CN106207155B - 一类整合正/负循环效应的纳米杂化材料及其制备方法 - Google Patents

一类整合正/负循环效应的纳米杂化材料及其制备方法 Download PDF

Info

Publication number
CN106207155B
CN106207155B CN201610553665.4A CN201610553665A CN106207155B CN 106207155 B CN106207155 B CN 106207155B CN 201610553665 A CN201610553665 A CN 201610553665A CN 106207155 B CN106207155 B CN 106207155B
Authority
CN
China
Prior art keywords
mno
nano
rgo
hours
presoma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610553665.4A
Other languages
English (en)
Other versions
CN106207155A (zh
Inventor
吴兴隆
刘代伙
吕红艳
张景萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Normal University
Original Assignee
Northeast Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Normal University filed Critical Northeast Normal University
Priority to CN201610553665.4A priority Critical patent/CN106207155B/zh
Publication of CN106207155A publication Critical patent/CN106207155A/zh
Application granted granted Critical
Publication of CN106207155B publication Critical patent/CN106207155B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一类整合正/负循环效应的纳米杂化材料及其制备方法。本发明公开了一类(Si@MnO)@C/RGO纳米杂化材料及其制备方法与应用。首先,通过化学置换反应制备正己烷溶液,再加入Si和RGO,得到前驱体溶液,前驱体在惰性气氛中热处理,得到本发明提供的(Si@MnO)@C/RGO纳米杂化材料。该制备方法简单,可批量生产,原料易得,成本较低,避免了制备过程中(Si@MnO)@C颗粒的团聚,同时,(Si@MnO)@C颗粒均匀的嵌入二维石墨烯纳米片层间,可阻止了循环过程中(Si@MnO)@C颗粒的团聚。该(Si@MnO)@C/RGO纳米杂化材料应用于锂离子电池负极材料时展示出了优秀的倍率性能和高倍率循环性能。

Description

一类整合正/负循环效应的纳米杂化材料及其制备方法
技术领域
本发明属于材料技术领域,具体涉及一种整合了正/负循环效应的纳米杂化材料及其制备方法与在长循环锂离子电池材料领域的应用。
背景技术
锂离子电池由于具有高能力密度、高功率密度、长循环寿命和不污染环境等优势而成为新一代的高能绿色储能材料。目前,锂离子电池已经广泛应用于各类便携式电子产品、可穿戴电子产品和电动汽车等储能器件领域。为了满足当前对高能量密度、高功率密度和稳定的长循环寿命电极材料的急切需求,研究具有高理论比容量和低电压平台(负极)的电极材料迫在眉睫。对负极材料而言,与当前商业化采用的负极材料石墨(理论容量372 mAh g-1)相比,硅材料具有更高的理论比容量4200 mA h g-1,丰度高、商业纳米硅生产工艺成熟和电压平台低等优点。但仍然存在以下两个方面的缺点:(1)由于硅材料在充放电过程中剧烈的体积膨胀和收缩,导致硅/碳纳米复合材料较快的容量衰退;(2)循环过程中,硅/电解液界面副反应的持续发生和容量的不断衰减,直接导致电池的循环寿命变短。以上两大原因极大的限制了硅在负极材料中的应用。在这里,我们通过工程化精确控制纳米化结构,设计并合成了形貌上具有介孔、优异三维导电网络和高电化学活性的(Si@MnO)@C/RGO纳米杂化材料,结构上是一个具有电化学活性的过渡金属氧化物包覆纳米硅,然后形成一个稳定的碳包覆层,最后将该(Si@MnO)@C纳米粒子固定在二维的RGO纳米片层间,最终形成(Si@MnO)@C/RGO纳米杂化材料。该材料具有优异的长循环稳定性、倍率性能,并且容量不会随着循环衰减,该材料的形貌和结构设计思想对锂离子电池负极材料和正极材料的发展都具有非常重要的指导意义。
发明内容
本发明的目的是提出了一种过渡金属氧化物改善硅材料循环性能的方法和提供一种(Si@MnO)@C/RGO纳米杂化材料及其制备方法与应用。
本发明提供的(Si@MnO)@C/RGO纳米杂化材料,由MnO纳米粒子粘附在Si纳米粒子表面并被一层碳包覆形成(Si@MnO)@C纳米粒子,(Si@MnO)@C纳米颗粒均匀的分散并粘附在二维RGO纳米片层间组成一个三维的维纳网络结构。
其中,Si占(Si@MnO)@C/RGO复合物的质量百分比为5-70%,MnO占(Si@MnO)@C/RGO复合物的质量百分比为20-80%。
上述(Si@MnO)@C/RGO复合物中,Si纳米粒子的粒径为10-500nm,MnO纳米粒子的粒径为8-200nm。
本发明方法是通过下述技术方案实现的:
一种过渡金属氧化物修饰硅/碳纳米杂化材料的制备方法,步骤如下:
(1)首先,通过化学置换反应制备Mx(oleate)y(M= Mn, Fe, Zn, Co etc.)的正己烷溶液。然后,在搅拌条件下,依次加入Si和RGO,得到前驱体溶液,旋蒸得到最终的前驱体。
其中,Si基材料可以是Si纳米球,Si纳米棒,Si纳米线,Si纳米管和中空的Si纳米粒子中的任意一种,优选为Si纳米粒子和Si纳米线。
(2)将步骤(1)得到的前驱体在惰性气氛中热处理,得到本发明提供的(Si@MnO)@C/RGO纳米杂化材料。
同时,本发明提供的过渡金属氧化物改善Si材料循环和倍率性能的思想及其与磷酸亚铁锂和三元LiNi0.6Co0.2Mn0.2O2构成的全电池在锂离子电池中的应用。
本方法制备的(Si@MnO)@C/RGO纳米杂化材料具有以下优点:
MnO纳米粒子粘附在Si纳米粒子表面并被一层碳包覆,该碳层能够有效的缓解Si材料在循环中的体积膨胀和将MnO固定在Si材料表面,使MnO和Si更加亲密的接触,有利于循环中持续活化MnO更好的弥补Si材料容量损失,得到一个稳定的长循环性能。
通过将(Si@MnO)@C纳米颗粒分散在二维石墨烯纳米片层间构筑一个具有介孔、柔性和高导电率的三维微纳结构网络,这有利于锂离子和电子的快速迁移和有效的容纳体积的剧烈变化,提高循环和倍率性能。
在室温、液相条件下即可快速批量合成前驱体,随后热处理前驱体即可得到(Si@MnO)@C/RGO纳米杂化材料。
附图说明
图1为实施例1中(Si@MnO)@C/RGO纳米杂化材料的形貌结构设计示意图;
图2为实施例1中(Si@MnO)@C/RGO纳米杂化材料的X射线衍射(XRD)图;
图3为实施例1中(Si@MnO)@C/RGO纳米杂化材料的电子显微镜照片,其中,(a)为扫描电子显微镜(SEM)照片,(b)为透射电子显微镜(TEM)照片;
图4为实施例1中(Si@MnO)@C/RGO纳米杂化材料作为锂离子电池负极材料时的倍率性能图;
图5为实施例1中(Si@MnO)@C/RGO纳米杂化材料作为锂离子电池负极材料时的循环性能及其对应的充放电曲线图;
图6为实施例1中(Si@MnO)@C/RGO纳米杂化材料作为锂离子电池负极材料时的大电流密度下的长循环性能图;
图7为实施例11中(Si@MnO)@C/RGO//LiNi0.6Co0.2Mn0.2O2全电池的(a)循环伏安曲线、(b)倍率充放曲线。(Si@MnO)@C/RGO//LiFePO4全电池的(c)循环伏安曲线、(d)倍率充放曲线和(e)循环性能图。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明并不限于以下实施例。
实施例1
制备(Si@MnO)@C/RGO纳米杂化材料
在磁力搅拌条件下,将0.49 g的氯化锰,1.52 g的油酸钠依次加入到8 ml水、14ml乙醇和50 ml正己烷的混合溶液中,室温搅拌4小时后,混合溶液分层,上层溶液变成浅棕色的油酸锰/正己烷溶液,下层为氯化钠的水溶液。上层油酸锰/正己烷溶液能够通过分液漏斗用50ml去离子水反复洗涤分离得到。然后将60 mg的硅纳米粒子加入到油酸锰/正己烷溶液,持续搅拌4小时后,再加入18 mg的石墨烯纳米片,再次搅拌4小时,然后在70 oC旋蒸得到前驱体。最后,在高纯的氮气气氛条件下,在管式炉中将此前驱体以1 oC min-1的升温速率升温至500oC,在此温度下恒温2小时,然后冷却至室温,即可得到(Si@MnO)@C/RGO纳米杂化材料。
实施例2
制备(Si@MnO)@C/RGO纳米杂化材料
在磁力搅拌条件下,将0.49 g的氯化锰,1.52 g的油酸钠依次加入到8 ml水、14ml乙醇和50 ml正己烷的混合溶液中,室温搅拌4小时后,混合溶液分层,上层溶液变成浅棕色的油酸锰/正己烷溶液,下层为氯化钠的水溶液。上层油酸锰/正己烷溶液能够通过分液漏斗用50ml去离子水反复洗涤分离得到。然后将40 mg的硅纳米粒子加入到油酸锰/正己烷溶液,持续搅拌4小时后,再加入18 mg的石墨烯纳米片,再次搅拌4小时,然后在70 oC旋蒸得到前驱体。最后,在高纯的氮气气氛条件下,在管式炉中将此前驱体以1oC min-1的升温速率升温至500oC,在此温度下恒温2小时,然后冷却至室温,即可得到(Si@MnO)@C/RGO纳米杂化材料。
实施例3
制备(Si@MnO)@C/RGO纳米杂化材料
在磁力搅拌条件下,将0.49 g的氯化锰,1.52 g的油酸钠依次加入到8 ml水、14ml乙醇和50 ml正己烷的混合溶液中,室温搅拌4小时后,混合溶液分层,上层溶液变成浅棕色的油酸锰/正己烷溶液,下层为氯化钠的水溶液。上层油酸锰/正己烷溶液能够通过分液漏斗用50ml去离子水反复洗涤分离得到。然后将20 mg的硅纳米粒子加入到油酸锰/正己烷溶液,持续搅拌4小时后,再加入20 mg的石墨烯纳米片,再次搅拌4小时,然后在70 oC旋蒸得到前驱体。最后,在高纯的氮气气氛条件下,在管式炉中将此前驱体以1 oC min-1的升温速率升温至500oC,在此温度下恒温2小时,然后冷却至室温,即可得到(Si@MnO)@C/RGO纳米杂化材料。
实施例4
制备(Si@MnO)@C/RGO纳米杂化材料
在磁力搅拌条件下,将0.49 g的氯化锰,1.52 g的油酸钠依次加入到8 ml水、14ml乙醇和50 ml正己烷的混合溶液中,室温搅拌4小时后,混合溶液分层,上层溶液变成浅棕色的油酸锰/正己烷溶液,下层为氯化钠的水溶液。上层油酸锰/正己烷溶液能够通过分液漏斗用50ml去离子水反复洗涤分离得到。然后将80 mg的硅纳米粒子加入到油酸锰/正己烷溶液,持续搅拌4小时后,再加入30 mg的石墨烯纳米片,再次搅拌4小时,然后在70 oC旋蒸得到前驱体。最后,在高纯的氮气气氛条件下,在管式炉中将此前驱体以1 oC min-1的升温速率升温至500oC,在此温度下恒温2小时,然后冷却至室温,即可得到(Si@MnO)@C/RGO纳米杂化材料。
首先,我们提出了图1所示(Si@MnO)@C/RGO纳米杂化材料的结构设计思想。然后,用XRD、SEM和TEM表征了实施例1-4得到的(Si@MnO)@C/RGO纳米杂化材料,物理表征证明我们成功合成了图1所示的(Si@MnO)@C/RGO纳米杂化材料。图2为实施例1得到的(Si@MnO)@C/RGO纳米杂化材料的X射线衍射图,显而易见,合成杂化材料是由MnO(JCPDS No. 07-0230)和Si(JCPDS No. 27-1402)材料组成,没有其它峰出现。图3为实施例1中(Si@MnO)@C/RGO纳米杂化材料的电子显微镜照片,其中,(a)为扫描电子显微镜(SEM)照片,(b)为透射电子显微镜(TEM)照片,证明成功合成了图示设想的结构。图4为实施例1中(Si@MnO)@C/RGO纳米杂化材料作为锂离子电池负极材料时的倍率性能图。图5为实施例1中(Si@MnO)@C/RGO纳米杂化材料作为锂离子电池负极材料时的循环性能及其对应的充放电曲线图。图6为实施例1中(Si@MnO)@C/RGO复合物作为锂离子电池负极材料时的大电流密度下的长循环性能图,经过1500次循环后,容量没有任何衰减,表现出了非常稳定的循环性能。图4、图5和图6表明该纳米杂化材料表现出了优异的稳定性电化学能和循环能力。图7为实施例1中以(Si@MnO)@C/RGO作为负极,LiNi0.6Co0.2Mn0.2O2和磷酸亚铁锂分别作为正极时锂离子全电池的倍率和循环性能图。图7进一步表明了(Si@MnO)@C/RGO是一个很有希望的负极材料。
实施例5
制备(Si@Fe2O3)@C/RGO纳米杂化材料
在磁力搅拌条件下,将1.35 g的氯化铁,4.57 g的油酸钠依次加入到8 ml水、14ml乙醇和50 ml正己烷的混合溶液中,室温搅拌4小时后,混合溶液分层,上层溶液变成浅棕色的油酸锰/正己烷溶液,下层为氯化钠的水溶液。上层油酸锰/正己烷溶液能够通过分液漏斗用50ml去离子水反复洗涤分离得到。然后将50 mg的硅纳米粒子加入到油酸锰/正己烷溶液,持续搅拌4小时后,再加入20 mg的石墨烯纳米片,再次搅拌4小时,然后在70 oC旋蒸得到前驱体。最后,在高纯的氮气气氛条件下,在管式炉中将此前驱体以1oC min-1的升温速率升温至400oC,在此温度下恒温2小时,然后冷却至室温,即可得到(Si@Fe2O3)@C/RGO纳米杂化材料。
实施例6
制备(Si@CoO)@C/RGO纳米杂化材料
在磁力搅拌条件下,将0.32 g的氯化钴,1.52g的油酸钠依次加入到8 ml水、14ml乙醇和50 ml正己烷的混合溶液中,室温搅拌4小时后,混合溶液分层,上层溶液变成浅棕色的油酸锰/正己烷溶液,下层为氯化钠的水溶液。上层油酸锰/正己烷溶液能够通过分液漏斗用50ml去离子水反复洗涤分离得到。然后将50 mg的硅纳米粒子加入到油酸锰/正己烷溶液,持续搅拌4小时后,再加入20 mg的石墨烯纳米片,再次搅拌4小时,然后在70 oC旋蒸得到前驱体。最后,在高纯的氮气气氛条件下,在管式炉中将此前驱体以1oC min-1的升温速率升温至400oC,在此温度下恒温2小时,然后冷却至室温,即可得到(Si@CoO)@C/RGO纳米杂化材料。
实施例7
制备(Si@ZnO)@C/RGO纳米杂化材料
在磁力搅拌条件下,将0.34 g的氯化锌,1.52 g的油酸钠依次加入到8 ml水、14ml乙醇和50 ml正己烷的混合溶液中,室温搅拌4小时后,混合溶液分层,上层溶液变成浅棕色的油酸锰/正己烷溶液,下层为氯化钠的水溶液。上层油酸锰/正己烷溶液能够通过分液漏斗用50ml去离子水反复洗涤分离得到。然后将50 mg的硅纳米粒子加入到油酸锰/正己烷溶液,持续搅拌4小时后,再加入20 mg的石墨烯纳米片,再次搅拌4小时,然后在70 oC旋蒸得到前驱体。最后,在高纯的氮气气氛条件下,在管式炉中将此前驱体以1oC min-1的升温速率升温至400oC,在此温度下恒温2小时,然后冷却至室温,即可得到(Si@ZnO)@C/RGO纳米杂化材料。
实施例8
制备(SiNW@MnO)@C/RGO纳米杂化材料
在磁力搅拌条件下,将0.49 g的氯化锰,1.52 g的油酸钠依次加入到8 ml水、14ml乙醇和50 ml正己烷的混合溶液中,室温搅拌4小时后,混合溶液分层,上层溶液变成浅棕色的油酸锰/正己烷溶液,下层为氯化钠的水溶液。上层油酸锰/正己烷溶液能够通过分液漏斗用50ml去离子水反复洗涤分离得到。然后将60 mg的硅纳米线(SiNW)加入到油酸锰/正己烷溶液,持续搅拌4小时后,再加入18 mg的石墨烯纳米片,再次搅拌4小时,然后在70 oC旋蒸得到前驱体。最后,在高纯的氮气气氛条件下,在管式炉中将此前驱体以1oC min-1的升温速率升温至500oC,在此温度下恒温2小时,然后冷却至室温,即可得到(SiNW@MnO)@C/RGO纳米杂化材料。
实施例9
制备(p-Si@MnO)@C/RGO纳米杂化材料
在磁力搅拌条件下,将0.49 g的氯化锰,1.52 g的油酸钠依次加入到8 ml水、14ml乙醇和50 ml正己烷的混合溶液中,室温搅拌4小时后,混合溶液分层,上层溶液变成浅棕色的油酸锰/正己烷溶液,下层为氯化钠的水溶液。上层油酸锰/正己烷溶液能够通过分液漏斗用50ml去离子水反复洗涤分离得到。然后将60 mg的多孔硅(p-Si)加入到油酸锰/正己烷溶液,持续搅拌4小时后,再加入20mg的石墨烯纳米片,再次搅拌4小时,然后在70 oC旋蒸得到前驱体。最后,在高纯的氮气气氛条件下,在管式炉中将此前驱体以1oC min-1的升温速率升温至500oC,在此温度下恒温2小时,然后冷却至室温,即可得到(p-Si@MnO)@C/RGO纳米杂化材料。
实施例10
制备(SiNT@MnO)@C/RGO纳米杂化材料
在磁力搅拌条件下,将0.49 g的氯化锰,1.52 g的油酸钠依次加入到8 ml水、14ml乙醇和50 ml正己烷的混合溶液中,室温搅拌4小时后,混合溶液分层,上层溶液变成浅棕色的油酸锰/正己烷溶液,下层为氯化钠的水溶液。上层油酸锰/正己烷溶液能够通过分液漏斗用50ml去离子水反复洗涤分离得到。然后将60 mg的硅纳纳米管(SiNT)加入到油酸锰/正己烷溶液,持续搅拌4小时后,再加入20mg的石墨烯纳米片,再次搅拌4小时,然后在70 oC旋蒸得到前驱体。最后,在高纯的氮气气氛条件下,在管式炉中将此前驱体以1oC min-1的升温速率升温至500oC,在此温度下恒温2小时,然后冷却至室温,即可得到(SiNT@MnO)@C/RGO纳米杂化材料。
实施例11
制备(Si@MnO)@C/RGO//LiFePO4和(Si@MnO)@C/RGO// LiNi0.6Co0.2Mn0.2O2全电池
将实施例1制备得的(Si@MnO)@C/RGO纳米杂化材料、乙炔黑和粘结剂CMC以质量比80:10:10在水溶液中混合配成浆料,并将其均匀地分散于铜片上,120 oC干燥一夜得全电池的负极材料。同样的方法,商业LiFePO4、乙炔黑和粘结剂PVDF以质量比80:10:10在NMP溶液中混合配成浆料,并将其均匀地分散于铝片上,120 oC干燥一夜得全电池的正极材料。以玻璃纤维微孔滤膜(英国Whatman公司)作为隔膜,1mol L-1 LiPF6 (溶剂为体积比1:1的碳酸乙烯酯和碳酸二甲酯混合溶液)作为电解液,在手套箱中装配(Si@MnO)@C/RGO//LiFePO4全电池。将上述装配的全电池在快采蓝电测试仪上进行充放电测试,测试的充放电压区间为1.0-3.6V.
(Si@MnO)@C/RGO//LiNi0.6Co0.2Mn0.2O2全电池的装配方法与(Si@MnO)@C/RGO//LiFePO4全电池的装配相同,将LiNi0.6Co0.2Mn0.2O2取代LiFePO4的即可得到(Si@MnO)@C/RGO//LiNi0.6Co0.2Mn0.2O2全电池。测试的充放电压区间为1.0-4.2V.
如图7所示,实施例11制备的(Si@MnO)@C/RGO//LiFePO4和(Si@MnO)@C/RGO//LiNi0.6Co0.2Mn0.2O2全电池都展示出了优秀的电化学倍率和循环性能。

Claims (3)

1.整合正/负循环效应的纳米杂化材料的制备方法,其特征是具体步骤如下:
(1)首先,通过化学置换反应制备Mx(oleate)y,其中M= Mn, Fe, Zn, Co的正己烷溶液,然后,在搅拌条件下,依次加入Si基材料和还原的氧化石墨烯RGO,得到前驱体溶液,旋蒸得到最终的前驱体,其中,Si基材料是Si纳米球、Si纳米棒、Si纳米线、Si纳米管和中空的Si纳米粒子中的任意一种;
(2)将步骤(1)得到的前驱体在惰性气氛中热处理,得到 (Si@MnO)@C/RGO、(Si@Fe2O3)@C/RGO、(Si@ZnO)@C/RGO或(Si@CoO)@C/RGO纳米杂化材料。
2.按照权利要求1所述的整合正/负循环效应的纳米杂化材料的制备方法,其特征是具体步骤如下:
在磁力搅拌条件下,将0.49 g的氯化锰,1.52 g的油酸钠依次加入到8 ml水、14ml乙醇和50 ml正己烷的混合溶液中,室温搅拌4小时后,混合溶液分层,上层溶液变成浅棕色的油酸锰/正己烷溶液,下层为氯化钠的水溶液,上层油酸锰/正己烷溶液通过分液漏斗用50ml去离子水反复洗涤分离得到,然后将60 mg的中空的Si纳米粒子加入到油酸锰/正己烷溶液,持续搅拌4小时后,再加入18 mg的石墨烯纳米片,再次搅拌4小时,然后在70 oC旋蒸得到前驱体,最后,在高纯的氮气气氛条件下,在管式炉中将此前驱体以1 oC min-1的升温速率升温至500oC,在此温度下恒温2小时,然后冷却至室温,即可得到(Si@MnO)@C/RGO纳米杂化材料。
3.按照权利要求1或2所述的方法制备的纳米杂化材料作为长循环锂离子电池材料的应用。
CN201610553665.4A 2016-07-14 2016-07-14 一类整合正/负循环效应的纳米杂化材料及其制备方法 Expired - Fee Related CN106207155B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610553665.4A CN106207155B (zh) 2016-07-14 2016-07-14 一类整合正/负循环效应的纳米杂化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610553665.4A CN106207155B (zh) 2016-07-14 2016-07-14 一类整合正/负循环效应的纳米杂化材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106207155A CN106207155A (zh) 2016-12-07
CN106207155B true CN106207155B (zh) 2018-09-28

Family

ID=57474714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610553665.4A Expired - Fee Related CN106207155B (zh) 2016-07-14 2016-07-14 一类整合正/负循环效应的纳米杂化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106207155B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985364B2 (en) 2017-02-28 2021-04-20 Korea Advanced Institute Of Science And Technology Pliable carbonaceous pocket composite structure, method for preparing the same, electrode, including the same, and energy storage device including the electrode
KR102062550B1 (ko) * 2017-02-28 2020-01-06 한국과학기술원 유연성 탄소 포켓 복합 구조체, 이의 제조방법, 이를 포함하는 전극 및 상기 전극을 포함하는 에너지 저장 디바이스
CN107488267B (zh) * 2017-07-18 2020-12-29 电子科技大学 基于小球改性的高阻变氧化还原石墨烯材料及其制备方法
CN107755682B (zh) * 2017-09-20 2019-05-17 南开大学 一种将金属杂化纳米线转化为纳米球的方法及应用
CN109326456B (zh) * 2018-11-15 2020-04-28 长春工业大学 一种超级电容器及其制备方法
CN109713272A (zh) * 2018-12-27 2019-05-03 北京旭碳新材料科技有限公司 石墨烯-钛酸锂复合材料及其制备方法
CN109728287B (zh) * 2019-01-07 2022-06-28 河南师范大学 一种一维同轴双纳米管复合材料及其制备方法和应用
CN113571688B (zh) * 2021-07-23 2022-10-11 中科南京绿色制造产业创新研究院 一种碳基负极材料及其制备方法和应用
CN114220956B (zh) * 2021-12-06 2023-03-28 厦门理工学院 一种Si@MnO@C复合材料及其制备方法、负极材料及电池
CN114744177A (zh) * 2022-04-29 2022-07-12 安徽科技学院 一种多孔硅二氧化锰复合负极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646817A (zh) * 2011-02-16 2012-08-22 中国科学院金属研究所 锂离子电池用石墨烯/金属氧化物复合负极材料及制备
CN103050661A (zh) * 2012-12-12 2013-04-17 清华大学深圳研究生院 石墨烯复合锂离子电池负极材料及其制备方法
CN103531809A (zh) * 2013-07-11 2014-01-22 中国矿业大学 一种核壳结构颗粒与石墨烯复合材料的制备方法和应用
CN105161694A (zh) * 2015-06-12 2015-12-16 南通彩都新能源科技有限公司 一种锂离子电池用硅-碳-石墨烯复合负极的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646817A (zh) * 2011-02-16 2012-08-22 中国科学院金属研究所 锂离子电池用石墨烯/金属氧化物复合负极材料及制备
CN103050661A (zh) * 2012-12-12 2013-04-17 清华大学深圳研究生院 石墨烯复合锂离子电池负极材料及其制备方法
CN103531809A (zh) * 2013-07-11 2014-01-22 中国矿业大学 一种核壳结构颗粒与石墨烯复合材料的制备方法和应用
CN105161694A (zh) * 2015-06-12 2015-12-16 南通彩都新能源科技有限公司 一种锂离子电池用硅-碳-石墨烯复合负极的制备方法

Also Published As

Publication number Publication date
CN106207155A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN106207155B (zh) 一类整合正/负循环效应的纳米杂化材料及其制备方法
Zhou et al. Recent progress in Co–based metal–organic framework derivatives for advanced batteries
Guo et al. The application of transition metal cobaltites in electrochemistry
CN100544081C (zh) 一种纳米钛酸锂及其与二氧化钛的复合物的制备方法
Wang et al. Multi-functional NiS2/FeS2/N-doped carbon nanorods derived from metal-organic frameworks with fast reaction kinetics for high performance overall water splitting and lithium-ion batteries
Huang et al. Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li–S full batteries
CN111362254A (zh) 一种氮掺杂碳纳米管负载磷掺杂四氧化三钴复合材料的制备方法及应用
JP5270503B2 (ja) 遷移金属酸化物ロッドの製造方法、2次電池の製造方法
CN104934573A (zh) 一种具有多级结构的硅-石墨烯球状复合材料的原位固相合成方法及其应用
Lu et al. Three dimensional graphene encapsulated ZnO-ZnFe2O4 composite hollow microspheres with enhanced lithium storage performance
Narsimulu et al. Designed lamination of binder-free flexible iron oxide/carbon cloth as high capacity and stable anode material for lithium-ion batteries
Santhoshkumar et al. Time-efficient synthesis of MnO2 encapsulated α-Fe2O3 ellipsoids for lithium ion battery applications
CN108172770A (zh) 具有单分散结构特征的碳包覆NiPx纳米复合电极材料及其制备方法
Mustaqeem et al. Rational design of Cu based composite electrode materials for high-performance supercapacitors–A review
CN110247038A (zh) 一种Bi2S3-MoS2/石墨烯复合纳米材料及其制备方法
Liu et al. 3D nanoflower-like MoS2 grown on wheat straw cellulose carbon for lithium-ion battery anode material
Chen et al. TiO2/NiO/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries
Liu et al. In situ fabrication of ZnO–MoO2/C hetero-phase nanocomposite derived from MOFs with enhanced performance for lithium storage
Wang et al. N-doped carbon coated CoO nanowire arrays derived from zeolitic imidazolate framework-67 as binder-free anodes for high-performance lithium storage
Guo et al. High-performance supercapacitors based on flower-like FexCo3-xO4 electrodes
Huang et al. Three-dimensional carbon cloth-supported ZnO nanorod arrays as a binder-free anode for lithium-ion batteries
CN113571681A (zh) 一种空心二氧化钛/镍/碳复合材料及其制备方法和应用
CN110197902B (zh) 一种多孔结构开口核桃壳状钠离子电池正极材料及其制备方法
CN109065859B (zh) 基于金属-酚羟基网络组装构筑的碳限域纳米材料及其制备方法和应用
Deng et al. Target synthesis of dense C-coated ZnO for advanced lithium storage via a facile and cost-effective approach

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180928