CN115466879A - 一种无钴含钇长寿命贮氢合金粉及其制备方法 - Google Patents

一种无钴含钇长寿命贮氢合金粉及其制备方法 Download PDF

Info

Publication number
CN115466879A
CN115466879A CN202210959080.8A CN202210959080A CN115466879A CN 115466879 A CN115466879 A CN 115466879A CN 202210959080 A CN202210959080 A CN 202210959080A CN 115466879 A CN115466879 A CN 115466879A
Authority
CN
China
Prior art keywords
equal
alloy powder
hydrogen storage
less
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210959080.8A
Other languages
English (en)
Other versions
CN115466879B (zh
Inventor
王新峰
张均飞
李虎平
蔺玉芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gansu Rare Earth New Material LLC
Original Assignee
Gansu Rare Earth New Material LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gansu Rare Earth New Material LLC filed Critical Gansu Rare Earth New Material LLC
Priority to CN202210959080.8A priority Critical patent/CN115466879B/zh
Publication of CN115466879A publication Critical patent/CN115466879A/zh
Application granted granted Critical
Publication of CN115466879B publication Critical patent/CN115466879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • H01M4/385Hydrogen absorbing alloys of the type LaNi5
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/04Hydrogen absorbing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种无钴含钇长寿命贮氢合金粉及其制备方法,属于贮氢电池电极材料领域,其化学通式为MNi5‑x‑y‑zMnxA1yQz,其中,M为镧铈稀土元素,Q为Y、Zr单体元素或其混合元素,0.66≤x≤0.71,0.25≤y≤0.30,0.04≤z≤0.08。本发明由于优化了合金成份,有效保证了合金粉的循环使用寿命,具有较高的电化学容量(达到320mAh/g以上)和循环寿命(1.5C测试300次循环后容量保持率为80%以上,超过了IEC规定的标准)。

Description

一种无钴含钇长寿命贮氢合金粉及其制备方法
技术领域
本发明属于贮氢电池电极材料领域,具体涉及一种无钴含钇长寿命贮氢合金粉及其制备方法。
背景技术
在典型的AB5型贮氢合金中,Co含量约占3%~10%(质量),而其成本约占合金原材料总成本的20%~50%,而且国际市场上Co的价格一路攀升,这样就对AB5型贮氢合金的性能、价格比提出了更高的指标。同时,由于锂离子电池迅猛发展,Ni-MH电池受到巨大的冲击和挑战。因此,低估和无钴贮氢合金成为科研工作者关注的课题。而Co对AB5型贮氢合金的循环稳定性具有关键性的作用,如何提高无钴贮氢合金的电化学稳定性,成为AB5型贮氢合金研究的焦点。
人们最关心的是合金的性能价格比,即如何用最低的成本生产出性能最优异的合金。因此了解哪些元素对合金性能有什么影响,如何降低合金成本,就显得十分重要了。试验证明,不同元素替代,主要对贮氢合金的容量,氢化物生成焓,合金的PCT特性,氢在合金中的吸收与扩散过程中的相变和体积膨胀等方面产生影响。
目前开发无钴AB5型贮氢合金是以成熟配方为基础,在一定的理论指导下,结合大量实验数据进行摸索,根据研究者们的研究结果,无钴AB5型贮氢合金发展方向可概括为以下两个方面:(1)非化学计量比,(2)复合无钴贮氢合金。总的来说学术界正广泛地探索着无钴贮氢合金的成分,优化其性能。可以说无钴贮氢合金的放电容量、活化性能、高倍率放电能力问题都得到了解决,但是循环寿命离真正实用阶段还有一定的距离。目前,市场上销售的无钴贮氢合金的300周循环寿命基本在60%-70%之间,循环稳定性较差,而无钴含钇贮氢合金的300周循环寿命相对好些,基本在65%-75%之间,而且钇含量均在2%以上,价格也相对较高,不具备竞争的优势。
发明内容
本发明的目的在于提供一种无钴含钇长寿命贮氢合金粉,以解决现有无钴贮氢合金循环寿命第、价格高昂等技术问题。
为实现上述目的,本发明采用的技术方案如下:
一种无钴含钇长寿命贮氢合金粉,其化学通式为MNi5-x-y-zMnxA1yQz,其中,M为镧铈稀土元素,Q为Y、Zr单体元素或其混合元素,0.66≤x≤0.71,0.25≤y≤0.30,0.04≤z≤0.08。
作为优选地,各元素的质量含量分别为:镍:58~61%、锰:7~9%、铝:1~1.5%、锆:0.1~0.5%、镧:25.0~27.0%、铈:5~7.5%、钇:0.6~1.0%。
上述无钴含钇长寿命贮氢合金粉的制备方法,包括如下步骤:
步骤1,按照配比,准确称量各元素组分;将所称量原料按装炉原则全部装入速凝炉中进行真空熔炼、浇注,冷却后得到所要求的合金薄片;
步骤2,将步骤1的合金薄片装入退火炉进行退火,通过合适的退火温度和保温时间,将该种贮氢合金均质化;
步骤3,将步骤2退火后所制的合金,通过研磨设备,制成200目以下的合金粉。
更进一步地,组分La、Ce、Ni、Mn、Al、Y、Zr的纯度均大于99%。
更进一步地,步骤2中,退火温度1000~1040℃,保温时间4~10小时。
与现有技术相比,本发明具有以下有益效果:
1、本发明由于优化了合金成份,有效保证了合金粉的循环使用寿命,具有较高的电化学容量(达到320mAh/g以上)和循环寿命(1.5C测试300次循环后容量保持率为80%以上,超过了IEC规定的标准);
2、本发明制备的合金,由于Y、Zr的加入,使合金在晶界产生第二相,抑制合金晶体吸放氢过程中的晶格膨胀,并能提高合金的抗氧化性能,防止粉化和氧化,在抗氧化、耐腐蚀性能上有不俗的表现;此外,本发明制备的合金粉具有合适的氢平衡分解压力;
3、本发明合金粉的原材料价格合适,制备过程简单,成本较低,具有强大的市场竞争优势。
附图说明
图1为该合金粉XRD晶体结构;
图2为该合金粉PCT测试图谱;
图3为该类型合金粉电化学容量测试图;
图4为该类型合金粉循环使用寿命测试图。
具体实施方式
下面结合附图以及各实施例对本发明作进一步说明,本发明的方式包括但不仅限于以下实施例。
本发明通过理论值推算,引入Y元素替代Co,从而达到改善循环寿命的效果,调整其他元素添加量,得到以下元素配比:镍:58~61%、锰:7~9%、铝:1~2%、锆:0.1~0.5%、镧:25.0~27.0%、铈:5~7.5%、钇:0.6~1.0%。
其制备过程有以下步骤:
步骤1,按照配比,准确称量各元素组分;将所称量原料按装炉原则全部装入速凝炉中进行真空熔炼、浇注,冷却后得到所要求的合金薄片;
原料要求:熔炼合金所使用的金属La、Ce、Ni、Mn、Al、Y、Zr的纯度大于99%,合金样品按设计成分配料,并考虑一定的烧损率;
熔炼过程:真空感应铸片炉熔炼,每炉装炉量控制在额定装炉量以内,根究配方设计,浇铸温度1380~1450℃之间。
步骤2,将步骤1的合金薄片装入退火炉进行退火,通过合适的退火温度和保温时间,将该种贮氢合金均质化,退火温度1000~1040℃,保温时间4~10小时;
步骤3,将步骤2退火后所制的合金,通过研磨设备(利用冲击磨、气流磨进行制粉,筛分机对冲击磨和气流磨的筛中物进行筛分、得到的筛下物进入混料机进行混料,混料按照拍击法(-200目):-200目≥98%,54%≤-400目≤58%;拍击法(-150目):-150目≥98%,24%≤-400目≤28%的标准选择合适的筛网和拍击筛进行拍击配料,以符合条件要求),制成200目以下的合金粉。
对制备的合金进行性能检测:所得合金粉取100g,利用LAND电池测试系统、PCT测试系统等对其电化学性能进行分析检测,具体如下:
1.容量测试:合金粉:羰基镍粉=1:3(200±0.2mg:600±0.2mg);压片机压力20MPa,压片保压时间45~60s;电解液浓度6±0.05mol/L KOH溶液。容量检测充放电制度:充放电电流200mA/g,充电时间2h,充电后搁置时间5min,放电截止电压1V,放电后搁置时间5min,充放电循环次数10~20次;
2.循环寿命测试:合金粉:羰基镍粉=1:3(200±0.2mg:600±0.2mg);压片机压力20MPa,压片保压时间45~60s;电解液浓度6±0.05mol/L KOH溶液。充放电电流50mA/g,充电时间8h,充电后搁置时间5min,放电截止电压1V,放电后搁置时间5min,充放电循环次数5次。然后充放电电流480mA/g,充电时间50min,充电后搁置时间5min,放电截止电压1V,放电后搁置时间5min,充放电循环次数300~500次。
实施例1
本实施例各组分元素质量百分比为:镍58%、锰7.3%、铝1.0%、锆0.2%、镧25%、铈7.5%、钇1.0%,按照上述步骤制备合金粉。制得的的合金粉XRD晶体结构、PCT测试图谱分别如图1、图2所示,并进行容量、循环寿命测试,容量测试图如图3,循环寿命测试图如图4。
实施例2
本实施例各组分元素质量百分比为:镍58.5%、锰7%、铝1.0%、锆0.2%、镧26%、铈6.5%、钇0.8%,按照上述步骤制备合金粉,并进行容量、循环寿命测试。
实施例3
本实施例各组分元素质量百分比为:镍59%、锰7%、铝1.0%、锆0.4%、镧27%、铈5.0%、钇0.6%,按照上述步骤制备合金粉,并进行容量、循环寿命测试。
对比例1
本对比例各组分元素质量百分比为:镍61.5%、锰4%、铝1.0%、镧20%、铈10.5%、钇3.0%,按照上述步骤制备合金粉,并进行容量、循环寿命测试。
对比例2
本对比例各组分元素质量百分比为:镍60%、锰4%、镧22%、铈10.5%、钇3.5%,按照上述步骤制备合金粉,并进行容量、循环寿命测试。
对比例3
本对比例各组分元素质量百分比为:镍62%、铝3.0%、镧21%、铈11%、钇3.0%,按照上述步骤制备合金粉,并进行容量、循环寿命测试。
实施例1~3与对比例1~3容量、循环寿命测试数据如表1:
表1各组合金粉的容量、循环寿命测试数据
Figure BDA0003792171510000041
Figure BDA0003792171510000051
从表1可以看出,采用本发明所制成的贮氢合金材料,在0.7C放电的前提下,最大放电比容量最高达到了324.1mAh/g;1.5C循环300周的寿命更是最高达到了85%,而用对比例1-3制备的贮氢合金1.5C循环300周寿命均在75%以下。因此,本发明能大幅度提高无钴贮氢合金的循环寿命。本发明制成的贮氢合金材料在1000~1040℃,经过一段时间退火后,其电化学容量和循环寿命均达到了设计指标要求。
上述实施例仅为本发明的优选实施方式之一,不应当用于限制本发明的保护范围,但凡在本发明的主体设计思想和精神上作出的毫无实质意义的改动或润色,其所解决的技术问题仍然与本发明一致的,均应当包含在本发明的保护范围之内。

Claims (5)

1.一种无钴含钇长寿命贮氢合金粉,其特征在于,其化学通式为MNi5-x-y-zMnxA1yQz,其中,M为镧铈稀土元素,Q为Y、Zr单体元素或其混合元素,0.66≤x≤0.71,0.25≤y≤0.30,0.04≤z≤0.08。
2.如权利要求1所述无钴含钇长寿命贮氢合金粉,其特征在于,各元素的质量含量分别为:镍:58~61%、锰:7~9%、铝:1~1.5%、锆:0.1~0.5%、镧:25.0~27.0%、铈:5~7.5%、钇:0.6~1.0%。
3.一种如权利要求1或2所述的无钴含钇长寿命贮氢合金粉的制备方法,其特征在于,包括如下步骤:
步骤1,按照配比,准确称量各元素组分;将所称量原料按装炉原则全部装入速凝炉中进行真空熔炼、浇注,冷却后得到所要求的合金薄片;
步骤2,将步骤1的合金薄片装入退火炉进行退火,通过合适的退火温度和保温时间,将该种贮氢合金均质化;
步骤3,将步骤2退火后所制的合金,通过研磨设备,制成200目以下的合金粉。
4.如权利要求3所述的制备方法,其特征在于,组分La、Ce、Ni、Mn、Al、Y、Zr的纯度均大于99%。
5.如权利要求3所述的制备方法,其特征在于,步骤2中,退火温度1000~1040℃,保温时间4~10小时。
CN202210959080.8A 2022-08-11 2022-08-11 一种无钴含钇长寿命贮氢合金粉及其制备方法 Active CN115466879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210959080.8A CN115466879B (zh) 2022-08-11 2022-08-11 一种无钴含钇长寿命贮氢合金粉及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210959080.8A CN115466879B (zh) 2022-08-11 2022-08-11 一种无钴含钇长寿命贮氢合金粉及其制备方法

Publications (2)

Publication Number Publication Date
CN115466879A true CN115466879A (zh) 2022-12-13
CN115466879B CN115466879B (zh) 2023-12-26

Family

ID=84368140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210959080.8A Active CN115466879B (zh) 2022-08-11 2022-08-11 一种无钴含钇长寿命贮氢合金粉及其制备方法

Country Status (1)

Country Link
CN (1) CN115466879B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295784A (zh) * 2008-06-12 2008-10-29 广州有色金属研究院 一种无钴ab5型贮氢合金
CN102181764A (zh) * 2011-01-28 2011-09-14 厦门钨业股份有限公司 一种无钴低镍贮氢合金
CN102286678A (zh) * 2011-08-27 2011-12-21 宁波申江科技股份有限公司 非化学计量比LaNi5基无钴储氢合金及其制备方法
CN104513916A (zh) * 2014-08-28 2015-04-15 包头稀土研究院 添加锆、钛元素的a2b7型稀土-钇-镍系储氢合金
CN104518204A (zh) * 2014-08-28 2015-04-15 包头稀土研究院 一种稀土-钇-镍系储氢合金及含该储氢合金的二次电池
CN107799735A (zh) * 2017-09-20 2018-03-13 四会市达博文实业有限公司 一种镍氢电池用ab5型储氢合金及其制备方法
CN108588495A (zh) * 2018-04-26 2018-09-28 吉林大学 一种兼具高容量和长寿命的ab4.5型储氢合金及其制备方法
CN109585790A (zh) * 2018-11-30 2019-04-05 华南理工大学 一种ab5基贮氢合金、镍氢电池用电极、二次电池及其贮氢合金的制备方法
CN110317974A (zh) * 2014-08-28 2019-10-11 包头稀土研究院 一种钇-镍稀土系储氢合金
CN114107740A (zh) * 2021-11-16 2022-03-01 厦门钨业股份有限公司 一种低成本高性能的稀土系贮氢合金及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295784A (zh) * 2008-06-12 2008-10-29 广州有色金属研究院 一种无钴ab5型贮氢合金
CN102181764A (zh) * 2011-01-28 2011-09-14 厦门钨业股份有限公司 一种无钴低镍贮氢合金
CN102286678A (zh) * 2011-08-27 2011-12-21 宁波申江科技股份有限公司 非化学计量比LaNi5基无钴储氢合金及其制备方法
CN104513916A (zh) * 2014-08-28 2015-04-15 包头稀土研究院 添加锆、钛元素的a2b7型稀土-钇-镍系储氢合金
CN104518204A (zh) * 2014-08-28 2015-04-15 包头稀土研究院 一种稀土-钇-镍系储氢合金及含该储氢合金的二次电池
CN110317974A (zh) * 2014-08-28 2019-10-11 包头稀土研究院 一种钇-镍稀土系储氢合金
CN107799735A (zh) * 2017-09-20 2018-03-13 四会市达博文实业有限公司 一种镍氢电池用ab5型储氢合金及其制备方法
CN108588495A (zh) * 2018-04-26 2018-09-28 吉林大学 一种兼具高容量和长寿命的ab4.5型储氢合金及其制备方法
CN109585790A (zh) * 2018-11-30 2019-04-05 华南理工大学 一种ab5基贮氢合金、镍氢电池用电极、二次电池及其贮氢合金的制备方法
CN114107740A (zh) * 2021-11-16 2022-03-01 厦门钨业股份有限公司 一种低成本高性能的稀土系贮氢合金及其制备方法

Also Published As

Publication number Publication date
CN115466879B (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
CN104532095A (zh) 一种钇-镍稀土系储氢合金
CN109585790A (zh) 一种ab5基贮氢合金、镍氢电池用电极、二次电池及其贮氢合金的制备方法
CN101626076A (zh) 一种高容量长寿命低成本稀土镁基储氢合金
CN105274395B (zh) 一种La‑Mg‑Ni型储氢材料
CN102104146B (zh) 一种镍氢电池用无钴ab3.5型储氢合金负极材料及其制备方法
CN108893656B (zh) La-Mg-Ni系A2B7型储氢合金及其制备方法
CN104513925A (zh) 一种钇-镍稀土系储氢合金及含该储氢合金的二次电池
CN108149073B (zh) 低温镍氢电池用La-Mg-Ni系储氢合金及其制备方法
CN113881872B (zh) 一种低钴高倍率ab5型储氢合金及其制备方法
CN106207143A (zh) 一种单相超堆垛结构Pr–Mg–Ni基贮氢合金及其制备方法
Lin et al. High temperature performance of La0. 6Ce0. 4Ni3. 45Co0. 75Mn0. 7Al0. 1 hydrogen storage alloy for nickel/metal hydride batteries
CN102634692B (zh) 用于镍氢电池的储氢合金材料及其制备方法
CN109868390B (zh) 一种稀土-镍基ab2型储氢合金材料及制备方法
CN101740768B (zh) 贮氢合金及其制备方法和采用该贮氢合金的负极及电池
US11545661B2 (en) High-capacity and long-life negative electrode hydrogen storage material of La—Mg—Ni type for secondary rechargeable nickel-metal hydride battery and method for preparing the same
CN107075617A (zh) 一种稀土系储氢合金及其用途
CN114107740B (zh) 一种低成本高性能的稀土系贮氢合金及其制备方法
CN115466879B (zh) 一种无钴含钇长寿命贮氢合金粉及其制备方法
WEI et al. Phase structure and electrochemical properties of La1. 7+ xMg1. 3− x (NiCoMn) 9.3 (x= 0–0.4) hydrogen storage alloys
CN114686728A (zh) 一种低钴高容量ab5型储氢合金及其制备方法
CN114335510A (zh) 一种耐过充ab5型宽温区镍氢电池负极材料及其制备方法
LIU et al. Phase structure and electrochemical properties of La0. 7Ce0. 3Ni3. 75Mn0. 35Al0. 15Cu0. 75-xFex hydrogen storage alloys
CN103855371A (zh) 一种镁基贮氢电极合金氢化物及其制备方法和应用
CN114725363B (zh) 一种镍氢电池负极用v基储氢合金及其制备方法和应用
CN103236529B (zh) 一种无钴贮氢合金电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant