CN115490233B - 一种纳米max相的制备方法 - Google Patents
一种纳米max相的制备方法 Download PDFInfo
- Publication number
- CN115490233B CN115490233B CN202211190791.XA CN202211190791A CN115490233B CN 115490233 B CN115490233 B CN 115490233B CN 202211190791 A CN202211190791 A CN 202211190791A CN 115490233 B CN115490233 B CN 115490233B
- Authority
- CN
- China
- Prior art keywords
- precursor
- max phase
- needle
- nano
- gac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 239000002243 precursor Substances 0.000 claims abstract description 43
- 238000010041 electrostatic spinning Methods 0.000 claims abstract description 24
- 238000009987 spinning Methods 0.000 claims abstract description 24
- 239000002121 nanofiber Substances 0.000 claims abstract description 23
- 238000002156 mixing Methods 0.000 claims abstract description 20
- 239000008139 complexing agent Substances 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims description 18
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 10
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 10
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 10
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 7
- 238000001354 calcination Methods 0.000 abstract description 4
- 238000001035 drying Methods 0.000 abstract description 4
- 239000002070 nanowire Substances 0.000 abstract description 4
- 238000012983 electrochemical energy storage Methods 0.000 abstract description 2
- 239000011651 chromium Substances 0.000 description 35
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 2
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- FSJSYDFBTIVUFD-SUKNRPLKSA-N (z)-4-hydroxypent-3-en-2-one;oxovanadium Chemical compound [V]=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O FSJSYDFBTIVUFD-SUKNRPLKSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- XURCIPRUUASYLR-UHFFFAOYSA-N Omeprazole sulfide Chemical compound N=1C2=CC(OC)=CC=C2NC=1SCC1=NC=C(C)C(OC)=C1C XURCIPRUUASYLR-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229940044658 gallium nitrate Drugs 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 229910052757 nitrogen Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/664—Ceramic materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Fibers (AREA)
Abstract
本发明公开了一种纳米MAX相的制备方法,首先将M与A离子源和碳源兼络合剂与水混合均匀,获得溶胶凝胶液即前驱体纺丝溶液;利用静电纺丝设备,将所述前驱体纺丝溶液进行静电纺丝,得到前驱体纳米纤维;随后将所述前驱体纳米纤维充分干燥后进行煅烧,得到所述纳米MAX相。该方法制备的纳米MAX相限域在碳纳米线中,其尺寸均匀,在电化学储能中有广泛的应用潜力。
Description
技术领域
本发明涉及一种陶瓷材料及其制备方法,尤其涉及一种纳米MAX相的制备方法。
背景技术
三元层状化合物MAX相是一种新型可加工陶瓷材料,其通式为Mn+1AXn,其中M是过渡金属,A主要为主族元素,X是碳和/或氮,n通常为1-3。MAX相由于其层状结构、优异的抗氧化性、耐腐蚀性、金属导电性、高强度和弹性模量,作为功能材料具有巨大的应用潜力。传统方法制备的MAX相多为微米以上大块颗粒,这阻碍其功能应用。
以MAX相在锂离子电池中的应用为例,2017年,Gogotsi等人首次报道了通过减小颗粒尺寸,Ti2SC MAX相在1000次循环后提升至180mAh g-1;2021年,许建光等人采用超声剥离技术,研制出的Ti3Si0.75Al0.25C2超薄纳米片作为锂离子电池的负极,具有约350mAh g-1的容量(200mA g-1)。诸多研究表明,MAX相储锂容量对其颗粒尺寸具有大的依赖性,而目前得到较小尺寸的MAX相主要依靠球磨、超声等自上而下的手段,很难获得尺寸均匀的MAX相颗粒。
2020年,黄庆等人发明一种熔盐法制备小尺寸锂离子电池阳极MAX相的方法,获得的Ti2SnC能够提供390mAhg-1(0.1Ag-1)的锂离子存储容量,由此可见,自下而上制备纳米MAX相的方法开发对提高其储锂性能具有重大意义。
发明内容
发明目的:本发明的目的是提供一种尺寸均匀的纳米MAX相的制备方法。
技术方案:本发明所述的纳米MAX相的制备方法,包括以下步骤:
(1)将M离子源材料、A离子源材料混合,加入碳源材料兼络合剂、水,获得前驱体纺丝溶液;
(2)将所述前驱体纺丝溶液进行静电纺丝,得到前驱体纳米纤维;
(3)将所述前驱体纳米纤维干燥后煅烧,得到所述纳米MAX相。
其中,所述纳米MAX相的化学式表示为Mn+1AXn,其中M包括Ti、V、Mn、Cr和Zr中的任意一种或者两种以上的组合,A为Ga、Al、In、Sn和Zn中的任意一种或者两种以上的组合,X为C元素,n为1、2或3。
其中,步骤(1)中,为了制备得到不同种类的MAX相,所述M离子源材料、A离子源材料的摩尔比为(1-4):1。
其中,步骤(1)中,为更好地控制纺丝液粘度,所述前驱体纺丝溶液中络合剂的浓度为5-30%。
其中,步骤(1)中,所述M离子源材料为钛酸四丁酯、乙酰丙酮氧钒、硝酸锰、硝酸铬、硝酸锆中的至少一种。
其中,步骤(1)中,所述A离子源材料为硝酸镓、硝酸铝、硝酸锌、硝酸铟、氯化锡中的至少一种。
其中,步骤(1)中,所述碳源材料兼络合剂为聚乙烯吡咯烷酮和/或聚乙烯醇。
其中,步骤(2)中,为更好地匹配纺丝液粘度,静电纺丝过程中的针头内径为0.1-3mm,更优选为0.1-2.99mm。
其中,步骤(2)中,静电纺丝过程中的针头与集丝辊之间的电压为10-30kV,有助于获得连续、直径均匀且表面光滑的前驱体纳米纤维。
其中,步骤(2)中,为了有效收集前驱体纳米纤维,静电纺丝过程中的针头到集丝辊的距离为10-30cm。
其中,步骤(2)中,静电纺丝过程中的注射器推进速率为0.5-4mL h-1,有助于获得稳定的针尖纳米纤维射流并调节纺丝速度。
有益效果:本发明与现有技术相比,取得如下显著效果:(1)本发明首次利用溶胶凝胶法结合静电纺丝技术实现了自下而上制备纳米MAX相,产物纯度较高,且MAX相限域在碳纳米线中,尺寸均匀可控;纳米Cr2GaC在5A g-1的倍率下可以提供高达168.2mAh g-1的锂存储容量,是MAX相微米颗粒的近10倍。(2)合成方法简单,在电化学储能中具有巨大的应用潜力。
附图说明
图1是实施例1中制得的纳米MAX相Cr2GaC的XRD衍射图;
图2是实施例1中制得的纳米MAX相Cr2GaC的SEM图像;
图3是实施例1中制得的纳米MAX相Cr2GaC的TEM和EDS图像;
图4是对比例1中制得的微米MAX相Cr2GaC的SEM图像;
图5是实施例1中制得的纳米MAX相Cr2GaC与对比例1中制得的微米Cr2GaC分别应用于锂离子电池负极,在不同电流密度下的容量对比;
图6是实施例1中制得的纳米MAX相Cr2GaC在5Ag-1电流密度下的容量和库仑效率图。
具体实施方式
下面对本发明作进一步详细描述。
实施例1
本实施例的纳米MAX相材料为纳米Cr2GaC,其制备方法如下:
(1)将1.7mmol Cr(NO3)3和1mmol Ga(NO3)3混合均匀,加入1.5g聚乙烯吡咯烷酮和去离子水,充分搅拌混合均匀,获得络合剂浓度为15%的前驱体纺丝溶液。
(2)利用静电纺丝设备,将前驱体纺丝溶液进行静电纺丝,针头内径0.4mm,在针头与集丝辊之间加25kV电压,针头到集丝辊的距离为15cm,注射器推进速率2.4mL h-1,得到前驱体纳米纤维。
(3)将前驱体纳米纤维在80℃干燥12h,并在1000℃下煅烧2h,得到纳米MAX相。
图1为本实施例中制得的纳米MAX相Cr2GaC的XRD衍射图,从图中可以看出,得到的产物中出现了Cr2GaC典型的特征峰,纯度高达95.42wt.%,说明得到了纯度较高的MAX相Cr2GaC。
图2为本实施例中制备的纳米MAX相Cr2GaC的SEM图,图中可以看出得到的纳米Cr2GaC限域于碳纳米线中,且尺寸均匀。
图3为本实施例中制备的纳米MAX相Cr2GaC的TEM和EDS图,图中可以看出Cr2GaC在C纳米线上均匀分布,Cr,Ga,C元素均匀分布。
图5是本实施例中制得的纳米MAX相在不同电流密度下的容量与对比例1中微米Cr2GaC在不同电流密度下的容量对比。通过对比可以看出,相比微米Cr2GaC,纳米Cr2GaC在不同电流密度下的性能都有明显提升。
图6是本实施例中制得的纳米MAX相Cr2GaC应用于锂离子电池负极,在5A g-1电流密度下的容量和库仑效率图。图中可以看出,在5A g-1的大电流密度下,碳纤维限域的纳米Cr2GaC仍有205mAh g-1的质量比容量,循环近3000圈后容量保持率高达96.33%,库伦效率近100%。
实施例2
本实施例的纳米MAX相材料为纳米Cr2GaC,其制备方法如下:
(1)将1.7mmol Cr(NO3)3和1mmol Ga(NO3)3混合均匀,加入0.7g聚乙烯吡咯烷酮和去离子水,充分搅拌混合均匀,获得络合剂浓度为15%的前驱体纺丝溶液。
(2)利用静电纺丝设备,将前驱体纺丝溶液进行静电纺丝,针头内径0.4mm,在针头与集丝辊之间加25kV电压,针头到集丝辊的距离为15cm,注射器推进速率2.4mL h-1,得到前驱体纳米纤维。
(3)将前驱体纳米纤维在80℃干燥12h,并在1000℃下煅烧2h,得到纳米MAX相。
实施例3
本实施例的纳米MAX相材料为Cr2GaC,其制备方法如下:
(1)将1.0mmol Cr(NO3)3和1mmol Ga(NO3)3混合均匀,加入1.0g聚乙烯醇和去离子水,充分搅拌混合均匀,获得络合剂浓度为5%的前驱体纺丝溶液。
(2)利用静电纺丝设备,将前驱体纺丝溶液进行静电纺丝,针头内径0.1mm,在针头与集丝辊之间加10kV电压,针头到集丝辊的距离为10cm,注射器推进速率0.5mL h-1,得到前驱体纳米纤维。
(3)将前驱体纳米纤维在80℃干燥12h,并在1000℃下煅烧2h,到得到纳米MAX相。
实施例4
本实施例的纳米MAX相材料为Cr2.7Mn1.3GaC3,其制备方法如下:
(1)将2.7mmol Cr(NO3)3,1.3mmol Mn(NO3)3和1mmol Ga(NO3)3混合均匀,加入3.0g聚乙烯吡咯烷酮(PVP)和去离子水,充分搅拌混合均匀,获得络合剂浓度为30%的前驱体纺丝溶液。
(2)利用静电纺丝设备,将前驱体纺丝溶液进行静电纺丝,针头内径2.85mm,在针头与集丝辊之间加30kV电压,针头到集丝辊的距离为30cm,注射器推进速率4mL h-1,得到前驱体纳米纤维。
(3)将前驱体纳米纤维在80℃干燥12h,并在1000℃下煅烧2h,到得到纳米MAX相。
对比例1
本对比例中的MAX相材料为微米Cr2GaC,其制备方法如下:
(1)将1.7mmol Cr(NO3)3和1mmol Ga(NO3)3混合均匀,加入1.5g聚乙烯吡咯烷酮和去离子水,充分搅拌混合均匀,获得络合剂浓度为15%的溶胶凝胶液。
(2)将溶胶凝胶液在80℃干燥12h,并在1000℃下煅烧2h,到得到微米MAX相。
图3为本对比例中制备的微米MAX相Cr2GaC的SEM图,图中可以看出得到的微米Cr2GaC为较大块状。
图5是实施例1中制得的纳米MAX相在不同电流密度下的容量与本对比例中微米Cr2GaC在不同电流密度下的容量对比。通过对比可以看出,相比微米Cr2GaC,纳米Cr2GaC在不同电流密度下的性能都有明显提升。
Claims (4)
1.一种纳米MAX相材料Cr2GaC的制备方法,其特征在于,包括以下步骤:
(1)将1.7 mmol Cr(NO3)3和1 mmol Ga(NO3)3混合均匀,加入1.5 g聚乙烯吡咯烷酮和去离子水,充分搅拌混合均匀,获得络合剂浓度为15%的前驱体纺丝溶液;
(2)利用静电纺丝设备,将前驱体纺丝溶液进行静电纺丝,针头内径0.4 mm,在针头与集丝辊之间加25 kV电压,针头到集丝辊的距离为15 cm,注射器推进速率2.4 mL h-1,得到前驱体纳米纤维;
(3)将前驱体纳米纤维在80℃干燥12 h,并在1000 ℃下煅烧2 h,得到纳米MAX相。
2.一种纳米MAX相材料Cr2GaC的制备方法,其特征在于,包括以下步骤:
(1)将1.7 mmol Cr(NO3)3和1 mmol Ga(NO3)3混合均匀,加入0.7 g聚乙烯吡咯烷酮和去离子水,充分搅拌混合均匀,获得络合剂浓度为15%的前驱体纺丝溶液;
(2)利用静电纺丝设备,将前驱体纺丝溶液进行静电纺丝,针头内径0.4 mm,在针头与集丝辊之间加25 kV电压,针头到集丝辊的距离为15 cm,注射器推进速率2.4 mL h-1,得到前驱体纳米纤维;
(3)将前驱体纳米纤维在80℃干燥12 h,并在1000 ℃下煅烧2 h,得到纳米MAX相。
3.一种纳米MAX相材料Cr2GaC的制备方法,其特征在于,包括以下步骤:
(1)将1.0 mmol Cr(NO3)3和1 mmol Ga(NO3)3混合均匀,加入1.0 g聚乙烯醇和去离子水,充分搅拌混合均匀,获得络合剂浓度为5%的前驱体纺丝溶液;
(2)利用静电纺丝设备,将前驱体纺丝溶液进行静电纺丝,针头内径0.1 mm,在针头与集丝辊之间加10 kV电压,针头到集丝辊的距离为10 cm,注射器推进速率0.5 mL h-1,得到前驱体纳米纤维;
(3)将前驱体纳米纤维在80 ℃干燥12 h,并在1000 ℃下煅烧2 h,到得到纳米MAX相。
4.一种纳米MAX相材料Cr2.7Mn1.3GaC3的制备方法,其特征在于,包括以下步骤:
(1)将2.7 mmol Cr(NO3)3,1.3 mmol Mn(NO3)3和1 mmol Ga(NO3)3混合均匀,加入3.0 g聚乙烯吡咯烷酮(PVP)和去离子水,充分搅拌混合均匀,获得络合剂浓度为30%的前驱体纺丝溶液;
(2)利用静电纺丝设备,将前驱体纺丝溶液进行静电纺丝,针头内径2.85 mm,在针头与集丝辊之间加30 kV电压,针头到集丝辊的距离为30 cm,注射器推进速率4 mL h-1,得到前驱体纳米纤维;
(3)将前驱体纳米纤维在80 ℃干燥12 h,并在1000 ℃下煅烧2 h,到得到纳米MAX相。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211190791.XA CN115490233B (zh) | 2022-09-28 | 2022-09-28 | 一种纳米max相的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211190791.XA CN115490233B (zh) | 2022-09-28 | 2022-09-28 | 一种纳米max相的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115490233A CN115490233A (zh) | 2022-12-20 |
CN115490233B true CN115490233B (zh) | 2024-04-09 |
Family
ID=84472422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211190791.XA Active CN115490233B (zh) | 2022-09-28 | 2022-09-28 | 一种纳米max相的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115490233B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108251918A (zh) * | 2018-01-09 | 2018-07-06 | 哈尔滨理工大学 | 一种MgMn2O4纳米纤维电极材料及其制备方法 |
CN109943917A (zh) * | 2019-04-08 | 2019-06-28 | 南京威安新材料科技有限公司 | 一种二氧化钛纳米纤维制备方法及装置 |
CN112501717A (zh) * | 2020-11-27 | 2021-03-16 | 江苏科技大学 | 一种LaAlO3纳米纤维的制备方法及其产品和应用 |
CN114920552A (zh) * | 2022-05-20 | 2022-08-19 | 湘潭大学 | 一种二维纳米片的制备工艺 |
-
2022
- 2022-09-28 CN CN202211190791.XA patent/CN115490233B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108251918A (zh) * | 2018-01-09 | 2018-07-06 | 哈尔滨理工大学 | 一种MgMn2O4纳米纤维电极材料及其制备方法 |
CN109943917A (zh) * | 2019-04-08 | 2019-06-28 | 南京威安新材料科技有限公司 | 一种二氧化钛纳米纤维制备方法及装置 |
CN112501717A (zh) * | 2020-11-27 | 2021-03-16 | 江苏科技大学 | 一种LaAlO3纳米纤维的制备方法及其产品和应用 |
CN114920552A (zh) * | 2022-05-20 | 2022-08-19 | 湘潭大学 | 一种二维纳米片的制备工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN115490233A (zh) | 2022-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101752560B (zh) | 钛酸锂-碳复合纳米材料及其制备方法与应用 | |
Qiu et al. | MXenes nanocomposites for energy storage and conversion | |
KR101103841B1 (ko) | 금속이온 이용 무전해 에칭법에 의한 다발구조의 실리콘 나노로드 제조방법 및 이를 함유하는 리튬이차전지용 음극 활물질 | |
Weng et al. | Electrospun carbon nanofiber-based composites for lithium-ion batteries: structure optimization towards high performance | |
CN106252651B (zh) | 一种锂离子电池多孔复合负极材料及其制备方法 | |
CN107742716B (zh) | 一种锂离子电池的电极材料及其制备方法 | |
CN102197519A (zh) | 复合电极材料、由所述材料组成的电池电极、及包含这种电极的锂电池 | |
KR101103248B1 (ko) | 리튬이온 2차 전지용 정극 활물질의 제조방법 | |
CN110197899B (zh) | 一种锂箔的制备方法 | |
CN108987729B (zh) | 一种锂硫电池正极材料及其制备方法与锂硫电池 | |
CN110079895B (zh) | 一种钛酸盐与二氧化钛复合物纳米线及其制备方法 | |
KR20110134852A (ko) | 리튬 이차전지용 양극 활 물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
CN110190252B (zh) | 一种金属锂碳复合材料及其制备方法 | |
CN103456934A (zh) | 一种锂离子电池负极用纳米TiO2(B)/碳复合纤维的制备方法和应用 | |
CN110707301A (zh) | 一种具有纳米球结构的三氧化二钒/碳复合材料及其制备方法和应用 | |
CN109399691A (zh) | 一种Cu-CuO/碳纳米纤维复合材料及其制备方法 | |
CN108417800A (zh) | 一种石墨烯包覆石墨/金属复合粉体负极材料及制备方法 | |
Wu et al. | Review and prospect of Li 2 ZnTi 3 O 8-based anode materials for Li-ion battery | |
CN114284477A (zh) | 基于两种胶体溶液自组装法制备TiO2/MXene异质结构的方法与用途 | |
CN113120958A (zh) | 层片状多孔纳米钒氧化物的制备方法 | |
CN115490233B (zh) | 一种纳米max相的制备方法 | |
Wang et al. | Regulating electrochemical performances of lithium battery by external physical field | |
CN109346697A (zh) | 正极活性材料及其制备方法、全固态锂电池 | |
KR101827155B1 (ko) | 리튬공기전지용 공기전극 및 그 제조방법 | |
CN102945957A (zh) | 尖刺状过氧化银正极材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |