CN114618535A - 一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化co2还原应用 - Google Patents

一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化co2还原应用 Download PDF

Info

Publication number
CN114618535A
CN114618535A CN202210133991.5A CN202210133991A CN114618535A CN 114618535 A CN114618535 A CN 114618535A CN 202210133991 A CN202210133991 A CN 202210133991A CN 114618535 A CN114618535 A CN 114618535A
Authority
CN
China
Prior art keywords
oxygen
pbbio
chloride
vacancy
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210133991.5A
Other languages
English (en)
Inventor
王彬
夏杰祥
尹盛
李华明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202210133991.5A priority Critical patent/CN114618535A/zh
Publication of CN114618535A publication Critical patent/CN114618535A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/02Particle morphology depicted by an image obtained by optical microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于光催化材料领域,公开了一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化CO2还原应用。本发明以Bi(NO3)3·5H2O为铋源、Pb(NO3)2为铅源、氯代反应型离子液体为氯源、聚乙烯吡咯烷酮为模板剂,通过溶剂热法制备得到少氧空位PbBiO2Cl纳米片。再通过还原气体煅烧得到富氧空位PbBiO2Cl纳米片。在光照下,与少氧空位PbBiO2Cl纳米片和块状PbBiO2Cl相比,富氧空位PbBiO2Cl纳米片展现出最佳的光催化CO2还原生成CO性能。可实现有效的CO2资源化利用。

Description

一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化 CO2还原应用
技术领域
本发明属于材料制备及光催化技术应用领域,特指一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化CO2还原应用。
背景技术
化石燃料的大量使用使得二氧化碳过度排放,导致不利的全球气候和环境变化,极大地阻碍了人类和自然的可持续发展。通过太阳能驱动将二氧化碳转化为碳基燃料是减轻化石燃料燃烧带来的环境和能源负担的一种有前途的策略。然而,由于目前光催化剂的光生载流子分离效率低,CO2/中间体/产物捕获/活化/解吸能力缓慢,光催化CO2还原的效率仍然不尽如人意。此外,对光生电子传输途径和质子耦合电子传输动力学过程的模糊认识进一步阻碍了高效光催化CO2转化材料的设计。因此,必须采用适当的策略来设计高效的CO2转化光催化剂并探索其光催化机理。
发明内容
本发明的目的是通过简单、温和的方法制备表面氧空位浓度可调的双金属氯氧化物纳米片。并将其用于太阳光趋势的CO2资源化应用,为降低大气中CO2浓度和缓解对化石燃料的依赖提供有效的思路。
本发明的技术方案:
一种富氧空位双金属氯氧化物纳米片的制备方法,包括如下步骤:
(1)采用氯化铅、硝酸铅、硫酸铅或醋酸铅为铅源;柠檬酸铋铵、硝酸铋、氯化铋、硫酸铋或醋酸铋为铋源;加入一定量的聚乙烯吡咯烷酮,在甘露醇水溶液中配成溶液A;
(2)以反应型氯代离子液体或无机氯盐为氯源,在乙醇溶剂中配成溶液B;
(3)将步骤(2)中的溶液B,注入到步骤(1)中的溶液A中,并充分持续搅拌得到溶液C;
(4)将溶液C倒入高压反应釜中反应数小时,产物离心,并用蒸馏水和无水乙醇洗涤数次,烘干得到少氧空位PbBiO2Cl纳米片材料;
(5)将步骤(4)中的少氧空位PbBiO2Cl纳米片在H2/Ar混合气氛中煅烧数小时,得到富氧空位PbBiO2Cl纳米片。
步骤(1)中,溶液A中,铅源、铋源、聚乙烯吡咯烷酮和甘露醇水溶液的用量比为0.5mmol:0.5mmol:0.1-1.0g:20-100mL,其中,甘露醇水溶液的浓度为0.1-1.0mmol/L。
步骤(2)中,所述反应型氯代离子液体为:1-甲基-3-己基咪唑高氯酸盐盐、1-(2-羟乙基)-3-甲基氯化咪唑、1-甲基-3-辛基氯化咪唑翁、1-己基-2,3-二甲基氯化咪唑、氯化(1-丁基-3-甲基咪唑)、1-辛基-2,3-二甲基咪唑氯盐、1-己基-3-甲基咪唑氯化物、1-丁基-1- 甲基吡咯烷氯化物、氯化1-丁基-2,3-二甲基咪唑鎓、1-乙基-3-甲基咪唑高氯酸盐中的一种。
步骤(2)中,所述无机氯盐为KCl、NaCl、NH4Cl中的一种。
步骤(2)中,铅源:铋源:氯源物质的量比为:1:1:1。
步骤(2)中,溶液B中,无水乙醇的用量为10-100mL,氯源的浓度0.05mol/L。
步骤(3)中,持续搅拌的时间为5-120分钟。
步骤(4)中,反应釜的反应温度为100-200℃,反应时间为1-48小时;烘干温度为40-80℃,烘干时间为4-24小时。
步骤(5)中,H2/Ar混合气氛中,H2的体积百分比为1-10%。
步骤(5)中,H2/Ar混合气氛煅烧的温度为200-400℃,煅烧的时间为0.5-2小时。
本发明所述富氧空位双金属氯氧化物是超薄氧空位PbBiO2Cl纳米片,厚度为 0.9~1.2nm。
本发明制备的超薄氧空位PbBiO2Cl纳米片光催化剂用于光催化CO2还原生成CO。
本发明的有益效果为:
在H2/Ar气氛中,本发明通过不同时间煅烧制备具有可调表面氧空位浓度的PbBiO2Cl 双金属氯氧化物。PbBiO2Cl超薄结构可以促进光生电子快速扩散,氧空位加速表面光生载流子分离以及CO2/中间体(COOH*)捕获/活化和产物(CO)解吸能力。
在氙灯光照射下,没有任何牺牲剂和光敏剂,具有富氧空位的PbBiO2Cl纳米片在1h H2/Ar混合气体煅烧(PbBiO2Cl-1)下表现出优异的CO2到CO转化活性,光照5小时的平均产率约为16.02μmol·g-1·h-1,分别是少氧空位PbBiO2Cl-0纳米片和块状 PbBiO2Cl的2.66倍和18.00倍。
附图说明
图1为所制备PbBiO2Cl催化剂的XRD图。
图2为富氧空位PbBiO2Cl-1纳米片的TEM和AFM图。
图3为少氧空位PbBiO2Cl-0纳米片的TEM和AFM图。
图4为块状PbBiO2Cl材料的XRD和SEM图。
图5为所制备PbBiO2Cl材料的电子顺磁共振(EPR)图谱。
图6为所制备PbBiO2Cl材料的高分辨O1s图谱。
图7氙灯光照射下制备PbBiO2Cl材料还原CO2生产CO产率。
具体实施方式
下面结合说明书附图和具体实施例对本发明做进一步详细说明。
实施例1:
PbBiO2Cl材料的制备方法,包括以下步骤:
(1)取0.5mmol Pb(NO3)2、0.5mmol Bi(NO3)3·5H2O、200mg聚乙烯吡咯烷酮溶解到30mL甘露醇水溶液(0.1mol/L)中配成溶液A。在另一个烧杯中,取0.5mmol [C16mim]Cl,溶解在10mL无水乙醇中配成溶液B。将溶液B逐滴加入到溶液A中,充分搅拌后,将混合溶液倒入高压反应釜中,在180℃下反应24小时。接着将产物离心,并用水和无水乙醇洗涤,然后在60℃中干燥过夜,得到少氧空位PbBiO2Cl纳米片(标记为PbBiO2Br-0)。
(2)取500mg少氧空位PbBiO2Cl-0纳米片放入方舟,在管式炉中,5%的H2-Ar 混合气氛下300℃煅烧不同小时,获得富氧空位PbBiO2Cl纳米片,标记为PbBiO2Cl-X (X为煅烧时间,分别为0.5、1、2小时)。
对比例
取1mmol BiOCl和1mmol Pb(NO3)2,在研钵中充分混合。将混合物放入方舟,在管式炉中,空气气氛下,700℃煅烧10小时,获得块状PbBiO2Cl(bulk-PbBiO2Br).
图1为本发明实施例1所制备PbBiO2Cl材料的XRD图。可以看出,所制备材料的 XRD衍射峰与标准卡片JCPDS No.75-2096相一致,表明所制备的样品是纯的PbBiO2Cl 材料。
图2是富氧空位PbBiO2Cl-1纳米片的TEM(图2a-b)和AFM(图2c-d)图。从图 2a可以看出,所制备的富氧空位PbBiO2Cl-1材料为纳米片结构。从图2b的高分辨TEM 图中可以发现富氧空位PbBiO2Cl-1材料晶格上有缺陷。图2c-d表明,富氧空位PbBiO2Cl-1 材料的厚度大约为1.0纳米。
图3是少氧空位PbBiO2Cl-0纳米片的TEM(图3b-c)和AFM(图3d)图。从图3a 可以看出,所制备的少氧空位PbBiO2Cl-0材料为纳米片结构。图3c-d表明,少氧空位 PbBiO2Cl-0纳米片的厚度大约为1.0纳米。
图4是块状PbBiO2Cl的XRD(图4a)和SEM(图4b)图。从图4a中可以看出所制备块状PbBiO2Cl材料的XRD衍射峰与标准卡片JCPDS No.75-2096相一致,表明所制备的样品是纯的PbBiO2Cl材料。图4b的SEM图可以发现,块状PbBiO2Cl是微米级材料。
图5是所制备PbBiO2Cl材料的EPR图谱。样品在g=2.001处显示EPR信号其可被识别为捕获在氧缺陷上的电子。块状PbBiO2Cl材料的信号强度最弱,其次是少氧空位PbBiO2Cl-0纳米片。随着煅烧时间的延长,PbBiO2Cl-X纳米片的EPR信号强度逐渐增强,表明氧空位的浓度逐渐增加。
图6是所制备PbBiO2Cl材料的O1s的XPS高分辨图谱。位于529.6,531.3和532.4 eV的O1s峰分别归因于晶格氧(Bi-O),氧空位附近的氧和表面羟基氧(Bi-OH)的原子信号。可以发现531.3eV处氧空位信号峰所占的比例是富氧空位PbBiO2Cl-1材料的最大,少氧空位PbBiO2Cl-0材料次之,块状PbBiO2Cl材料最小。由此也证明在H2/Ar混合气氛中煅烧可以构筑更多的氧空位。
本发明获得的富氧空穴PbBiO2Cl纳米片的光催化CO2转化性能研究:
图7是所制备PbBiO2Cl材料在氙灯光照射下还原CO2生成CO的产率。a中可以发现,富氧空位PbBiO2Cl-1材料的CO2转化性能最高;b中,光照5小时的平均产率约为 16.02μmol·g-1·h-1,分别是块状PbBiO2Cl和少氧空位PbBiO2Cl-0材料的18.00和2.66倍。

Claims (10)

1.一种富氧空位双金属氯氧化物纳米片的制备方法,其特征在于,包括以下步骤:
(1)采用氯化铅、硝酸铅、硫酸铅或醋酸铅为铅源;柠檬酸铋铵、硝酸铋、氯化铋、硫酸铋或醋酸铋为铋源;加入一定量的聚乙烯吡咯烷酮,在甘露醇水溶液中配成溶液A;
(2)以反应型氯代离子液体或无机氯盐为氯源,在乙醇溶剂中配成溶液B;
(3)将步骤(2)中的溶液B,注入到步骤(1)中的溶液A中,持续搅拌得到混合溶液C;
(4)将步骤(3)中溶液C倒入高温反应釜中反应数小时,将得到的产物离心,再用蒸馏水无水乙醇洗涤数遍,干燥处理得到少氧空位PbBiO2Cl纳米片材料;
(5)将步骤(4)中的少氧空位PbBiO2Cl纳米片在H2/Ar混合气氛中煅烧数小时,得到富氧空位PbBiO2Cl纳米片。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,溶液A中,铅源、铋源、聚乙烯吡咯烷酮和甘露醇水溶液的用量比为0.5mmol:0.5mmol:0.1-1.0g:20-100mL,其中,甘露醇水溶液的浓度为0.1-1.0mmol/L。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述反应型氯代离子液体为:1-甲基-3-己基咪唑高氯酸盐盐、1-(2-羟乙基)-3-甲基氯化咪唑、1-甲基-3-辛基氯化咪唑翁、1-己基-2,3-二甲基氯化咪唑、氯化(1-丁基-3-甲基咪唑)、1-辛基-2,3-二甲基咪唑氯盐、1-己基-3-甲基咪唑氯化物、1-丁基-1-甲基吡咯烷氯化物、氯化1-丁基-2,3-二甲基咪唑鎓、1-乙基-3-甲基咪唑高氯酸盐中的一种。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述无机氯盐为KCl、NaCl、NH4Cl中的一种。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,铅源:铋源:氯源物质的量比为:1:1:1,溶液B中,无水乙醇的用量为10-100mL,氯源的浓度0.05mol/L。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,持续搅拌的时间为5-120分钟。
7.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,反应釜的反应温度为100-200℃,反应时间为1-48小时;烘干温度为40-80℃,烘干时间为4-24小时。
8.根据权利要求1所述的制备方法,其特征在于,步骤(5)中,H2/Ar混合气氛中,H2的体积百分比为1-10%;煅烧的温度为200-400℃,煅烧的时间为0.5-2小时。
9.一种富氧空位双金属氯氧化物纳米片,其特征在于,是通过权利要求1-8任一项所述制备方法制得的,是厚度为0.9~1.2nm的超薄氧空位PbBiO2Cl纳米片。
10.将权利要求9所述的一种富氧空位双金属氯氧化物纳米片用于光催化还原CO2生产CO的用途。
CN202210133991.5A 2022-02-14 2022-02-14 一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化co2还原应用 Pending CN114618535A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210133991.5A CN114618535A (zh) 2022-02-14 2022-02-14 一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化co2还原应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210133991.5A CN114618535A (zh) 2022-02-14 2022-02-14 一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化co2还原应用

Publications (1)

Publication Number Publication Date
CN114618535A true CN114618535A (zh) 2022-06-14

Family

ID=81897868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210133991.5A Pending CN114618535A (zh) 2022-02-14 2022-02-14 一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化co2还原应用

Country Status (1)

Country Link
CN (1) CN114618535A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107684918A (zh) * 2017-08-11 2018-02-13 江苏大学 一种多孔中空PbBiO2Cl光催化材料的制备方法及其用途
CN109794271A (zh) * 2019-01-28 2019-05-24 江苏大学 一种富氧缺陷超薄PbBiO2Br纳米片的制备方法及其用途
CN110833836A (zh) * 2019-10-31 2020-02-25 江苏大学 水热法制备二维超薄富铋氯氧铋纳米片及其应用
CN111250114A (zh) * 2020-02-04 2020-06-09 江苏大学 水热法制备超细富铋溴氧化铋纳米管及其应用
CN111646500A (zh) * 2020-05-27 2020-09-11 江苏大学 一种富含表面缺陷的2D多孔TiO2纳米片及其制备方法
CN112892521A (zh) * 2021-01-11 2021-06-04 湖南大学 一种富氧空位的海胆状氧化钨及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107684918A (zh) * 2017-08-11 2018-02-13 江苏大学 一种多孔中空PbBiO2Cl光催化材料的制备方法及其用途
CN109794271A (zh) * 2019-01-28 2019-05-24 江苏大学 一种富氧缺陷超薄PbBiO2Br纳米片的制备方法及其用途
CN110833836A (zh) * 2019-10-31 2020-02-25 江苏大学 水热法制备二维超薄富铋氯氧铋纳米片及其应用
CN111250114A (zh) * 2020-02-04 2020-06-09 江苏大学 水热法制备超细富铋溴氧化铋纳米管及其应用
CN111646500A (zh) * 2020-05-27 2020-09-11 江苏大学 一种富含表面缺陷的2D多孔TiO2纳米片及其制备方法
CN112892521A (zh) * 2021-01-11 2021-06-04 湖南大学 一种富氧空位的海胆状氧化钨及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
权禹: ""氯氧铋基材料的构筑及其增强光催化CO2还原性能研究"" *

Similar Documents

Publication Publication Date Title
Liu et al. Photocatalytic conversion of nitrogen to ammonia with water on triphase interfaces of hydrophilic-hydrophobic composite Bi4O5Br2/ZIF-8
Zinatloo-Ajabshir et al. Schiff-base hydrothermal synthesis and characterization of Nd 2 O 3 nanostructures for effective photocatalytic degradation of eriochrome black T dye as water contaminant
Wang et al. Ordered mesoporous TiO 2 with exposed (001) facets and enhanced activity in photocatalytic selective oxidation of alcohols
Yang et al. Petal-biotemplated synthesis of two-dimensional Co3O4 nanosheets as photocatalyst with enhanced photocatalytic activity
Chen et al. Benign synthesis of ceria hollow nanocrystals by a template-free method
Huang et al. 3D nanospherical CdxZn1− xS/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance
Li et al. Carbon vacancies improved photocatalytic hydrogen generation of g-C3N4 photocatalyst via magnesium vapor etching
Gupta et al. Mn-modified Bi 2 Ti 2 O 7 photocatalysts: bandgap engineered multifunctional photocatalysts for hydrogen generation
Hermawan et al. Enhanced visible-light-induced photocatalytic NOx degradation over (Ti, C)-BiOBr/Ti3C2Tx MXene nanocomposites: role of Ti and C doping
Hou et al. Carbon-modified bismuth titanate nanorods with enhanced visible-light-driven photocatalytic property
Pei et al. Hierarchical CaTiO3 nanowire-network architectures for H2 evolution under visible-light irradiation
CN113663693A (zh) 一种硫化铟锌-二氧化钛复合材料的制备方法及其在生产双氧水用于废水治理中的应用
Liu et al. Sandwich SrTiO3/TiO2/H-Titanate nanofiber composite photocatalysts for efficient photocatalytic hydrogen evolution
Yang et al. Fabrication of three-dimensional porous La-doped SrTiO 3 microspheres with enhanced visible light catalytic activity for Cr (VI) reduction
CN106994349A (zh) 一种分级结构的层状钙钛矿光催化剂钛酸铁铋的制备方法及用途
CN112403462A (zh) 一种高分散钌修饰的富含氧缺陷半导体光催化剂、制备方法及其应用
CN110386626B (zh) 一种氧化亚钴薄片、其制备方法和其在可见光催化全分解水中的应用
WO2017068350A1 (en) Methods of making metal oxide catalysts
Wang et al. Morphology-controlled synthesis of Ti3+ self-doped yolk–shell structure titanium oxide with superior photocatalytic activity under visible light
Shen et al. MOFs-derived S-scheme ZnO/BiOBr heterojunction with rich oxygen vacancy for boosting photocatalytic CO2 reduction
CN111186824B (zh) 一种高比表面积缺陷型氮化碳的制备方法
Zhu et al. Synthesis and characterization of BaAl2O4 nanorods by a facile solvothermal method
CN115007136A (zh) 一种中空结构的氧化钨光催化剂及其制备方法和应用
Bhosale et al. Solar fuel production via non-stoichiometric CexZryHfzO2-δ based two-step thermochemical redox cycle
CN114618535A (zh) 一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化co2还原应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220614