去离子水和无水乙醇各洗三次、离心,于55℃真空干燥箱中干燥12h;纯AgCl的制备方法同上。
将0.02g氧化石墨烯加到60mLDMF中,超声60min后加入0.2gAgCl/ZnO(不同AgCl含量),超声30min,然后在100℃油浴锅中反应1h,最后将产物用去离子水和无水乙醇各洗三次、离心,于60℃真空干燥箱中干燥12h,得到不同AgCl含量的AgCl/ZnO/GO,ZnO/GO的制备方法同上。
所制备的AgCl、ZnO、AgCl/ZnO和AgCl/ZnO/GO复合材料的SEM图如4所示,制备的AgCl(图4a)呈现大小均匀的立方体结构,但是分散性差,容易团聚在一起;图4b是用水热法制备的球形ZnO,它是纳米片组成的分层多孔微球,其直径大约在5-6μm;图4c是AgCl/ZnO二元复合材料,在二元复合物中AgCl呈颗粒状均匀地负载在球形ZnO表面,图4d则是AgCl/ZnO/GO三元复合材料,由图可以看出AgCl/ZnO成功地负载到了GO上。
ZnO和AgCl摩尔量之比分别为4:1、2:1、1:1、1:2的AgCl/ZnO/GO三元复合材料的XRD图如5所示,由图可知,通过水热法制备的ZnO呈六方纤锌矿结构,其衍射峰与标准图谱(JCPDS 00-036-1415)的峰位完全一致。与纯ZnO相比,AgCl/ZnO/GO三元复合材料的XRD衍射峰则多了AgCl的特征衍射峰,而且由图可以看出,随着AgCl的量的增加,ZnO的峰强逐渐变弱而AgCl的峰强则逐渐变强,但是ZnO的峰位并没有发生改变,说明与AgCl复合并没有改变ZnO的晶型。在AgCl/ZnO/GO的XRD图谱中并未发现关于GO的衍射峰,这可能是因为复合材料中GO的含量较少所致。
实施例4
将实施例3制备的催化剂进行有机染料甲基橙的光催化降解实验,并进行了UV-Vis图谱分析。
探究不同材料对甲基橙(MO)溶液去除率的影响。称取40mg的ZnO、AgCl-ZnO、ZnO-GO、AgCl-ZnO-GO(AgCl与ZnO的摩尔比分别为1:4、1:2、1:1、2:1)分别加入到40mL浓度为10mg·L−1的甲基橙(MO)溶液中,室温下暗反应30min以达吸附平衡,可见光照射60min。
不同材料对甲基橙的催化降解结果如图6所示,由图可知GO能在一定程度上改善ZnO的可见光催化性能,但在加入AgCl后,ZnO的可见光催化性能得到了很大的提升,当它们三者结合形成AgCl-ZnO-GO三元复合物后,其可见光催化活性均强于两两结合的AgCl-ZnO、ZnO-GO二元复合材料,且随着AgCl-ZnO-GO复合材料中AgCl含量的增加,其可见光催化活性也逐渐增强。这些结论与UV-Vis图谱的表征结果一致,不同材料的UV-Vis图谱如图7所示,由图可以看出在负载AgCl和GO后,ZnO的可见光吸收得到了的增强,且满足AgCl-ZnO-GO(2:1)>AgCl-ZnO-GO(1:1)>AgCl-ZnO-GO(1:2)>AgCl-ZnO-GO(1:4)>AgCl-ZnO(2:1)>ZnO。
综上所述,本发明制备的AgCl-ZnO-GO三元复合材料具有很好可见光催化降解性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (6)

1.一种AgCl/ZnO/GO复合可见光催化剂的制备方法,其特征是,包括以下步骤:
步骤(1)采用锌盐和尿素为前驱体,柠檬酸三钠为结构导向剂,通过水热法制备出球形氧化锌;
步骤(2)以银盐为前驱体,通过化学沉积法制备出AgCl/ZnO二元复合材料,其中ZnO与银盐摩尔比为0.5~4:1;
步骤(3)将上述AgCl/ZnO二元复合材料加入到氧化石墨烯(GO)分散液中进行加热负载,氧化石墨烯与AgCl/ZnO二元复合材料质量比为1: 1~20,制得所述AgCl/ZnO/GO三元复合可见光催化剂;
步骤(3)的具体步骤如下:将氧化石墨烯超声分散在DMF中,加入所述AgCl/ZnO二元复合材料,超声分散,在100~180℃油浴锅中反应1~3h,将产物用去离子水和无水乙醇多次洗涤,离心,真空干燥,即得所述AgCl/ZnO/GO三元复合可见光催化剂。
2.根据权利要求1所述的一种AgCl/ZnO/GO复合可见光催化剂的制备方法,其特征是,步骤(1)中锌盐、尿素和柠檬酸三钠的摩尔比为13~16:60:2~5。
3.根据权利要求2所述的一种AgCl/ZnO/GO复合可见光催化剂的制备方法,其特征是,步骤(1)具体步骤如下:将锌盐、尿素和柠檬酸三钠溶于去离子水中,经磁力搅拌、超声混合均匀后,于反应釜中经120℃水热反应6~8h,离心,洗涤,干燥,300℃下煅烧1~3h,即得所述球形氧化锌。
4.根据权利要求1所述的一种AgCl/ZnO/GO复合可见光催化剂的制备方法,其特征是,步骤(2)具 体步骤如下:将所述球形氧化锌溶于去离子水中,调节pH至碱性,超声分散均匀,加入AgNO3溶液,在避光条件下磁力搅拌20~60min,再逐滴加入与AgNO3溶液同浓度的盐酸盐溶液,磁力搅拌1~6h,将所得产物洗涤,离心,真空干燥。
5.根据权利要求4所述的一种AgCl/ZnO/GO复合可见光催化剂的制备方法,其特征是,步骤(2)中ZnO与去离子水的量为0.005~0.01g/L,采用氨水调节pH至8~10。
6.根据权利要求1所述的一种AgCl/ZnO/GO复合可见光催化剂的制备方法,其特征是,步骤(3)中氧化石墨烯与AgCl/ZnO二元复合材料质量比为1: 10。
CN201910308158.8A 2019-04-17 2019-04-17 一种AgCl/ZnO/GO复合可见光催化剂的制备方法 Active CN110227453B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910308158.8A CN110227453B (zh) 2019-04-17 2019-04-17 一种AgCl/ZnO/GO复合可见光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910308158.8A CN110227453B (zh) 2019-04-17 2019-04-17 一种AgCl/ZnO/GO复合可见光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110227453A CN110227453A (zh) 2019-09-13
CN110227453B true CN110227453B (zh) 2022-03-25

Family

ID=67860867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910308158.8A Active CN110227453B (zh) 2019-04-17 2019-04-17 一种AgCl/ZnO/GO复合可见光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110227453B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112058252B (zh) * 2020-09-29 2023-05-02 西安建筑科技大学 一种中空核壳结构ZnO/In2O3异质Ⅱ型光催化材料及其制备方法
CN112999874A (zh) * 2021-02-25 2021-06-22 上海应用技术大学 共混制备光催化性能pmia混合基质膜的方法与应用
CN113786839A (zh) * 2021-10-11 2021-12-14 广东工业大学 一种复合微球结构ZnO/CuO/GO异质结光催化剂及其制备方法和应用
CN114084900B (zh) * 2021-10-21 2024-02-23 红河学院 Au@AuPt3D ZnO-GO复合纳米材料的制备方法及其对盐酸阿霉素的检测
CN114464760B (zh) * 2022-02-10 2024-03-26 合肥福纳科技有限公司 一种电子传输层材料、半导体器件及其制备方法
CN116510719A (zh) * 2023-04-16 2023-08-01 大连理工大学 一种核壳材料ZnO/SnO2 的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380379A (zh) * 2011-09-20 2012-03-21 上海大学 Ag/ZnO-AC光催化剂及其制备方法
CN105561965A (zh) * 2015-12-31 2016-05-11 宿州学院 一种花状ZnO/石墨烯复合微球的制备方法
CN106334554A (zh) * 2015-12-14 2017-01-18 台州职业技术学院 一种在可见光下具有高效光催化活性的ZnO/Ag复合纳米光催化剂
KR20170125214A (ko) * 2016-05-04 2017-11-14 울산대학교 산학협력단 그래핀옥사이드에 분산된 은이 도핑된 산화아연을 포함하는 수처리용 촉매, 이의 제조방법 및 이를 이용한 수처리 방법
CN107497427A (zh) * 2017-09-08 2017-12-22 上海戈马环保科技有限公司 一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380379A (zh) * 2011-09-20 2012-03-21 上海大学 Ag/ZnO-AC光催化剂及其制备方法
CN106334554A (zh) * 2015-12-14 2017-01-18 台州职业技术学院 一种在可见光下具有高效光催化活性的ZnO/Ag复合纳米光催化剂
CN105561965A (zh) * 2015-12-31 2016-05-11 宿州学院 一种花状ZnO/石墨烯复合微球的制备方法
KR20170125214A (ko) * 2016-05-04 2017-11-14 울산대학교 산학협력단 그래핀옥사이드에 분산된 은이 도핑된 산화아연을 포함하는 수처리용 촉매, 이의 제조방법 및 이를 이용한 수처리 방법
CN107497427A (zh) * 2017-09-08 2017-12-22 上海戈马环保科技有限公司 一种可降解甲醛的银/石墨烯/氧化锌复合材料制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Visible-light-driven photocatalytic properties of self assembled cauliflower-like AgCl/ZnO hierarchical nanostructures;Randeep Lamba et al.;《Journal of Molecular Catalysis A》;20150719;第408卷;第190页左栏第4段、右栏第2段,第195页左栏第1段 *
ZnO hierarchical microsphere for enhanced photocatalytic activity;Sheng Wang et al.;《Journal of Alloys and Compounds》;20180111;第741卷;第623页左栏最后2段,表1,第630页结论部分 *

Also Published As

Publication number Publication date
CN110227453A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
CN110227453B (zh) 一种AgCl/ZnO/GO复合可见光催化剂的制备方法
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
Li et al. Photo-assisted selective catalytic reduction of NO by Z-scheme natural clay based photocatalyst: Insight into the effect of graphene coupling
Zhang et al. Dual Z-scheme 2D/3D carbon-bridging modified g-C3N4/BiOI-Bi2O3 composite photocatalysts for effective boosting visible-light-driven photocatalytic performance
CN108927188B (zh) 一种碳酸氧铋光催化剂及其制备方法
CN109675607A (zh) Fe3O4@ZnO@N-C复合光催化材料的制备方法
CN112844484B (zh) 一种氮化硼量子点/多孔金属有机框架复合光催化材料及其制备方法和应用
CN110787792B (zh) 一种具有可见光响应的Bi2Ti2O7-TiO2/RGO纳米复合材料的制备方法
CN107469804A (zh) 一种纳米颗粒铋负载的二氧化钛基复合光催化材料及其制备方法和应用
CN107159264A (zh) 一种高效全光谱响应CuS/石墨烯复合光催化剂及其制备方法
CN104785234A (zh) 一种蜂窝式活性炭负载催化剂板
CN105032418B (zh) 不同微观形貌Ag/ZnO‑碳球三元壳核异质结光催化剂的制备方法
CN109482213B (zh) 一种Bi/(BiO)2CO3纳米花球状光催化剂的制备方法
Hu et al. Facile synthesis of Z-scheme Bi2O3/Bi2WO6 composite for highly effective visible-light-driven photocatalytic degradation of nitrobenzene
Yang et al. Fabrication of carbon nanotube-loaded TiO 2@ AgI and its excellent performance in visible-light photocatalysis
CN111974374A (zh) 一种生物炭修饰纳米ZnO复合粉体的制备方法
CN108837840B (zh) 一种Ag/g-C3N4修饰钨酸铋混晶复合材料及其制备方法和应用
An et al. The multiple roles of rare earth elements in the field of photocatalysis
CN110152609A (zh) 一种高效石墨烯基铋系纳米复合材料及其制备方法
CN113101980A (zh) 一种具有可见光催化活性的TiO2/UiO-66复合材料的制备方法和应用
CN111229217B (zh) 复合p-n型异质结光催化剂的制备方法及VOCs光催化降解方法
CN102580727A (zh) 一种活性炭负载二氧化钛掺银光催化剂的制备方法
CN108404948B (zh) 一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用
CN115999613A (zh) 氮和过渡金属掺杂的二氧化钛颗粒、其制备方法和应用
CN114471707B (zh) 含催化剂水凝胶球、其制备方法及其在光催化处理有机污染物方面的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant