CN112501717A - 一种LaAlO3纳米纤维的制备方法及其产品和应用 - Google Patents

一种LaAlO3纳米纤维的制备方法及其产品和应用 Download PDF

Info

Publication number
CN112501717A
CN112501717A CN202011352038.7A CN202011352038A CN112501717A CN 112501717 A CN112501717 A CN 112501717A CN 202011352038 A CN202011352038 A CN 202011352038A CN 112501717 A CN112501717 A CN 112501717A
Authority
CN
China
Prior art keywords
laalo
preparation
fiber
electrostatic spinning
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011352038.7A
Other languages
English (en)
Inventor
韦俊霖
董松涛
汪蕾
张亚梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202011352038.7A priority Critical patent/CN112501717A/zh
Publication of CN112501717A publication Critical patent/CN112501717A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明公开了一种纳米纤维的制备方法,包括以下步骤:a、将0.1458~0.4374份硝酸镧和0.1263~0.3789份硝酸铝溶解在5~15份N,N‑二甲基甲酰胺中,再加入0.825~2.475份聚乙烯吡咯烷酮,获得静电纺丝前驱体溶液;b、静电纺丝法制备La(NO3)2/Al(NO3)3/PVP前驱体纤维;c、烘干并在730~850℃烧结,得到LaAlO3纳米纤维。本发明还公开了所得LaAlO3纳米纤维以及其在超级电容器电极中应用。本发明所制得的LaAlO3纳米纤维粗细均匀且连续,直径为50~80nm,纤维尺寸大大缩小,增大了比表面积,有利于提升LaAlO3纤维材料的电化学性能。

Description

一种LaAlO3纳米纤维的制备方法及其产品和应用
技术领域
本发明涉及纤维制法及应用,具体为一种LaAlO3纳米纤维的制备方法及其产品和应用。
背景技术
随着地球环境的日益恶化以及人类对能源需求的不断增加,人们对高性能化学动力源的需求也变得越来越迫切。超级电容器是一种介于充电电池与传统电容器之间的高性能电化学储能设备,它有着容量大、能量密度高、使用寿命长等诸多优点。LaAlO3是一种典型的钙钛矿结构材料,具有介电常数小,化学稳定性好,能隙宽,比表面积大,热稳定性好等诸多优点,所以被广泛应用于电子器件、催化、污水处理等领域,作为一种潜在的超级电容器电极材料目前对其电化学性能的研究鲜有发表。并且,现有的制备工艺还存在制备时间长、合成温度高、对能源消耗大、对人体和环境不友好等诸多缺点。。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明的目的是提供一种简单方便、热处理温度适中、所用原料对人体对环境危害均较低的LaAlO3纳米纤维的制备方法,本发明的另一目的是提供一种比容量高、循环稳定性好的LaAlO3纳米纤维,本发明的再一目的是提供一种LaAlO3纳米纤维在超级电容器电极中的应用。
技术方案:本发明所述的一种LaAlO3纳米纤维的制备方法,包括以下步骤:
a、将0.1458~0.4374份硝酸镧和0.1263~0.3789份硝酸铝溶解在5~15份N,N-二甲基甲酰胺(DMF)中,再向其中加入0.825~2.475份聚乙烯吡咯烷酮(PVP),获得静电纺丝前驱体溶液;PVP用于增加液体的导电性,使其在高压电场力的作用下能够被拉成丝;
b、通过静电纺丝法制备La(NO3)2/Al(NO3)3/PVP前驱体纤维;
c、将所得纤维烘干并在730~850℃烧结,降温后得到LaAlO3纳米纤维。
步骤b中,静电纺丝的电压为10~30kV,溶液注射速度为0.1~0.6ml/h。静电纺丝的收丝筒转速为80~300r/min,接收距离为5~25cm。静电纺丝的温度为0~40℃。
步骤c中的烘干温度为50~120℃,烘干时间为2~24h。升温速率为0.5~5℃/min,烧结温度为700~850℃,烧结时间为2~4h,降温速率为0.5~5℃/min。
当原料的配比确定时,若PVP的重量份数不在0.825~2.475份的区间内,则无法成功制得LaAlO3纳米纤维。
上述LaAlO3纳米纤维的制备方法所制得的LaAlO3纳米纤维,直径为50~80nm,连续且粗细均匀。
LaAlO3纳米纤维能够在超级电容器电极中应用,LaAlO3纳米纤维制备成超级电容器电极后,具有比容量可达140F/g,循环次数可达10000次。
制备原理:La(NO3)3+Al(NO3)3+O2→LaAlO3+NO2+NO。
静电纺丝法是一种特殊的制备工艺,溶液在高压电场力的作用下被拉成纤维状的细丝,利用静电纺丝法制备出的纳米纤维其直径可以达到纳米级,使之比表面积远大于传统制备方法制备出的材料,同时静电纺丝法制备出的纤维材料由于其特殊的结构不仅增大材料的比表面积,还提高了电子的传输效率,从而可以提高材料的电化学性能。
有益效果:本发明和现有技术相比,具有如下显著性特点:
1、所制得的LaAlO3纳米纤维粗细均匀且连续,直径为50~80nm,根据纳米效应,纤维尺寸大大缩小,增大了比表面积,有利于提升LaAlO3纤维材料的电化学性能;
2、由于LaAlO3纳米纤维具有特殊的一维线性结构,不仅增大材料的比表面积,还提高了电子的传输效率,从而可以提高材料的电化学性能;
3、将该材料应用于超级电容器电极材料时,具有比容量高、循环稳定性好以及使用寿命较长等诸多优点;
4、LaAlO3纤维的制备方法简单方便,热处理温度适中,所用原料对人体对环境危害均较低。
附图说明
图1是本发明实施例1的LaAlO3纳米纤维的XRD图;
图2是本发明实施例1的LaAlO3纳米纤维的SEM图;
图3是本发明实施例1的LaAlO3纳米纤维的循环伏安曲线图;
图4是本发明实施例1的LaAlO3纳米纤维的充放电图;
图5是本发明实施例1的LaAlO3纳米纤维的长循环图;
图6是本发明对比例1的LaCoO3纳米纤维的充放电图;
图7是本发明对比例2的LaAlO3纳米纤维的充放电图。
具体实施方式
以下各实施例中,硝酸镧的纯度为99.9%,硝酸铝的纯度为99%,DMF的纯度为99%,PVP的平均分子量为1300000。PVP的平均分子量对能否纺成纤维有很大影响,如果改变则无法纺出纤维。
实施例1
一种用于超级电容器的LaAlO3纳米纤维的制备方法,包含以下步骤:
a、0.2916g硝酸镧和0.2526g硝酸铝依次溶解在10g DMF中,再向其中加入1.65gPVP,从而得到静电纺丝所需纺丝液;
b、通过静电纺丝法制备La(NO3)2/Al(NO3)3/PVP前驱体纤维,电压为18kV,溶液注射速度为0.5ml/h,收丝筒转速为100r/min,接收距离为20cm,静电纺丝的温度为25℃;
c、将所得La(NO3)2/Al(NO3)3/PVP前驱体纤维在80℃烘干12h后,在箱式电阻炉中,以5℃/min的升温速率升温到750℃进行烧结2h,再以1℃/min的降温速率冷却,得到LaAlO3纳米纤维。
将实施例1所制得的LaAlO3纳米纤维进行XRD检测、微观形貌和性能分析。由图1可以看出,所有的峰都可以根据LaAlO3的JCPDS卡进行索引(PDF#31-0022),即该样品为单一的LaAlO3。LaAlO3纳米纤维的扫描电子显微镜图如图2所示,结果表明,合成的样品为纳米级,呈明显纤维状结构,纤维直径为50-80nm。LaAlO3纳米纤维的循环伏安曲线图如图3所示,在10mV和100mV的扫面速率下,图形没有明显的变化,表明具有良好的倍率性能。LaAlO3纳米纤维的充放电图如图4所示,可以看出将LaAlO3纳米纤维制备成电极后有着较高的比电容,比电容经计算可达140F/g。LaAlO3纳米纤维的长循环图如图5所示,可以看出将LaAlO3纳米纤维制备成电极后有着良好的循环性能,循环次数可达10000圈。
实施例2
一种用于超级电容器的LaAlO3纳米纤维的制备方法,包含以下步骤:
a、0.1458g硝酸镧和0.1263g硝酸铝依次溶解在5g DMF中,再向其中加入0.825gPVP,从而得到静电纺丝所需纺丝液;
b、通过静电纺丝法制备La(NO3)2/Al(NO3)3/PVP前驱体纤维,电压为10kV,溶液注射速度为0.1ml/h,收丝筒转速为80r/min,接收距离为5cm,静电纺丝的温度为0℃;
c、将所得La(NO3)2/Al(NO3)3/PVP前驱体纤维在50℃烘干2h后,在箱式电阻炉中中,以0.5℃/min的升温速率升温到700℃进行烧结2h,再以0.5℃/min的降温速率冷却,得到LaAlO3纳米纤维。
实施例3
一种用于超级电容器的LaAlO3纳米纤维的制备方法,包含以下步骤:
a、0.4374g硝酸镧和0.3789g硝酸铝依次溶解在15g DMF中,再向其中加入2.475gPVP,从而得到静电纺丝所需纺丝液;
b、通过静电纺丝法制备La(NO3)2/Al(NO3)3/PVP前驱体纤维,电压为30kV,溶液注射速度为0.6ml/h,收丝筒转速为300r/min,接收距离为25cm,静电纺丝的温度为40℃;
c、将所得La(NO3)2/Al(NO3)3/PVP前驱体纤维在120℃烘干24h后,在箱式电阻炉中中,以5℃/min的升温速率升温到850℃进行烧结4h,再以5℃/min的降温速率冷却,得到LaAlO3纳米纤维。
实施例4
一种用于超级电容器的LaAlO3纳米纤维的制备方法,包含以下步骤:
a、0.2187g硝酸镧和0.18945g硝酸铝依次溶解在7.5g DMF中,再向其中加入1.2375g PVP,从而得到静电纺丝所需纺丝液;
b、通过静电纺丝法制备La(NO3)2/Al(NO3)3/PVP前驱体纤维,电压为20kV,溶液注射速度为0.2ml/h,收丝筒转速为150r/min,接收距离为18cm,静电纺丝的温度为10℃;
c、将所得La(NO3)2/Al(NO3)3/PVP前驱体纤维在100℃烘干12h后,在箱式电阻炉中中,以2℃/min的升温速率升温到800℃进行烧结3h,再以2℃/min的降温速率冷却,得到LaAlO3纳米纤维。
实施例5
一种用于超级电容器的LaAlO3纳米纤维的制备方法,包含以下步骤:
a、0.3645g硝酸镧和0.31575g硝酸铝依次溶解在12.5g DMF中,再向其中加入2.0625g PVP,从而得到静电纺丝所需纺丝液;
b、通过静电纺丝法制备La(NO3)2/Al(NO3)3/PVP前驱体纤维,电压为25kV,溶液注射速度为0.4ml/h,收丝筒转速为200r/min,接收距离为15cm,静电纺丝的温度为15℃;
c、将所得La(NO3)2/Al(NO3)3/PVP前驱体纤维在90℃烘干8h后,在箱式电阻炉中中,以3℃/min的升温速率升温到780℃进行烧结2.5h,再以3℃/min的降温速率冷却,得到LaAlO3纳米纤维。
对比例1
一种LaCoO3纳米纤维的制备方法,包括以下步骤:
a、0.8747g硝酸镧和0.5879g硝酸钴依次溶解在10g DMF中,再向其中加入1g PVP,从而得到静电纺丝所需纺丝液;
b、通过静电纺丝法制备La(NO3)2/Co(NO3)3/PVP前驱体纤维,电压为15kV,溶液注射速度为0.5ml/h,收丝筒转速为100r/min,接收距离为20cm,静电纺丝的温度为25℃;
c、将所得La(NO3)2/Al(NO3)3/PVP前驱体纤维在80℃烘干12h后,在箱式电阻炉中,以5℃/min的升温速率升温到700℃进行烧结2h,再以1℃/min的降温速率冷却,得到LaAlO3纳米纤维。
图6是本对比例所制得的LaCoO3纳米纤维的充放电图,将其与实施例1中的LaAlO3纳米纤维进行比较,可以看出,实施例1所制得的LaAlO3纳米纤维的比容量更大。
对比例2
a、0.2916g硝酸镧和0.2526g硝酸铝依次溶解在10g DMF中,再向其中加入2g PVP,从而得到静电纺丝所需纺丝液;
b、通过静电纺丝法制备La(NO3)2/Al(NO3)3/PVP前驱体纤维,电压为18kV,溶液注射速度为0.5ml/h,收丝筒转速为100r/min,接收距离为20cm,静电纺丝的温度为25℃;
c、将所得La(NO3)2/Al(NO3)3/PVP前驱体纤维在80℃烘干12h后,在箱式电阻炉中,以5℃/min的升温速率升温到750℃进行烧结2h,再以1℃/min的降温速率冷却,得到LaAlO3纳米纤维。
图7是本对比例所制得的LaAlO3纳米纤维的充放电图,经计算可以得出比容量仅剩70F/g,将其与实施例1中的LaAlO3纳米纤维进行比较,可以看出增加PVP的量会对材料的电化学性能造成不利的影响。

Claims (9)

1.一种LaAlO3纳米纤维的制备方法,其特征在于,包括以下步骤:
(a)将0.1458~0.4374份硝酸镧和0.1263~0.3789份硝酸铝溶解在5~15份N,N-二甲基甲酰胺中,再向其中加入0.825~2.475份聚乙烯吡咯烷酮,获得静电纺丝前驱体溶液;
(b)通过静电纺丝法制备La(NO3)2/Al(NO3)3/PVP前驱体纤维;
(c)将所得纤维烘干并在730~850℃烧结,降温后得到LaAlO3纳米纤维。
2.根据权利要求1所述的一种LaAlO3纳米纤维的制备方法,其特征在于:所述步骤(b)中,静电纺丝的电压为10~30kV,溶液注射速度为0.1~0.6ml/h。
3.根据权利要求1所述的一种LaAlO3纳米纤维的制备方法,其特征在于:所述步骤(b)中,静电纺丝的收丝筒转速为80~300r/min,接收距离为5~25cm。
4.根据权利要求1所述的一种LaAlO3纳米纤维的制备方法,其特征在于:所述步骤(b)中静电纺丝的温度为0~40℃。
5.根据权利要求1所述的一种LaAlO3纳米纤维的制备方法,其特征在于:所述步骤(c)中的烘干温度为50~120℃,烘干时间为2~24h。
6.根据权利要求1所述的一种LaAlO3纳米纤维的制备方法,其特征在于:所述步骤(c)中的升温速率为0.5~5℃/min,烧结温度为700~850℃,烧结时间为2~4h,降温速率为0.5~5℃/min。
7.根据权利要求1~6任一所述的一种LaAlO3纳米纤维的制备方法所制得的LaAlO3纳米纤维。
8.根据权利要求7所述的LaAlO3纳米纤维,其特征在于:直径为50~80nm。
9.根据权利要求7所述的LaAlO3纳米纤维在超级电容器电极中的应用。
CN202011352038.7A 2020-11-27 2020-11-27 一种LaAlO3纳米纤维的制备方法及其产品和应用 Pending CN112501717A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011352038.7A CN112501717A (zh) 2020-11-27 2020-11-27 一种LaAlO3纳米纤维的制备方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011352038.7A CN112501717A (zh) 2020-11-27 2020-11-27 一种LaAlO3纳米纤维的制备方法及其产品和应用

Publications (1)

Publication Number Publication Date
CN112501717A true CN112501717A (zh) 2021-03-16

Family

ID=74966470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011352038.7A Pending CN112501717A (zh) 2020-11-27 2020-11-27 一种LaAlO3纳米纤维的制备方法及其产品和应用

Country Status (1)

Country Link
CN (1) CN112501717A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490233A (zh) * 2022-09-28 2022-12-20 东南大学 一种纳米max相的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786596A (zh) * 2010-03-04 2010-07-28 长春理工大学 铕离子掺杂铝酸镧多晶纳米纤维及其制备方法
CN102605465A (zh) * 2012-02-24 2012-07-25 长春理工大学 一种制备掺铕LaAlO3红色发光空心纳米纤维的方法
CN102965764A (zh) * 2012-11-13 2013-03-13 山东大学 一种氧化铝陶瓷连续纤维的制备方法
CN107162049A (zh) * 2017-06-05 2017-09-15 清华大学 锂镧锆氧基氧化物纳米材料及其制备方法
CN110504481A (zh) * 2019-09-12 2019-11-26 深圳大学 盐掺聚合物型复合固态电解质及其制备方法、锂电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786596A (zh) * 2010-03-04 2010-07-28 长春理工大学 铕离子掺杂铝酸镧多晶纳米纤维及其制备方法
CN102605465A (zh) * 2012-02-24 2012-07-25 长春理工大学 一种制备掺铕LaAlO3红色发光空心纳米纤维的方法
CN102965764A (zh) * 2012-11-13 2013-03-13 山东大学 一种氧化铝陶瓷连续纤维的制备方法
CN107162049A (zh) * 2017-06-05 2017-09-15 清华大学 锂镧锆氧基氧化物纳米材料及其制备方法
CN110504481A (zh) * 2019-09-12 2019-11-26 深圳大学 盐掺聚合物型复合固态电解质及其制备方法、锂电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
秦菲 等: "静电纺丝技术制备LaAlO3纳米纤维与表征", 《硅酸盐通报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490233A (zh) * 2022-09-28 2022-12-20 东南大学 一种纳米max相的制备方法
CN115490233B (zh) * 2022-09-28 2024-04-09 东南大学 一种纳米max相的制备方法

Similar Documents

Publication Publication Date Title
Zhuang et al. Solution blowing of continuous carbon nanofiber yarn and its electrochemical performance for supercapacitors
Inagaki et al. Carbon nanofibers prepared via electrospinning
Dong et al. Surface-modified electrospun polyacrylonitrile nano-membrane for a lithium-ion battery separator based on phase separation mechanism
Li et al. Electrospun porous nanofibers for electrochemical energy storage
KR100675923B1 (ko) 금속산화물 복합 나노 활성탄소섬유와 이를 이용한전기이중층 슈퍼캐퍼시터용 전극 및 그 제조 방법
CN110136998B (zh) 一种金属有机骨架碳纤维复合薄膜的制备方法及其应用
Chang et al. Fabrication of ultra-thin carbon nanofibers by centrifuged-electrospinning for application in high-rate supercapacitors
Jia et al. Solution blown aligned carbon nanofiber yarn as supercapacitor electrode
CN108103616B (zh) 一种氮掺杂的木质素基碳纤维复合材料的制备方法
Zhao et al. Solution blown silicon carbide porous nanofiber membrane as electrode materials for supercapacitors
Zhao et al. Studies of electrospinning process of zirconia nanofibers
CN111575833B (zh) 一种二氧化钛纳米纤维负极材料的制备方法
CN113174658A (zh) 一种高规整度掺杂石墨烯碳纳米纤维的制备方法及其应用
CN102605468A (zh) 一种制备硫化镍纳米纤维的方法
Chen et al. Electrospinning technology for applications in supercapacitors
CN103088465A (zh) 一种空心石墨碳纳米小球原位修饰无定形碳纳米纤维或碳纳米管及其制备方法
CN113224292A (zh) 一种高性能锂离子电池聚丙烯腈碳纤维负极材料及其制备方法
CN102817107B (zh) 一种负载银纳米球的LiFePO4纳米纤维的制备方法
CN112501717A (zh) 一种LaAlO3纳米纤维的制备方法及其产品和应用
CN108611702A (zh) CoNi2S4/TiC/C复合多孔纳米纤维的制备方法及其用途
CN107994216B (zh) 一种超高倍率、长寿命柔性纳米纤维阵列电极的制备方法
Li et al. Electrospun cerium nitrate/polymer composite fibres: synthesis, characterization and fibre-division model
Thejas Prasannakumar et al. Progress in Conducting Polymer‐Based Electrospun fibers for Supercapacitor Applications: A Review
CN111962183B (zh) 一种中空碳球纤维的制备方法
Dubal et al. Electrospun polyacrylonitrile carbon nanofiber for supercapacitor application: a review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210316

RJ01 Rejection of invention patent application after publication