CN115433864B - 一种摩擦材料用的亚共晶高熵合金及其制备方法 - Google Patents

一种摩擦材料用的亚共晶高熵合金及其制备方法 Download PDF

Info

Publication number
CN115433864B
CN115433864B CN202211090060.8A CN202211090060A CN115433864B CN 115433864 B CN115433864 B CN 115433864B CN 202211090060 A CN202211090060 A CN 202211090060A CN 115433864 B CN115433864 B CN 115433864B
Authority
CN
China
Prior art keywords
entropy alloy
friction material
smelting
hypoeutectic
atomic percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211090060.8A
Other languages
English (en)
Other versions
CN115433864A (zh
Inventor
陈瑞润
任浩
高雪峰
方虹泽
王亮
丁宏升
苏彦庆
郭景杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202211090060.8A priority Critical patent/CN115433864B/zh
Publication of CN115433864A publication Critical patent/CN115433864A/zh
Application granted granted Critical
Publication of CN115433864B publication Critical patent/CN115433864B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting

Abstract

一种摩擦材料用的亚共晶高熵合金及其制备方法,本发明涉及一种摩擦材料用的亚共晶高熵合金及其制备方法。本发明的目的是为了解决现有高熵合金硬度低、耐磨性差的问题,本发明一种摩擦材料用的亚共晶高熵合金由Al、Co、Cr、Fe、Ni和Hf元素组成,表达式为(AlCoCrFeNi)100‑xHfx,2≤x≤6,其中Al、Co、Cr、Fe、Ni为等原子比。采用电弧熔炼方法进行制备,本发明利用Hf的大原子半径、与其它组成元素负混合焓以及电负性差大等特点,诱导硬质Laves相在晶界处析出,发生第二相强化和细晶强化,使亚共晶高熵合金具有硬度高、耐磨性佳等优点。本发明应用于高熵合金领域。

Description

一种摩擦材料用的亚共晶高熵合金及其制备方法
技术领域
本发明涉及一种摩擦材料用的亚共晶高熵合金及其制备方法。
背景技术
经典冶金理论证明,含有多种组成元素的传统合金存在大量的金属间化合物,导致其结构复杂、机械性能有限。高熵合金因其崭新的设计理念、独特的合金结构和优异的综合性能而受到广泛关注。与传统合金相比,高熵合金通常由五种或更多主元素组成,每个元素的原子比在5%和35%之间。高熵合金虽然由多个主元组成,但其相组成仍以单相固溶体为主,而不是大量的金属间化合物。因此,高熵合金在实际工程应用中显示出巨大的潜力,特别是耐磨性能作为主要关注点的摩擦学领域。
根据典型的磨损理论,因为在固定载荷下接触面积较小,硬度较高的合金往往表现出更好的抗磨性能。因此,硬度较高的BCC相组成的AlCoCrFeNi高熵合金吸引了诸多研究者的目光。然而,AlCoCrFeNi高熵合金目前存在晶粒尺寸大、成分偏析严重等问题限制了其在摩擦学领域的应用。
发明内容
本发明的目的是为了解决现有高熵合金硬度低、耐磨性差的问题,提出一种摩擦材料用的亚共晶高熵合金及其制备方法。
本发明一种摩擦材料用的亚共晶高熵合金由Al、Co、Cr、Fe、Ni和Hf元素组成,表达式为(AlCoCrFeNi)100-xHfx,2≤x≤6,其中Al、Co、Cr、Fe、Ni为等原子比。
本发明一种摩擦材料用的亚共晶高熵合金的制备方法按以下步骤进行:一、按原子百分比Al为18.8%~19.6%、Co为18.8%~19.6%、Cr为18.8%~19.6%、Fe为18.8%~19.6%,Ni为18.8%~19.6%、Hf为2%~6%的比例称取Al、Co、Cr、Fe、Ni和Hf,得到原材料;其中Al、Co、Cr、Fe、Ni为等原子比;
二、对原材料和钛块进行预处理,然后将原材料按从下至上为Al、Hf、Ni、Co、Fe、Cr的顺序加入到熔炼炉的坩埚中,然后在熔炼炉的另一个坩埚中加入钛块,再将熔炼炉抽真空后充入氩气进行保护,先熔炼钛块,然后再熔炼原材料,冷却后,得到纽扣锭样品;
三、将纽扣锭样品反复熔炼为6-8次,冷却得到摩擦材料用的亚共晶高熵合金;其中每次熔炼时将纽扣锭样品翻面。
本发明所述亚共晶高熵合金的组织为初生BCC相和共晶区组成的亚共晶结构,其中,共晶区由在晶界处交替生长的BCC相和Laves相组成。Laves相沿晶界的析出造成第二相强化以及细晶强化,提高了AlCoCrFeNi高熵合金硬度,使亚共晶高熵合金具有良好的耐磨性。同时,本发明公开一种亚共晶高熵合金的制备方法,采用的常规电弧熔炼工艺流程简单、易操作,不需要后续复杂的加工工艺,可有效降低材料的生产成本,在工程结构领域表现出巨大的应用潜力。
本发明具备以下有益效果:
(1)本发明实现了摩擦材料用的亚共晶高熵合金的设计;通过调节Al、Co、Cr、Fe、Ni、Hf元素的成分含量,得到具有共晶结构的亚共晶高熵合金;
(2)Hf元素与Al、Co、Cr、Fe、Ni元素的混合焓分别为:-39kJ/mol、-35kJ/mol、-9kJ/mol、-21kJ/mol和-42kJ/mol。Hf、Al、Co、Cr、Fe、Ni元素的电负性分别为:1.3、1.61、1.88、1.66、1.83和1.91。本发明利用Hf的大原子半径、与其它组成元素负混合焓以及电负性差大等特点,诱导硬质Laves相在晶界处析出,发生第二相强化和细晶强化,使亚共晶高熵合金具有硬度高、屈服强度高(1273~2023MPa)、耐磨性佳等优点。
(3)本发明设计的亚共晶高熵合金,采用的常规电弧熔炼方法简单、易操作,且不需要热处理和后续复杂的加工工艺。
基于上述理由,本发明可在金属材料及其制备等领域广泛推广。
附图说明
图1为实施例一、二和三以及对比实施例制备的高熵合金的XRD图;
图2为实施例一、二和三以及对比实施例制备的高熵合金的SEM图;
图3为实施例一、二和三以及对比实施例制备的高熵合金的金相图;
图4为实施例一、二和三以及对比实施例制备的高熵合金的合金维氏硬度图;
图5为实施例一、二和三以及对比实施例制备的高熵合金的合金磨损率数据图。
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:本实施方式一种摩擦材料用的亚共晶高熵合金由Al、Co、Cr、Fe、Ni和Hf元素组成,表达式为(AlCoCrFeNi)100-xHfx,2≤x≤6,其中Al、Co、Cr、Fe、Ni为等原子比。
具体实施方式二:本实施方式与具体实施方式一不同的是:亚共晶高熵合金按原子百分比由19.6%Al、19.6%Co、19.6%Cr、19.6%Fe、19.6%Ni和2%Hf组成,表示为Al19. 6Co19.6Cr19.6Fe19.6Ni19.6Hf2。其他与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:亚共晶高熵合金按原子百分比由19.2%Al、19.2%Co、19.2%Cr、19.2%Fe、19.2%Ni和4%Hf组成,表示为Al19.2Co19.2Cr19.2Fe19.2Ni19.2Hf4。其他与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:亚共晶高熵合金按原子百分比由18.8%Al、18.8%Co、18.8%Cr、18.8%Fe、18.8%Ni和6%Hf组成,表示为Al18.8Co18.8Cr18.8Fe18.8Ni18.8Hf6。其他与具体实施方式一至三之一相同。
具体实施方式五:本实施方式一种摩擦材料用的亚共晶高熵合金的制备方法按以下步骤进行:一、按原子百分比Al为18.8%~19.6%、Co为18.8%~19.6%、Cr为18.8%~19.6%、Fe为18.8%~19.6%,Ni为18.8%~19.6%、Hf为2%~6%的比例称取Al、Co、Cr、Fe、Ni和Hf,得到原材料;其中Al、Co、Cr、Fe、Ni为等原子比;
二、对原材料和钛块进行预处理,然后将原材料按从下至上为Al、Hf、Ni、Co、Fe、Cr的顺序加入到熔炼炉的坩埚中,然后在熔炼炉的另一个坩埚中加入钛块,再将熔炼炉抽真空后充入氩气进行保护,先熔炼钛块,然后再熔炼原材料,冷却后,得到纽扣锭样品;
三、将纽扣锭样品反复熔炼为6-8次,冷却得到摩擦材料用的亚共晶高熵合金;其中每次熔炼时将纽扣锭样品翻面。
熔炼过程中先熔化金属钛块,吸附电弧炉腔室内残留的氧气,进一步降低熔炼过程的氧化行为。
具体实施方式六:本实施方式与具体实施方式五不同的是:步骤二中所述的预处理是指打磨清洗,具体为:先进行砂轮打磨、砂纸抛光,然后在乙醇溶液中超声清洗,再烘干备用。其他与具体实施方式五相同。
具体实施方式七:本实施方式与具体实施方式五或六不同的是:步骤二抽真空至5×10-3Pa。其他与具体实施方式五或六相同。
具体实施方式八:本实施方式与具体实施方式五至七之一不同的是:步骤二充入保护气体高纯氩气至-0.05MPa。其他与具体实施方式五至七之一相同。
具体实施方式九:本实施方式与具体实施方式五至八之一不同的是:步骤二熔炼钛块时电流强度为400-500A,熔炼时间为2-4min。其他与具体实施方式五至八之一相同。
具体实施方式十:本实施方式与具体实施方式五至九之一不同的是:步骤二原材料的熔炼时间为3-6min,电流强度为450-550A。其他与具体实施方式五至九之一相同。
采用以下实施例验证本发明的有益效果:
实施例一、一种摩擦材料用的亚共晶高熵合金按原子百分比由19.6%Al、19.6%Co、19.6%Cr、19.6%Fe、19.6%Ni和2%Hf组成,表示为Al19.6Co19.6Cr19.6Fe19.6Ni19.6Hf2
其制备方法如下:
(1)按上述原子比称取Hf块、Al块、Co片、Cr块、Fe粒和Ni粒,得到原材料;原料纯度均大于99.95%。
(2)将所选原材料和金属钛块进行打磨清洗预处理,去除金属原材料表面氧化物和杂质,具体为先进行砂轮打磨、砂纸抛光,然后在乙醇溶液中超声清洗,再烘干备用;
(3)将处理后的原材料按Al、Hf、Ni、Co、Fe、Cr顺序依次放入非自耗真空电弧炉的坩埚,同时将金属钛块放入非自耗真空电弧炉的另一个坩埚中,抽真空至5×10-3Pa,充入保护气体高纯氩气至-0.05MPa,然后进行引弧熔炼,先熔化金属钛块,熔炼电流为450A,时间为3min,熔炼过程中吸附电弧炉腔室内残留的氧气,进一步降低熔炼过程的氧化行为,然后熔炼合金锭,熔炼电流为550A,时间为5min,冷却后得到纽扣锭样品;
(4)将初熔合金锭利用炉子自带的机械手翻转,翻面后继续再次熔炼,重复熔炼7次。保证合金成分的均匀性,多次熔炼结束后,冷却得到摩擦材料用的亚共晶高熵合金Al19.6Co19.6Cr19.6Fe19.6Ni19.6Hf2
实施例二、一种亚共晶高熵合金按原子百分比由19.2%Al、19.2%Co、19.2%Cr、19.2%Fe、19.2%Ni和4%Hf组成,表示为Al19.2Co19.2Cr19.2Fe19.2Ni19.2Hf4
其制备方法如下:
(1)按上述原子比称取Hf块、Al块、Co片、Cr块、Fe粒和Ni粒,得到原材料;原料纯度均大于99.95%。
(2)将所选原材料和金属钛块进行打磨清洗预处理,去除金属原材料表面氧化物和杂质,具体为先进行砂轮打磨、砂纸抛光,然后在乙醇溶液中超声清洗,再烘干备用;
(3)将处理后的原材料按Al、Hf、Ni、Co、Fe、Cr顺序依次放入非自耗真空电弧炉的坩埚,同时将金属钛块放入非自耗真空电弧炉的另一个坩埚中,抽真空至5×10-3Pa,充入保护气体高纯氩气至-0.05MPa,然后进行引弧熔炼,先熔化金属钛块,熔炼电流为450A,时间为3min,熔炼过程中吸附电弧炉腔室内残留的氧气,进一步降低熔炼过程的氧化行为,然后熔炼合金锭,熔炼电流为550A,时间为5min,冷却后得到纽扣锭样品;
(4)将初熔合金锭利用炉子自带的机械手翻转,翻面后继续再次熔炼,重复熔炼7次。保证合金成分的均匀性,多次熔炼结束后,冷却得到摩擦材料用的亚共晶高熵合金Al19.2Co19.2Cr19.2Fe19.2Ni19.2Hf4
实施例三、一种亚共晶高熵合金按原子百分比由18.8%Al、18.8%Co、18.8%Cr、18.8%Fe、18.8%Ni和6%Hf组成,表示为Al18.8Co18.8Cr18.8Fe18.8Ni18.8Hf6
其制备方法如下:
(1)按上述原子比称取Hf块、Al块、Co片、Cr块、Fe粒和Ni粒,得到原材料;原料纯度均大于99.95%。
(2)将所选原材料和金属钛块进行打磨清洗预处理,去除金属原材料表面氧化物和杂质,具体为先进行砂轮打磨、砂纸抛光,然后在乙醇溶液中超声清洗,再烘干备用;
(3)将处理后的原材料按Al、Hf、Ni、Co、Fe、Cr顺序依次放入非自耗真空电弧炉的坩埚,同时将金属钛块放入非自耗真空电弧炉的另一个坩埚中,抽真空至5×10-3Pa,充入保护气体高纯氩气至-0.05MPa,然后进行引弧熔炼,先熔化金属钛块,熔炼电流为450A,时间为3min,熔炼过程中吸附电弧炉腔室内残留的氧气,进一步降低熔炼过程的氧化行为,然后熔炼合金锭,熔炼电流为550A,时间为5min,冷却后得到纽扣锭样品;
(4)将初熔合金锭利用炉子自带的机械手翻转,翻面后继续再次熔炼,重复熔炼7次。保证合金成分的均匀性,多次熔炼结束后,冷却得到摩擦材料用的亚共晶高熵合金Al18.8Co18.8Cr18.8Fe18.8Ni18.8Hf6
对比实施例、一种AlCoCrFeNi高熵合金,按原子百分比由20%Al、20%Co、20%Cr、20Fe和20%Ni组成,表示为Al20Co20Cr20Fe20Ni20或AlCoCrFeNi。
其制备方法如下:
(1)按上述原子比称取Al块、Co片、Cr块、Fe粒和Ni粒,得到原材料;原料纯度均大于99.95%。
(2)将所选原材料和金属钛块进行打磨清洗预处理,去除金属原材料表面氧化物和杂质,具体为先进行砂轮打磨、砂纸抛光,然后在乙醇溶液中超声清洗,再烘干备用;
(3)将处理后的原材料按Al、Ni、Co、Fe、Cr顺序依次放入非自耗真空电弧炉的坩埚,同时将金属钛块放入非自耗真空电弧炉的另一个坩埚中,抽真空至5×10-3Pa,充入保护气体高纯氩气至-0.05MPa,然后进行引弧熔炼,先熔化金属钛块,熔炼电流为450A,时间为3min,熔炼过程中吸附电弧炉腔室内残留的氧气,进一步降低熔炼过程的氧化行为,然后熔炼合金锭,熔炼电流为550A,时间为5min,冷却后得到纽扣锭样品;
(4)将初熔合金锭利用炉子自带的机械手翻转,翻面后继续再次熔炼,重复熔炼7次。保证合金成分的均匀性,多次熔炼结束后,得到AlCoCrFeNi高熵合金。
实施例1-3亚共晶高熵合金以及对比实施例的XRD衍射图谱结果如图1所示;其中●为Laves相,□为BCC(B2),○为BCC(A2)。对比实施例中含有BCC相,实施例1-3中含有BCC相和Laves相。随着Hf元素的加入,XRD衍射图谱出现的Laves相衍射峰强度增加且衍射峰数量增多。其中,Laves相结构为(Ni、Co)2Hf。
实施例1-3亚共晶高熵合金和对比实施例的高熵合金的微观组织结果如图2所示。可以看到,对比实施例组织均匀,呈现单相BCC结构。实施例1的组织为初生BCC相和共晶区域组成的亚共晶结构,其中共晶区域由在晶界处交替形核、生长的BCC相和Laves相组成。此外,对于实施例2-3来说,随着Hf元素的加入,实施例2-3中的Laves相的含量明显增加。Hf的引入减小了晶粒尺寸,这主要与Hf元素沿晶界产生Laves相的偏析有关。沿晶界析出的Laves相阻碍了初生BCC相的生长并导致晶粒细化。
实施例1-3亚共晶高熵合金和对比实施例的高熵合金金相组织结果如图3所示。随着Hf元素的加入,实施例1-3中的晶界处Laves相明显增多,且明显降低晶粒尺寸。同时晶粒内部的成分偏析明显减轻。
图4为实施例1-3亚共晶高熵合金以及对比实施例的显微硬度结果。对比实施例的硬度为512HV。随着高熵合金中Hf元素含量的升高,显微硬度从606HV(实施例1)增加到734HV(实施例3)。实施例2-3的硬度增加与Laves相在晶界析出造成的第二相强化和细晶强化有关。
基于HT-1000球盘式摩擦磨损仪对(AlCoCrFeNi)100-xHfx高熵合金进行了5N的干摩擦磨损实验,摩擦配副为Si3N4,滑动速度300rpm,滑动时间30分钟。图5为实施例1-3以及对比实施例的磨损率结果。可以知道,随着亚共晶高熵合金硬度的升高,合金磨损率大幅度下降,这与Archard定律一致,即耐磨性能与材料硬度呈正相关关系。可见实施例1-3的耐磨性被大大改善。

Claims (7)

1.一种摩擦材料用的亚共晶高熵合金,其特征在于所述亚共晶高熵合金的表达式为Al19.6Co19.6Cr19.6Fe19.6Ni19.6Hf2、Al19.2Co19.2Cr19.2Fe19.2Ni19.2Hf4或Al18.8Co18.8Cr18.8Fe18.8Ni18.8Hf6;其中Al19.6Co19.6Cr19.6Fe19.6Ni19.6Hf2按原子百分比由19.6%Al、19.6%Co、19.6%Cr、19.6%Fe、19.6%Ni和2%Hf组成;Al19.2Co19.2Cr19.2Fe19.2Ni19.2Hf4按原子百分比由19.2%Al、19.2%Co、19.2%Cr、19.2%Fe、19.2%Ni和4%Hf组成;Al18.8Co18.8Cr18.8Fe18.8Ni18.8Hf6按原子百分比由18.8%Al、18.8%Co、18.8%Cr、18.8%Fe、18.8%Ni和6%Hf组成。
2.如权利要求1所述的一种摩擦材料用的亚共晶高熵合金的制备方法,其特征在于该制备方法按以下步骤进行:一、按原子百分比Al为18.8%~19.6%、Co为18.8%~19.6%、Cr为18.8%~19.6%、Fe为18.8%~19.6%,Ni为18.8%~19.6%、Hf为2%~6%的比例称取Al、Co、Cr、Fe、Ni和Hf,得到原材料;其中Al、Co、Cr、Fe、Ni为等原子比;
二、对原材料和钛块进行预处理,然后将原材料按从下至上为Al、Hf、Ni、Co、Fe、Cr的顺序加入到熔炼炉的坩埚中,然后在熔炼炉的另一个坩埚中加入钛块,再将熔炼炉抽真空后充入氩气进行保护,先熔炼钛块,然后再熔炼原材料,冷却后,得到纽扣锭样品;
三、将纽扣锭样品反复熔炼为6-8次,冷却得到摩擦材料用的亚共晶高熵合金;其中每次熔炼时将纽扣锭样品翻面。
3.根据权利要求2所述的一种摩擦材料用的亚共晶高熵合金的制备方法,其特征在于步骤二中所述的预处理是指打磨清洗,具体为:先进行砂轮打磨、砂纸抛光,然后在乙醇溶液中超声清洗,再烘干备用。
4.根据权利要求2所述的一种摩擦材料用的亚共晶高熵合金的制备方法,其特征在于步骤二抽真空至5×10-3Pa。
5.根据权利要求2所述的一种摩擦材料用的亚共晶高熵合金的制备方法,其特征在于步骤二充入保护气体高纯氩气至-0.05MPa。
6.根据权利要求2所述的一种摩擦材料用的亚共晶高熵合金的制备方法,其特征在于步骤二熔炼钛块时电流强度为400-500A,熔炼时间为2-4min。
7.根据权利要求2所述的一种摩擦材料用的亚共晶高熵合金的制备方法,其特征在于步骤二原材料的熔炼时间为3-6min,电流强度为450-550A。
CN202211090060.8A 2022-09-07 2022-09-07 一种摩擦材料用的亚共晶高熵合金及其制备方法 Active CN115433864B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211090060.8A CN115433864B (zh) 2022-09-07 2022-09-07 一种摩擦材料用的亚共晶高熵合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211090060.8A CN115433864B (zh) 2022-09-07 2022-09-07 一种摩擦材料用的亚共晶高熵合金及其制备方法

Publications (2)

Publication Number Publication Date
CN115433864A CN115433864A (zh) 2022-12-06
CN115433864B true CN115433864B (zh) 2023-02-28

Family

ID=84246491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211090060.8A Active CN115433864B (zh) 2022-09-07 2022-09-07 一种摩擦材料用的亚共晶高熵合金及其制备方法

Country Status (1)

Country Link
CN (1) CN115433864B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116377304A (zh) * 2023-03-20 2023-07-04 湘潭大学 一种能够抑制tcp相析出的高温抗氧化高熵合金及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170124441A (ko) * 2016-05-02 2017-11-10 한국과학기술원 고강도 초내열 고엔트로피 합금기지 복합소재 및 이의 제조방법
CN109136599A (zh) * 2018-10-08 2019-01-04 兰州理工大学 高熵合金孕育亚共晶铝硅合金制备工艺
CN110499445A (zh) * 2019-09-12 2019-11-26 北京理工大学 一种共晶高熵合金及其制备方法
CN110616341A (zh) * 2019-10-24 2019-12-27 西北工业大学 一种CoCrNiNbx共晶中熵合金及其制备方法
CN111349800A (zh) * 2020-03-25 2020-06-30 石家庄铁道大学 一种高熵合金双联工艺制备方法
CN112899547A (zh) * 2021-01-19 2021-06-04 长沙理工大学 一种CoCrNiZrx共晶高熵合金及其制备方法
CN112899546A (zh) * 2021-01-19 2021-06-04 长沙理工大学 一种Ta调控CoCrNiTax共晶高熵合金及其制备方法
CN113215468A (zh) * 2021-05-06 2021-08-06 西北工业大学 一种双相高熵高温合金及其增材制造方法
CN113444960A (zh) * 2021-06-29 2021-09-28 哈尔滨工业大学 非等原子比CoCrFeNiMox高熵合金及其制备方法
CN113881884A (zh) * 2021-09-01 2022-01-04 华东理工大学 一种长寿命抗氧化高熵粘结层材料及其制备方法
CN114645174A (zh) * 2020-12-21 2022-06-21 武汉苏泊尔炊具有限公司 导磁材料及其制备方法、烹饪器具
WO2022150304A1 (en) * 2021-01-05 2022-07-14 Oerlikon Metco (Us) Inc. Complex oxide thermal barrier coatings with low thermal inertia and low thermal conductivity
CN114990563A (zh) * 2022-03-28 2022-09-02 北京科技大学 用于电解水电极的多孔高熵合金材料的制备方法和应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170124441A (ko) * 2016-05-02 2017-11-10 한국과학기술원 고강도 초내열 고엔트로피 합금기지 복합소재 및 이의 제조방법
CN109136599A (zh) * 2018-10-08 2019-01-04 兰州理工大学 高熵合金孕育亚共晶铝硅合金制备工艺
CN110499445A (zh) * 2019-09-12 2019-11-26 北京理工大学 一种共晶高熵合金及其制备方法
CN110616341A (zh) * 2019-10-24 2019-12-27 西北工业大学 一种CoCrNiNbx共晶中熵合金及其制备方法
CN111349800A (zh) * 2020-03-25 2020-06-30 石家庄铁道大学 一种高熵合金双联工艺制备方法
CN114645174A (zh) * 2020-12-21 2022-06-21 武汉苏泊尔炊具有限公司 导磁材料及其制备方法、烹饪器具
WO2022150304A1 (en) * 2021-01-05 2022-07-14 Oerlikon Metco (Us) Inc. Complex oxide thermal barrier coatings with low thermal inertia and low thermal conductivity
CN112899546A (zh) * 2021-01-19 2021-06-04 长沙理工大学 一种Ta调控CoCrNiTax共晶高熵合金及其制备方法
CN112899547A (zh) * 2021-01-19 2021-06-04 长沙理工大学 一种CoCrNiZrx共晶高熵合金及其制备方法
CN113215468A (zh) * 2021-05-06 2021-08-06 西北工业大学 一种双相高熵高温合金及其增材制造方法
CN113444960A (zh) * 2021-06-29 2021-09-28 哈尔滨工业大学 非等原子比CoCrFeNiMox高熵合金及其制备方法
CN113881884A (zh) * 2021-09-01 2022-01-04 华东理工大学 一种长寿命抗氧化高熵粘结层材料及其制备方法
CN114990563A (zh) * 2022-03-28 2022-09-02 北京科技大学 用于电解水电极的多孔高熵合金材料的制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Y/Hf-doped AlCoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance";Jie Lu等;《Corrosion Science》;20201231;第166卷;第1-14页 *
"高熵合金特性和力学性能的研究进展";商昭等;《热加工工艺》;20220131;第51卷(第2期);第11-16页 *

Also Published As

Publication number Publication date
CN115433864A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
Wang et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys
CN111876647A (zh) 一种无Co共晶中熵合金及其制备方法
CN103966500B (zh) 一种添加复合氧化物纳米颗粒的ods高温合金及其制备方法
CN109594002B (zh) 一种多主元中熵合金及其制备方法
CN111733359B (zh) 一种AlCu系高熵合金及其制备方法
CN111676410B (zh) 一种高强高韧CoFeNiTiV高熵合金及其制备方法
CN113444960B (zh) 非等原子比CoCrFeNiMox高熵合金及其制备方法
CN109023002B (zh) 一种硅固溶强化VNbMoTaSi高熵合金及其制备方法
CN115433864B (zh) 一种摩擦材料用的亚共晶高熵合金及其制备方法
CN111334698A (zh) 一种含调控调幅分解组织且生成硬质相的耐磨高熵合金及其制备方法
CN111850375B (zh) 一种纳米析出强化型高强高塑性多元合金及其制备方法
CN113151725A (zh) 一种增强难熔高熵合金耐磨性的方法
CN111593250B (zh) 一种l12型析出强化高熵合金及其制备方法
CN115821141B (zh) 一种Laves相析出修饰AlCoCrFeNi双相高熵合金及其制备方法
CN111809096B (zh) 一种CuNiTi系高熵合金及其制备方法
CN112095040B (zh) 一种多主元高熵合金及制备方法
CN113122764A (zh) 一种CuCrFeCoNixTi高熵合金薄带的制备方法
CN114293085B (zh) 一种耐酸腐蚀的Al-Nb-Ti-Zr-Si系高熵合金
CN114774802B (zh) 一种提升FeCrAl基电阻合金力学和电阻性能的方法及FeCrAl基电阻合金
CN114318105B (zh) 一种高强高塑CrHfMoNbTi高熵合金及其制备方法
Cai et al. Effects of cerium addition on martensitic transformation and microstructure of Ti49. 3Ni50. 7 alloy
CN111254316A (zh) (MoNbZrTi)高熵合金增强Ni基合金及其制备方法
CN114892063B (zh) 一种弥散强化高强高温高熵合金及其制备方法
JPS61119648A (ja) 焼結複合タ−ゲツト材
CN115896543B (zh) 一种高温耐磨的镍钛合金及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant