CN113120958A - 层片状多孔纳米钒氧化物的制备方法 - Google Patents

层片状多孔纳米钒氧化物的制备方法 Download PDF

Info

Publication number
CN113120958A
CN113120958A CN202110473529.5A CN202110473529A CN113120958A CN 113120958 A CN113120958 A CN 113120958A CN 202110473529 A CN202110473529 A CN 202110473529A CN 113120958 A CN113120958 A CN 113120958A
Authority
CN
China
Prior art keywords
vanadium oxide
porous nano
lamellar porous
lamellar
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110473529.5A
Other languages
English (en)
Inventor
孙正明
樊京晨
何炜
范紫萱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110473529.5A priority Critical patent/CN113120958A/zh
Publication of CN113120958A publication Critical patent/CN113120958A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种层片状多孔纳米钒氧化物的制备方法,以V2CTx‑MXene为前驱体,采用原位氧化的方法制备出不同金属价态的钒氧化物纳米棒,并且纳米棒规律地堆积成层片状结构。本发明工艺简单,制得的钒氧化物材料具有价态可调、孔径形貌可控、比表面积较大等优势,有利于发挥材料的储能特性,具有较大的开发价值和应用前景。

Description

层片状多孔纳米钒氧化物的制备方法
技术领域
本发明涉及纳米材料制备,具体涉及一种层片状多孔纳米钒氧化物的制备方法。
背景技术
钒氧化物由于其丰富的资源、低廉的成本和稳定的电化学性质,在过去的几十年中受到了很大的关注。在储能领域,电化学性能受钒氧化物的颗粒尺寸、微观形貌影响显著。大体积的钒氧化物比表面积较小,内部没有被电解液浸润,不能充分发挥材料本身的性能。为了解决这些问题,比表面积,中间通道有利于电极与电解液的充分接触,能够提供更多活性位点并促人们进行了许多尝试。一种可行的策略是合成二维(2D)结构的钒氧化物。二维结构材料具有较大的进离子传输。采用模板法、水热法等方法合成二维钒氧化物已受到广泛关注。然而,规模化和简易化制备这一材料仍面临挑战。
近年来,新型二维材料MXene受到广泛关注,它具有优异的电化学性能等特点,在储能领域展现了巨大的潜力。同时,MXene的一系列衍生物也具有广泛的应用前景。
对MXene采取氧化策略时,O2分子会不断键合MXene的金属原子层。这一方法可保持其二维结构的同时原位生成氧化物,形成层片状结构纳米材料。目前Ti3C2Tx-MXene的相关技术已有报道。但是,TiO2并不具有可逆嵌入/脱嵌锌离子的结构,用作电极材料容量较低。
发明内容
发明目的:本发明的目的是提供一种层片状多孔纳米钒氧化物的制备方法,解决现有二维材料MXene用作电极材料容量较低的问题。
技术方案:本发明所述的层片状多孔纳米钒氧化物的制备方法,包括以下步骤:
(1)将V2CTx-MXene纳米片粉末均匀铺放在坩埚底部并放入热处理炉中;
(2)进行热处理,空气气氛,升温速率为2℃/min,升温至300-500℃保温2-4h,随炉冷却至室温,制得纳米棒堆积的层片状多孔钒氧化物。
其中,所述步骤(1)中V2CTx-MXene纳米片层数约为10层,横向尺寸为10μm。
所述步骤(1)中的坩埚为氧化铝坩埚。
所述步骤(1)中的热处理炉为管式炉。
所述步骤(2)中纳米棒的直径为50-200nm,长度为200-600nm。
技术原理:对MXene采取氧化策略时,O2分子会不断键合MXene的金属原子层,这一方法可保持其二维结构的同时原位生成氧化物,形成层片状结构纳米材料,对V2CTx-MXene热处理可原位生成层片状钒氧化物,V2CTx的反应活性高,速率快,更重要的是,V元素价态丰富(+3、+4、+5),可通过调控工艺得到多种钒氧化物,同时钒氧化物高价态的V可以通过高、低价转化参与多电子氧化还原反应,氧化还原活性较好,可以适用于各种电池体系电极材料。
有益效果:本发明制备的钒氧化物纳米材料保留有MXene的手风琴状结构,具有较大的比表面积,用作电极材料时便于离子的嵌入脱出过程,也有利于与电解液的充分接触,制备方法具有操作简单,制备条件可控等优势,具有广泛的应用前景。
附图说明
图1是实施例1和3中得到的层片状多孔纳米钒氧化物及原始二维V2CTx-MXene的XRD图图2是实施例1中得到的层片状多孔纳米钒氧化物在500nm标尺下的SEM图;
图3是实施例1中得到的层片状多孔纳米钒氧化物在2μm标尺下的SEM图;
图4是实施例2中得到的层片状多孔纳米钒氧化物在1μm标尺下的SEM图;图5是实施例3中得到的层片状多孔纳米钒氧化物在500nm标尺下的SEM图;
图6是实施例1中对V2CTx-MXene热处理得到的层片状多孔纳米钒氧化物作为水系锌离子电池正极材料的倍率性能图;
图7是实施例2中对V2CTx-MXene热处理得到的层片状多孔纳米钒氧化物作为水系锌离子电池正极材料的倍率性能图。
具体实施方式
下面结合附图和实施例对本发明进行进一步说明。
实施例1
层片状多孔纳米钒氧化物的制备方法,包括以下步骤:
(1)取500mg层数约为10层、横向尺寸约为10μm的V2CTx-MXene片状粉末均匀铺放在氧化铝坩埚底部,并放入管式炉中;
(2)热处理气氛为空气,在500℃的温度下进行2h的热处理,升温速率为2℃/min,制得纳米棒堆积的层片状多孔钒氧化物。
对制备的层片状多孔纳米钒氧化物进行XRD测试,测试结果如图1所示,图1显示实施例1制备的钒氧化物纳米棒是纯相五氧化二钒,记为V2CTx-500,对制备的层片状多孔纳米钒氧化物进行SEM测试,测试结果如图2和3所示,图2显示实施例1制备的钒氧化物纳米棒直径约为100nm,长度约为400nm,图3表明实施例1制备的层片状多孔纳米钒氧化物材料保留原有MXene二维结构;将准备的层片状多孔纳米钒氧化物作为活性物质:乙炔炭黑:粘结剂PVDF=7:2:1的比例混合制备电极片作为正极,锌片作负极,使用玻璃纤维隔膜,2mol/L的ZnSO4电解液,在空气中组装成电池,图6是其倍率性能的测试,在2A/g的电流密度下,平均容量为154.85mAh/g,展现出该材料良好的电化学活性。
实施例2
层片状多孔纳米钒氧化物的制备方法,包括以下步骤:
(1)取500mg层数约为10层、横向尺寸约为10μm的V2CTx-MXene片状粉末均匀铺放在氧化铝坩埚底部,并放入管式炉中;
(2)热处理气氛为空气,在500℃的温度下进行4h的热处理,升温速率为2℃/min,制得纳米棒堆积的层片状多孔钒氧化物。将准备的层片状多孔纳米钒氧化物作为活性物质:乙炔炭黑:粘结剂PVDF=7:2:1的比例混合制备电极片作为正极,锌片作负极,使用玻璃纤维隔膜,2mol/L的ZnSO4电解液,在空气中组装成电池,图6是其倍率性能的测试,在2A/g的电流密度下,平均容量为162.73mAh/g,表明该材料是良好的锌离子电池正极材料。实施例2中热处理温度与实施例1相同,物相与实施例1一致。图4显示实施例1制备的钒氧化物纳米棒直径约为200nm,长度约为600nm
实施例3
层片状多孔纳米钒氧化物的制备方法,包括以下步骤:
(1)取500mg层数约为10层、横向尺寸约为10μm的V2CTx-MXene片状粉末均匀铺放在氧化铝坩埚底部,并放入管式炉中;
(2)热处理气氛为空气,在300℃的温度下进行2h的热处理,升温速率为2℃/min,制得纳米棒堆积的层片状多孔钒氧化物。
对制备的层片状多孔纳米钒氧化物进行XRD测试,测试结果如图1所示,图1显示实施例3制备的钒氧化物是五氧化二钒和七氧化三钒的混合相,记为V2CTx-300。图5显示实施例3制备的钒氧化物纳米棒直径约为50nm,长度约为200nm。

Claims (5)

1.一种层片状多孔纳米钒氧化物的制备方法,其特征在于,包括以下步骤:
(1)将V2CTx-MXene纳米片粉末均匀铺放在坩埚底部并放入热处理炉中;
(2)进行热处理,空气气氛,升温速率为2℃/min,升温至300-500℃保温2-4h,随炉冷却至室温,制得纳米棒堆积的层片状多孔钒氧化物。
2.根据权利要求1所述的层片状多孔纳米钒氧化物的制备方法,其特征在于,所述步骤(1)中V2CTx-MXene纳米片层数约为10层,横向尺寸为10μm。
3.根据权利要求1所述的层片状多孔纳米钒氧化物的制备方法,其特征在于,所述步骤(1)中的坩埚为氧化铝坩埚。
4.根据权利要求1所述的层片状多孔纳米钒氧化物的制备方法,其特征在于,所述步骤(1)中的热处理炉为管式炉。
5.根据权利要求1所述的层片状多孔纳米钒氧化物的制备方法,其特征在于,所述步骤(2)中纳米棒的直径为50-200nm,长度为200-600nm。
CN202110473529.5A 2021-04-29 2021-04-29 层片状多孔纳米钒氧化物的制备方法 Pending CN113120958A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110473529.5A CN113120958A (zh) 2021-04-29 2021-04-29 层片状多孔纳米钒氧化物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110473529.5A CN113120958A (zh) 2021-04-29 2021-04-29 层片状多孔纳米钒氧化物的制备方法

Publications (1)

Publication Number Publication Date
CN113120958A true CN113120958A (zh) 2021-07-16

Family

ID=76781173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110473529.5A Pending CN113120958A (zh) 2021-04-29 2021-04-29 层片状多孔纳米钒氧化物的制备方法

Country Status (1)

Country Link
CN (1) CN113120958A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735163A (zh) * 2021-09-28 2021-12-03 北京大学 一种含氧空位的多孔二氧化钛材料及其制备方法和应用
CN114162866A (zh) * 2021-10-21 2022-03-11 兰州大学 一种钒氧化物纳米片及其与MXene的二维复合材料的制备方法
CN115064679A (zh) * 2022-07-04 2022-09-16 佛山科学技术学院 一种氧化钒微米棒簇及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261868A (zh) * 2020-01-20 2020-06-09 山东大学 一种五氧化二钒及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261868A (zh) * 2020-01-20 2020-06-09 山东大学 一种五氧化二钒及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAOJUN LIU等: "In-situ formation of uniform V2O5 nanocuboid from V2C MXene as electrodes for capacitive deionization with higher structural stability and ion diffusion ability", 《DESALINATION》 *
YUAN TIAN等: "Micron-Sized Nanoporous Vanadium Pentoxide Arrays for High-Performance Gel Zinc-Ion Batteries and Potassium Batteries", 《CHEM. MATER.》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735163A (zh) * 2021-09-28 2021-12-03 北京大学 一种含氧空位的多孔二氧化钛材料及其制备方法和应用
CN114162866A (zh) * 2021-10-21 2022-03-11 兰州大学 一种钒氧化物纳米片及其与MXene的二维复合材料的制备方法
CN114162866B (zh) * 2021-10-21 2023-08-29 兰州大学 一种钒氧化物纳米片及其与MXene的二维复合材料的制备方法
CN115064679A (zh) * 2022-07-04 2022-09-16 佛山科学技术学院 一种氧化钒微米棒簇及其制备方法和应用
CN115064679B (zh) * 2022-07-04 2024-04-23 佛山科学技术学院 一种氧化钒微米棒簇及其制备方法和应用

Similar Documents

Publication Publication Date Title
Cao et al. Hierarchical three-dimensional flower-like Co 3 O 4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries
Hong et al. Hierarchical SnO2 nanoclusters wrapped functionalized carbonized cotton cloth for symmetrical supercapacitor
Chen et al. Flexible and solid-state asymmetric supercapacitor based on ternary graphene/MnO2/carbon black hybrid film with high power performance
CN113120958A (zh) 层片状多孔纳米钒氧化物的制备方法
CN110729463B (zh) 含三维互穿复合碳材料的锂硫电池正极材料及制备方法、含其的正极极片和锂硫电池
CN106207155B (zh) 一类整合正/负循环效应的纳米杂化材料及其制备方法
Shetty et al. Hydrothermally synthesized Bi2MoO6/Reduced Graphene Oxide composite as anodes for lithium-ion batteries
Wang et al. MOF-templated thermolysis for porous CuO/Cu 2 O@ CeO 2 anode material of lithium-ion batteries with high rate performance
Seok et al. Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility
Li et al. Enhancement of lithium storage capacity and rate performance of Se-modified MnO/Mn3O4 hybrid anode material via pseudocapacitive behavior
Wei et al. High-specific-capacitance supercapacitor based on vanadium oxide nanoribbon
Jiang et al. Collaborative compromise of two-dimensional materials in sodium ion capacitors: mechanisms and designing strategies
CN110364725B (zh) 用于二次电池的阳极活性材料、其制备方法和包括其的二次电池
Feng et al. Microemulsion synthesis of ZnMn2O4/Mn3O4 sub-microrods for Li-ion batteries and their conversion reaction mechanism
Liu et al. Sandwich-like SnS/N, S co-doped rGO/SnS structure with pseudocapacitance for high-performance Li-and Na–ion batteries
CN105161678A (zh) 一种用于锂电池电极的多层复合二氧化钛纳米管材料
CN113410459A (zh) 一种内嵌MoSx纳米片的三维有序大孔类石墨烯炭材料、制备与应用
CN111063549B (zh) 二维MOFs纳米片衍生的混合电容器全电极材料
Zhou et al. Evaporation induced uniform polypyrrole coating on CuO arrays for free-standing high lithium storage anode
Ankinapalli et al. Facile hydrothermal synthesized MoV2O8/MoO3 microclusters-based electrode materials for high-capacity asymmetric supercapacitors
WO2022228137A1 (zh) 一种石墨烯/MnO电极、其制备方法及高能量密度超级电容器
Xie et al. Facile fabrication of ZnO–CuO porous hybrid microspheres as lithium ion battery anodes with enhanced cyclability
CN112968176B (zh) 一种铬氧化物/碳纳米管复合材料及其应用
Wu et al. High-capacity cathode for aqueous zinc-ion battery based on MnOx-modified bismuth vanadate
Liu et al. Vanadium nitride nanoparticles as anode material for lithium ion hybrid capacitor applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210716

RJ01 Rejection of invention patent application after publication