CN115521155A - 一种间歇式陶瓷造粒粉制备方法 - Google Patents

一种间歇式陶瓷造粒粉制备方法 Download PDF

Info

Publication number
CN115521155A
CN115521155A CN202211271976.3A CN202211271976A CN115521155A CN 115521155 A CN115521155 A CN 115521155A CN 202211271976 A CN202211271976 A CN 202211271976A CN 115521155 A CN115521155 A CN 115521155A
Authority
CN
China
Prior art keywords
ceramic
raw material
disc granulator
seeds
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211271976.3A
Other languages
English (en)
Inventor
何选盟
张泽秦
姜显威
邢腾飞
刘辉
李军奇
刘俊莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202211271976.3A priority Critical patent/CN115521155A/zh
Publication of CN115521155A publication Critical patent/CN115521155A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Glanulating (AREA)

Abstract

本发明公开了一种间歇式陶瓷造粒粉制备方法,包括:步骤一、取陶瓷超细粉原料为基料,外加其质量4~6%的聚乙二醇水溶液,搅拌至混合均匀,密封陈腐12~24h;步骤二、将陈腐好的陶瓷超细粉原料倒入圆盘造粒机中,利用圆盘造粒机的旋转滚动进行造粒,直至70%以上的陶瓷陈腐料均成为所需粒种;步骤三、将粒种倒入圆盘造粒机中,启动圆盘造粒机将粒种打散,同时喷入聚乙二醇水溶液,待粒种长大至0.5mm时,并继续旋转圆盘造粒机60~120min;步骤四、将陶瓷原料微球进行筛分;本发明制备的陶瓷造粒粉单球致密,表面光滑,球形度好,造粒粉流动性和压实密度大,有助于提高陶瓷坯体成型和烧结一致性;制备方法简单,工作强度低,能耗小,生产调整灵活。

Description

一种间歇式陶瓷造粒粉制备方法
技术领域
本发明属于陶瓷制备技术领域,具体涉及一种间歇式陶瓷造粒粉制备方法。
背景技术
造粒是陶瓷生产过程中的重要环节,其制备过程是在原料细粉中加入一定量的塑化剂,制成粒度较粗,具有一定假颗粒级配,流动性好的团粒,以利于陶瓷坯料的成型。陶瓷粉料颗粒越细越轻,流动越差,同时粉料的比表面积大,占体积也大,因而成型时不能均匀的填充模型,易生空洞,导致致密度不高。而造粒后形成团粒,团粒的填充密度提高,空隙率降低,流动性好,装模方便,分布均匀,从而提高陶瓷坯体密度,改善成型和烧结密度分布的一致性,是陶瓷生产过程中的一道重要工序。目前,陶瓷造粒主要采用喷雾干燥法,其是将加有塑化剂的粉料制成料浆,再用喷雾器喷入造粒塔进行雾化和干燥。此方法生产的造粒粉单球多为苹果状,球形度差,致密度低,影响陶瓷坯体成型和烧结一致性。且工序复杂,干燥过程中能耗高、料塔内清理难度大,多为连续化单一配方生产,存在生产调节灵活性不够。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种间歇式陶瓷造粒粉制备方法,工艺简单、能耗低、生产调整灵活,所制备的陶瓷造粒粉球形度好,表面光滑,粒径均一。
为了实现上述目的,本发明采用以下技术方案予以实现:
一种间歇式陶瓷造粒粉制备方法,包括以下步骤:
步骤一、取陶瓷超细粉原料为基料,外加其质量4~6%的聚乙二醇水溶液,搅拌至混合均匀,密封陈腐12~24h后待用;
步骤二、将陈腐好的陶瓷超细粉原料倒入圆盘造粒机中,利用圆盘造粒机的旋转滚动进行造粒:
圆盘造粒机启动30~60min后,将其中粒径在0.075~0.090mm范围的微球筛分出来作为粒种,将大于等于0.090mm的粒料经多孔筛挤压破碎后和小于0.075mm粉料继续造粒;
如此反复,直至70%以上的陶瓷陈腐料均成为所需粒种;
步骤三、将粒种倒入圆盘造粒机中,启动圆盘造粒机将粒种打散,圆盘造粒机旋转60min后,往造粒机中缓慢投入陶瓷超细粉原料,同时喷入聚乙二醇水溶液,控制聚乙二醇水溶液在陶瓷原料中的含量在9~11%,待粒种长大至0.5mm时,停止加料和喷聚乙二醇水溶液,并继续旋转圆盘造粒机60~120min;
步骤四、将陶瓷原料微球进行筛分,取30~40目之间的微球为陶瓷造粒粉,控制粒径在0.425~0.600mm范围。
优选的,所述的陶瓷超细粉包括陶瓷配合料、碳化硅陶瓷超细粉原料、氧化铝陶瓷超细粉原料或氧化锆陶瓷超细粉原料中的一种或多种的混合物。
优选的,所述的陶瓷超细粉原料粒径为0.6~2.4μm。
优选的,步骤一中所述的搅拌时间为6~12h。
优选的,所述的聚乙二醇水溶液的浓度为1~2%。
优选的,所述的圆盘造粒机包括糖衣机或类糖衣机的圆盘转动设备。。
本发明与现有技术相比,具有如下技术效果:
本发明制备的陶瓷造粒粉单球致密,表面光滑,球形度好,造粒粉流动性和压实密度大,有助于提高陶瓷坯体成型和烧结一致性;
本发明陶瓷造粒粉制备方法工艺简单,工作强度低,能耗小,生产调整灵活。
附图说明
图1为本发明实施3制备的陶瓷造粒粉的SEM照片。
具体实施方式
以下结合实施例对本发明的具体内容做进一步详细解释说明。
实施例1:
步骤1:取粒径为0.6-2.4μm的陶瓷配合料超细粉2Kg为基料,外加其质量4%的聚乙二醇水溶液(浓度1%)搅拌6h混合均匀,密封陈腐24h后待用;
步骤2:将陈腐好的陶瓷配合料倒入圆盘造粒机中,利用圆盘造粒机的旋转滚动进行造粒;圆盘造粒机启动30min后,将其中粒径在0.075-0.090mm范围的微球筛分出来作为粒种;将大于等于0.090mm的粒料经多孔筛挤压破碎后和小于0.075mm粉料继续造粒;如此反复,直至约70%的陶瓷陈腐料均成为所需粒种;
步骤3:将粒种倒入圆盘造粒机中,启动圆盘造粒机将粒种打散,使单个球致密、表面光滑、球形度增加;圆盘造粒机旋转60min后,往造粒机中缓慢投入陶瓷配合料超细粉,同时喷入聚乙二醇水溶液,控制聚乙二醇水溶液在陶瓷配合料中的含量在9%,待粒种长大至0.5mm时,停止加料和喷聚乙二醇水溶液,并继续旋转圆盘造粒机60min,使微球进一步致密,表面光滑,球形度好;
步骤4:将陶瓷配合料微球进行筛分,取30-40目之间的微球为陶瓷配合料造粒粉,控制粒径在0.425-0.600mm范围。
实施例2:
步骤1:取粒径为0.6-2.4μm的陶瓷配合料超细粉5Kg为基料,外加其质量6%的聚乙二醇水溶液(浓度2%)搅拌12h混合均匀,密封陈腐12h后待用;
步骤2:将陈腐好的陶瓷配合料倒入圆盘造粒机中,利用圆盘造粒机的旋转滚动进行造粒;圆盘造粒机启动60min后,将其中粒径在0.075-0.090mm范围的微球筛分出来作为粒种;将大于等于0.090mm的粒料经多孔筛挤压破碎后和小于0.075mm粉料继续造粒;如此反复,直至约70%的陶瓷陈腐料均成为所需粒种;
步骤3:将粒种倒入圆盘造粒机中,启动圆盘造粒机将粒种打散,使单个球致密、表面光滑、球形度增加;圆盘造粒机旋转60min后,往造粒机中缓慢投入陶瓷配合料超细粉,同时喷入聚乙二醇水溶液,控制聚乙二醇水溶液在陶瓷配合料中的含量在11%;待粒种长大至0.5mm时,停止加料和喷聚乙二醇水溶液,并继续旋转圆盘造粒机120min,使微球进一步致密,表面光滑,球形度提高;
步骤4:将陶瓷配合料微球进行筛分,取30-40目之间的微球为氧化锆造粒粉,控制粒径在0.425-0.600mm范围。
实施例3:
步骤1:取粒径为0.6-2.4μm的陶瓷配合料超细粉3.5Kg为基料,外加其质量5%的聚乙二醇水溶液(浓度1.5%)搅拌8h混合均匀,密封陈腐18h后待用;
步骤2:将陈腐好的陶瓷配合料倒入圆盘造粒机中,利用圆盘造粒机的旋转滚动进行造粒;圆盘造粒机启动45min后,将其中粒径在0.075-0.090mm范围的微球筛分出来作为粒种;将大于等于0.090mm的粒料经多孔筛挤压破碎后和小于0.075mm粉料继续造粒;如此反复,直至约70%的陶瓷陈腐料均成为所需粒种;
步骤3:将粒种倒入圆盘造粒机中,启动圆盘造粒机将粒种打散,使单个球致密、表面光滑、球形度增加;圆盘造粒机旋转60min后,往造粒机中缓慢投入陶瓷配合料超细粉,同时喷入聚乙二醇水溶液,控制聚乙二醇水溶液在陶瓷配合料中的含量在10%;待粒种长大至0.5mm时,停止加料和喷聚乙二醇水溶液,并继续旋转圆盘造粒机90min,使微球进一步致密,表面光滑,球形度提高;
步骤4:将氧化锆微球进行筛分,取30-40目之间的微球为氧化锆造粒粉,控制粒径在0.425-0.600mm范围。
图1为实施3制备的陶瓷造粒粉的SEM照片;从图1可以看出,陶瓷造粒粉球形度好,表面光滑,粒径均一;这些微观结构特征说明陶瓷造粒粉具有好的流动性,有助于提高陶瓷成型压实密度和烧结一致性。
实施例4:
步骤1:取粒径为0.6-2.4μm的碳化硅超细粉3.5Kg为基料,外加其质量5%的聚乙二醇水溶液(浓度1%)搅拌8h混合均匀,密封陈腐18h后待用;
步骤2:将陈腐好的碳化硅原料倒入圆盘造粒机中,利用圆盘造粒机的旋转滚动进行造粒;圆盘造粒机启动45min后,将其中粒径在0.075-0.090mm范围的微球筛分出来作为粒种;将大于等于0.090mm的粒料经多孔筛挤压破碎后和小于0.075mm粉料继续造粒;如此反复,直至约70%的碳化硅陈腐料均成为所需粒种;
步骤3:将粒种倒入圆盘造粒机中,启动圆盘造粒机将粒种打散,使单个球致密、表面光滑、球形度增加;圆盘造粒机旋转60min后,往造粒机中缓慢投入碳化硅超细粉原料,同时喷入聚乙二醇水溶液,控制聚乙二醇水溶液在碳化硅中的含量在10%;待粒种长大至0.5mm时,停止加料和喷聚乙二醇水溶液,并继续旋转圆盘造粒机100min,使微球进一步致密,表面光滑,球形度好;
步骤4:将碳化硅微球进行筛分,取30-40目之间的微球为碳化硅造粒粉,控制粒径在0.425-0.600mm范围。
实施例5:
步骤1:取粒径为0.6-2.4μm的氧化铝超细粉3.5Kg为基料,外加其质量5%的聚乙二醇水溶液(浓度2%)搅拌10h混合均匀,密封陈腐20h后待用;
步骤2:将陈腐好的氧化铝原料倒入圆盘造粒机中,利用圆盘造粒机的旋转滚动进行造粒;圆盘造粒机启动45min后,将其中粒径在0.075-0.090mm范围的微球筛分出来作为粒种;将大于等于0.090mm的粒料经多孔筛挤压破碎后和小于0.075mm粉料继续造粒;如此反复,直至约70%的氧化铝陈腐料均成为所需粒种;
步骤3:将粒种倒入圆盘造粒机中,启动圆盘造粒机将粒种打散,使单个球致密、表面光滑、球形度增加;圆盘造粒机旋转60min后,往造粒机中缓慢投入氧化铝超细粉原料,同时喷入聚乙二醇水溶液,控制聚乙二醇水溶液在氧化锆中的含量在11%;待粒种长大至0.5mm时,停止加料和喷聚乙二醇水溶液,并继续旋转圆盘造粒机90min,使微球进一步致密,表面光滑,球形度好;
步骤4:将氧化铝微球进行筛分,取30-40目之间的微球为氧化铝造粒粉,控制粒径在0.425-0.600mm范围。
实施例6:
步骤1:取粒径为0.6-2.4μm的氧化锆超细粉3.5Kg为基料,外加其质量5%的聚乙二醇水溶液(浓度2%)搅拌12h混合均匀,密封陈腐18h后待用;
步骤2:将陈腐好的氧化锆原料倒入圆盘造粒机中,利用圆盘造粒机的旋转滚动进行造粒;圆盘造粒机启动45min后,将其中粒径在0.075-0.090mm范围的微球筛分出来作为粒种;将大于等于0.090mm的粒料经多孔筛挤压破碎后和小于0.075mm粉料继续造粒;如此反复,直至约70%的氧化锆陈腐料均成为所需粒种;
步骤3:将粒种倒入圆盘造粒机中,启动圆盘造粒机将粒种打散,使单个球致密、表面光滑、球形度增加;圆盘造粒机旋转60min后,往造粒机中缓慢投入氧化锆超细粉原料,同时喷入聚乙二醇水溶液,控制聚乙二醇水溶液在氧化锆中的含量在10%;待粒种长大至0.5mm时,停止加料和喷聚乙二醇水溶液,并继续旋转圆盘造粒机90min,使微球进一步致密,表面光滑,球形度好;
步骤4:将氧化锆微球进行筛分,取30-40目之间的微球为氧化锆造粒粉,控制粒径在0.425-0.600mm范围。
以上内容是对本发明所作的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定保护范围。

Claims (6)

1.一种间歇式陶瓷造粒粉制备方法,其特征在于,包括以下步骤:
步骤一、取陶瓷超细粉原料为基料,外加其质量4~6%的聚乙二醇水溶液,搅拌至混合均匀,密封陈腐12~24h后待用;
步骤二、将陈腐好的陶瓷超细粉原料倒入圆盘造粒机中,利用圆盘造粒机的旋转滚动进行造粒:
圆盘造粒机启动30~60min后,将其中粒径在0.075~0.090mm范围的微球筛分出来作为粒种,将大于等于0.090mm的粒料经多孔筛挤压破碎后和小于0.075mm粉料继续造粒;
如此反复,直至70%以上的陶瓷陈腐料均成为所需粒种;
步骤三、将粒种倒入圆盘造粒机中,启动圆盘造粒机将粒种打散,圆盘造粒机旋转60min后,往造粒机中缓慢投入陶瓷超细粉原料,同时喷入聚乙二醇水溶液,控制聚乙二醇水溶液在陶瓷原料中的含量在9~11%,待粒种长大至0.5mm时,停止加料和喷聚乙二醇水溶液,并继续旋转圆盘造粒机60~120min;
步骤四、将陶瓷原料微球进行筛分,取30~40目之间的微球为陶瓷造粒粉,控制粒径在0.425~0.600mm范围。
2.如权利要求1所述的间歇式陶瓷造粒粉制备方法,其特征在于,所述的陶瓷超细粉包括陶瓷配合料、碳化硅陶瓷超细粉原料、氧化铝陶瓷超细粉原料或氧化锆陶瓷超细粉原料中的一种或多种的混合物。
3.如权利要求1或2所述的间歇式陶瓷造粒粉制备方法,其特征在于,所述的陶瓷超细粉原料粒径为0.6~2.4μm。
4.如权利要求1所述的间歇式陶瓷造粒粉制备方法,其特征在于,步骤一中所述的搅拌时间为6~12h。
5.如权利要求1所述的间歇式陶瓷造粒粉制备方法,其特征在于,所述的聚乙二醇水溶液的浓度为1~2%。
6.如权利要求1所述的间歇式陶瓷造粒粉制备方法,其特征在于,所述的圆盘造粒机包括糖衣机或类糖衣机的圆盘转动设备。
CN202211271976.3A 2022-10-18 2022-10-18 一种间歇式陶瓷造粒粉制备方法 Pending CN115521155A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211271976.3A CN115521155A (zh) 2022-10-18 2022-10-18 一种间歇式陶瓷造粒粉制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211271976.3A CN115521155A (zh) 2022-10-18 2022-10-18 一种间歇式陶瓷造粒粉制备方法

Publications (1)

Publication Number Publication Date
CN115521155A true CN115521155A (zh) 2022-12-27

Family

ID=84703396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211271976.3A Pending CN115521155A (zh) 2022-10-18 2022-10-18 一种间歇式陶瓷造粒粉制备方法

Country Status (1)

Country Link
CN (1) CN115521155A (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524891A (ja) * 1991-07-16 1993-02-02 Kawasaki Heavy Ind Ltd 粉体造粒設備
US20020003228A1 (en) * 2000-04-12 2002-01-10 Tomonori Niwa Ceramic ball for bearing and ceramic ball bearing using the same
JP2004269348A (ja) * 2003-02-17 2004-09-30 Toray Ind Inc セラミックス球体およびその製造方法
WO2011030887A1 (ja) * 2009-09-14 2011-03-17 住友大阪セメント株式会社 セメント混和材及びその製造方法、並びに該混和材を含むセメント組成物、モルタル及びコンクリート
CN105036691A (zh) * 2015-07-01 2015-11-11 天津科技大学 一种掺加疏浚底泥制备免烧陶粒的方法
CN105541304A (zh) * 2015-12-10 2016-05-04 中国西电电气股份有限公司 应用湿法混合制粒机制备陶瓷制品粉体颗粒的方法
CN105536644A (zh) * 2016-02-20 2016-05-04 山东义科节能科技有限公司 一种应用于陶瓷粉料的连续式造粒机及其造粒工艺
CN205288902U (zh) * 2015-12-22 2016-06-08 郑州德森环境科技有限公司 一种粉煤灰陶粒筛选装置
CN106396628A (zh) * 2016-09-19 2017-02-15 蒋文兰 圆球形具有净化空气功能的海泡石轻质通孔陶粒
WO2018121697A1 (zh) * 2016-12-29 2018-07-05 广东清大同科环保技术有限公司 一种超轻高强粉煤灰轻集料
CN212076864U (zh) * 2020-01-06 2020-12-04 淮阳县卓慧电子科技有限公司 一种微波介质陶瓷粉末制备造粒装置
CN112441771A (zh) * 2019-08-29 2021-03-05 广东清大同科环保技术有限公司 一种超低密度合成陶粒支撑剂及其制备方法
CN113912376A (zh) * 2021-10-08 2022-01-11 燕山大学 一种利用赤泥、粉煤灰、铁尾矿和电石渣固废加工的免烧陶粒及其制备方法和应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524891A (ja) * 1991-07-16 1993-02-02 Kawasaki Heavy Ind Ltd 粉体造粒設備
US20020003228A1 (en) * 2000-04-12 2002-01-10 Tomonori Niwa Ceramic ball for bearing and ceramic ball bearing using the same
JP2004269348A (ja) * 2003-02-17 2004-09-30 Toray Ind Inc セラミックス球体およびその製造方法
WO2011030887A1 (ja) * 2009-09-14 2011-03-17 住友大阪セメント株式会社 セメント混和材及びその製造方法、並びに該混和材を含むセメント組成物、モルタル及びコンクリート
CN105036691A (zh) * 2015-07-01 2015-11-11 天津科技大学 一种掺加疏浚底泥制备免烧陶粒的方法
CN105541304A (zh) * 2015-12-10 2016-05-04 中国西电电气股份有限公司 应用湿法混合制粒机制备陶瓷制品粉体颗粒的方法
CN205288902U (zh) * 2015-12-22 2016-06-08 郑州德森环境科技有限公司 一种粉煤灰陶粒筛选装置
CN105536644A (zh) * 2016-02-20 2016-05-04 山东义科节能科技有限公司 一种应用于陶瓷粉料的连续式造粒机及其造粒工艺
CN106396628A (zh) * 2016-09-19 2017-02-15 蒋文兰 圆球形具有净化空气功能的海泡石轻质通孔陶粒
WO2018121697A1 (zh) * 2016-12-29 2018-07-05 广东清大同科环保技术有限公司 一种超轻高强粉煤灰轻集料
CN112441771A (zh) * 2019-08-29 2021-03-05 广东清大同科环保技术有限公司 一种超低密度合成陶粒支撑剂及其制备方法
CN212076864U (zh) * 2020-01-06 2020-12-04 淮阳县卓慧电子科技有限公司 一种微波介质陶瓷粉末制备造粒装置
CN113912376A (zh) * 2021-10-08 2022-01-11 燕山大学 一种利用赤泥、粉煤灰、铁尾矿和电石渣固废加工的免烧陶粒及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李国学主编: "《配方肥的生产原理与施用技术》", 北京:中国农业科技出版社, pages: 427 - 428 *

Similar Documents

Publication Publication Date Title
CN106082993B (zh) 一种制备高性能ito造粒粉的方法
CN112759414A (zh) 一种多孔陶瓷雾化芯及其制备方法和电子烟
CN104086176A (zh) 均匀复合的球状陶瓷颗粒及其制备方法
CN109128141A (zh) 一种纳米WC-Co复合粉末的制备方法
CN102327232A (zh) 一种颗粒状预混剂的制备方法
CN105727833A (zh) 一种制备小球种子及成球的方法
CN114195418B (zh) 一种高强度自修复胶囊及其生产工艺
CN111924889A (zh) 一种无烧结团聚钴粉用四氧化三钴制备方法
CN115521155A (zh) 一种间歇式陶瓷造粒粉制备方法
CN110237771A (zh) 一种球型分子筛的制备方法
CN106311351B (zh) 一种球形氧化铝载体及其制备方法
CN111960809B (zh) 一种光固化3D打印用球形Al2O3粉体的制备方法
CN1128050C (zh) 陶瓷颗粒及其生产或处理方法和陶瓷模制品及其生产方法
CN116571753A (zh) 片状金属粉末制备方法
CN108329017B (zh) 等径球形镁质料及其制备方法和在生产弥散式镁质透气塞中的应用
CN101239330A (zh) 微球形催化剂载体的制备方法
CN112174187A (zh) 一种单分散性稀土氧化物超细粉的制备方法
JPH10265222A (ja) リチウムタイタネート微小焼結粒の製造方法
CN102731073B (zh) 一种支撑剂制造方法
CN2611030Y (zh) 一种湿法制备纳米粉体的合成加料装置
CN112679225A (zh) 一种多孔陶瓷材料造孔剂及其制备方法
CN105541304A (zh) 应用湿法混合制粒机制备陶瓷制品粉体颗粒的方法
CN117735961B (zh) 一种滴定法制备氧化铝研磨介质的方法
CN203474661U (zh) 均匀复合的球状陶瓷颗粒
CN115304070B (zh) 一种多尺度微孔道球形二氧化硅的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination