CN115432998A - 一种直书写用透明陶瓷浆料的制备方法 - Google Patents
一种直书写用透明陶瓷浆料的制备方法 Download PDFInfo
- Publication number
- CN115432998A CN115432998A CN202110617773.4A CN202110617773A CN115432998A CN 115432998 A CN115432998 A CN 115432998A CN 202110617773 A CN202110617773 A CN 202110617773A CN 115432998 A CN115432998 A CN 115432998A
- Authority
- CN
- China
- Prior art keywords
- ceramic
- slurry
- water
- transparent
- cellulose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28C—PREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28C3/00—Apparatus or methods for mixing clay with other substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
- C04B35/443—Magnesium aluminate spinel
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
- C04B35/505—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/636—Polysaccharides or derivatives thereof
- C04B35/6365—Cellulose or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6026—Computer aided shaping, e.g. rapid prototyping
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9653—Translucent or transparent ceramics other than alumina
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明涉及一种直书写用透明陶瓷浆料的制备方法。所述直书写用透明陶瓷浆料的制备方法包括:(1)将陶瓷粉体、分散剂和水混合,得到水基陶瓷浆料并控制水基陶瓷浆料的固含量为40~52 vol.%,所述陶瓷粉体的粒径为50 nm~2.5μm;(2)向水基陶瓷浆料中加入纤维素类增稠剂,搅拌均匀,同时控制浆料温度不高于30℃;然后在恒温恒湿环境中进行密封陈化1~3小时,最后得到所述直书写用透明陶瓷浆料。
Description
技术领域
本发明涉及一种直书写用透明陶瓷浆料及其制备方法,适用于制备透明陶瓷。
背景技术
透明陶瓷具有优异的热力学性能,稀土离子掺杂浓度范围宽,在激光增益介质、透明装甲、闪烁体和荧光体等领域有着广泛的应用。用于生产透明陶瓷的传统方法如干压和浇注,模具制备周期长,尤其是不适用于复杂形状和复合结构陶瓷的制备。
直接墨水书写(DIW),是一种通用的增材制造技术,通过计算机辅助设计(CAD)所需要的结构,之后将其转移到3D打印的切片软件中。通过三维移动平台的喷嘴将墨水逐层沉积,构建目标结构。相比其它增材制造技术,DIW最大的优越性在于可以通过使用多个喷头的装置,自由控制目标结构任意位置的组分分布。
直接墨水书写的基本要求为陶瓷浆料沉积后结构能够稳定下来而不任意流动,通常有两种途径实现上述要求。第一种是依靠陶瓷浆料自身所具有的流变特性,在挤出时能够剪切变稀并能在挤出后快速稳定下来形成一定的结构;另一种是依靠紫外光、激光加热等方式将挤出后的浆料固化使其具有一定的结构强度。因为外部辅助的方式造成浆料并不在同一时间固化,坯体内应力较大,目前普遍采用第一种途径。
通过DIW制备透明陶瓷的文献报道还比较少。Jones等人(Opt.Mater.,2018,75:19-25)采用醚类溶剂结合聚乙二醇作为粘结剂制备了有机基陶瓷浆料。但是有机溶剂体系存在以下问题:一是素坯中有机物含量较高(>40wt.%),导致其脱粘过程中强度大大降低,极易变形和开裂;二是大量有机物热解后在素坯内留下的孔隙降低了素坯的密度,这需要通过冷等静压进一步提高其密度以满足透明陶瓷制备的需求,而这就限制了复杂结构素坯的制备。除了有机溶剂体系,水机溶剂体系也被用于直写成型透明陶瓷。Zhang等人(Ceram.Int.,2020,46:17130-17134)采用水机溶剂结合Isobam 104(异丁烯马来酸酐共聚物的一种)作为分散剂和粘结剂获得了用于打印的陶瓷浆料。水基溶剂体系有机物含量低(<5%),低毒无害。但是这种浆料需要通过控制脱气时间使浆料粘度逐渐增加,直至其适合用于打印,这就使得陶瓷浆料制备过程的可控性大大降低。浆料流变特性随时间的变化更为明显,不适合长时间的使用。唐等人(CN111848141A)采用水溶性增稠剂与水预混获得高分子凝胶,然后加入陶瓷粉体混合获得粘度极高的陶瓷膏体用于直书写成型。但由于没有采用分散剂,膏体粘度极高,粉体的分散性很差,容易产生较多的团聚。其次,实例中给出的膏体固含量仅有67wt%,粘度已经很高,若是进一步提高固含量会使其粘度急剧增大。对于直书写成型而言,膏体粘度过高会产生很多问题。首先是膏体难于除气,会在陶瓷素坯中产生大量气孔,在烧结后形成缺陷;其次是膏体不均匀,打印后的坯体均匀性差;最后,粘度过高的膏体难于挤出,无法满足直书写成型对打印精度的要求,而且挤出时线条容易断裂。
目前,已报道的直书写用透明陶瓷浆料除了存在有机物含量过高导致脱粘过程困难和制备过程可控性差的问题,陶瓷浆料固含量也不高(<40vol.%)。较低固含量的浆料无法获得致密度高的素坯,这影响了烧结后透明陶瓷的光学质量;而通过冷等静压进一步提高素坯致密度的方法无法用于复杂结构陶瓷的制备。
发明内容
针对现有直书写用透明陶瓷浆料存在的诸多问题,特别是有机物添加种类多、含量高、工艺操作复杂和可控性差的问题,本发明提供了一种纤维素类增稠剂改性高固含量水基陶瓷浆料制备直书写墨水的方法。
第一方面,本发明提供了一种直书写用透明陶瓷浆料的制备方法,包括:
(1)将陶瓷粉体、分散剂和水混合,得到水基陶瓷浆料并控制水基陶瓷浆料的固含量为40~52vol.%,所述陶瓷粉体的粒径为50nm~2.5μm;
(2)向水基陶瓷浆料中加入纤维素类增稠剂,搅拌均匀,同时控制浆料温度不高于30℃(其中,浆料温度过高会导致水分挥发过快,使得其粘度过高不利于打印。同时表面易干燥结块堵塞针头);然后在恒温恒湿环境中进行密封陈化1~3小时,得到所述直书写用透明陶瓷浆料。其中,密封陈化,这能逐渐提高浆料粘度并使浆料更加均匀;同时使得混合过程中未完全溶胀的纤维素进一步溶胀,此过程浆料的粘度会进一步提高,也不会有未完全溶胀的纤维素影响打印。
较佳的,所述陶瓷粉体为氧化物陶瓷粉体,优选为氧化铝、氮化铝、氧化钇、氧化镥、镁铝尖晶石中的至少一种;更优选地,当陶瓷粉体为氮化铝、氧化钇中至少一种时,在配制水基陶瓷浆料之前使用正磷酸、柠檬酸、磷酸铵、油酸中的至少一种对其进行表面包覆处理。
较佳的,所述分散剂为丙烯酸聚合物,优选为聚丙烯酸、聚丙烯酸铵、聚甲基丙烯酸铵中的至少一种;所述分散剂的加入量为陶瓷粉体质量的0.2~3.5wt.%,优选为0.3~3.0wt.%。
本发明选择合适的氧化物陶瓷分散剂,根据不同陶瓷粉体调节最佳含量,此时陶瓷粉体颗粒表面充满电荷,陶瓷粉体颗粒之间存在静电斥力。本发明利用静电斥力使浆料中的陶瓷颗粒达到良好的分散效果,以获得高固含量且粘度低的水基陶瓷浆料。进一步地,本发明在静电斥力分散的水基陶瓷浆料中,添加水溶性好且粘度合适的纤维素。本发明所述的纤维素可以与水分子形成氢键,从而有效地调节浆液中的游离水含量。更具体地,由于水在纤维素的无定形区域中的化学吸附和孔结构对水的物理吸附,导致纤维素和水之间的接触在结晶区域产生快速溶胀。此外,纤维素分子排列成链状,并可以充当陶瓷颗粒之间的润滑剂,从而降低陶瓷颗粒之间的摩擦。总而言之,纤维素可以通过降低自由水含量和润滑作用来提高浆料的打印效果。
较佳的,所述纤维素类增稠剂为羟乙基纤维素、羟丙基纤维素、2-羟乙基甲基纤维素、2-羟丙基甲基纤维素中的至少一种;所述纤维素类增稠剂的加入量为陶瓷粉体质量的0.2~0.65wt.%。
较佳的,步骤(1)中,所述混合的方式为球磨混合;所述球磨混合的转速为250~300转/分钟,时间为30~120分钟。
较佳的,步骤(2)中,所述搅拌均匀的方式为离心混合;所述离心混合为在1000~2000转/分钟的转速下混合5~10分钟。
较佳的,所述恒湿恒温环境的条件包括:温度为20~25℃,湿度为80~85%。
又,较佳的,所述陈化为在温度为25℃,湿度为85%恒温恒湿环境中放置1~3小时。纤维素在浆料中通过陈化会变得更加均匀,有利于后续的打印。
第二方面,本发明提供了一种根据上述制备方法制备的直书写用透明陶瓷水基浆料。
第三方面,本发明提供了一种透明陶瓷坯体的3D打印方法,包括:先将上述直书写用透明陶瓷水基浆料装入注射器中,然后用端盖密封,在转速为2000转/分钟,气压为5kPa下离心除气;再然后,将注射器安装到3D打印机上;按照编程规划的路径,在表面平整的基板上形成实心结构的透明陶瓷坯体。
第四方面,本发明提供了一种透明陶瓷的制备方法,将根据上述3D打印方法制备的透明陶瓷坯体经过脱粘和烧结,制备得到透明陶瓷。
与现有技术相比,本发明具有如下显著的效果:
(1)本发明利用纤维素在水中的溶胀作用使高固含量的陶瓷浆料具有了良好的打印效果,通过一定时间的陈化(与所用粉体种类、浆料固含量有关)即可使用,可控性好;
(2)绿色环保:采用水基溶剂体系,添加的有机物种类少,含量低(<2wt.%),远低于有机溶剂体系(>30wt.%);
(3)干燥收缩小:采用本发明所述的方法得到的陶瓷浆料固含量(>48vol.%),高于目前报道的陶瓷墨水(<40vol.%)。干燥收缩小,素坯体积密度高,有利于结构整体性控制,不变性;
(4)保形性好:使用本发明制备的陶瓷浆料打印后可获得结构稳定的素坯,热处理后的陶瓷微观结构均匀,光学质量高;
(5)本发明方法适用于各类氧化物粉体,方法适用性广。
附图说明
图1为实施例1的不同分散剂含量氧化铝浆料(未添加纤维素)的粘度曲线,从图中可知浆料的粘度随分散剂含量的增加先减小后增大,最佳分散剂含量为0.3wt.%;
图2为实施例1的浆料经过直写成型、热处理以及抛光后得到的透明氧化铝陶瓷的实物图(厚度1mm)及直线透过率曲线,从图中可以看到样品具有较好的光学质量;
图3为实施例2的不同分散剂含量氮氧化铝浆料(未添加纤维素)的粘度曲线,从图中可知浆料的粘度随分散剂含量的增加先减小后增大,最佳分散剂含量为0.4wt.%;
图4为实施例2的浆料经过直写成型、热处理以及抛光后得到的透明氮氧化铝陶瓷的实物图(厚度0.77mm)及直线透过率曲线,从图中可以看到样品的直线透过率接近80%;
图5为实施例3的不同分散剂含量镁铝尖晶石浆料(未添加纤维素)的粘度曲线,从图中可知浆料的粘度随分散剂含量的增加先减小后增大,最佳分散剂含量为3.0wt.%;
图6为实施例1的不同陈化时间的氧化铝陶瓷浆料(添加纤维素)的粘度曲线,从图中可知浆料的粘度随着陈化时间的增加不断提高,原因是浆料中的纤维素发生了进一步的溶胀;
图7为实施例1的不同陈化时间(左侧为0h、右侧为3h)的氧化铝陶瓷浆料(添加纤维素)打印后素坯的形貌,从图中可知陈化后的浆料打印性更好,样品的轮廓更加清晰,未发生严重的变形。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明通过调节分散剂含量制备粘度低、流动性良好且固含量在40~52vol.%的陶瓷浆料。然后加入少量的纤维素作为增稠剂,通过高速离心混合使纤维素均匀分布在陶瓷浆料中。再经过1~3h的陈化即可获得用于稳定的用于直写成型的透明陶瓷浆料。浆料在打印后放入恒温恒湿箱中缓慢干燥,最后经烧结得到透明陶瓷。
以下示例性地说明本发明提供的直书写用透明陶瓷浆料制备的方法。
高固含量水基陶瓷浆料的制备。制备水基陶瓷浆料的粉体可选用氧化铝、氮化铝、氧化钇、镁铝尖晶石等用于制备透明陶瓷的粉体,溶剂为水。水基陶瓷浆料的固含量在40~52vol.%,优选48~52vol.%。其中陶瓷粉体的粒径可优选为100~1800nm,根据制备透明陶瓷种类的不同,选择合适的粒径,优选氧化铝粉体粒径为450nm,氮化铝粉体为850nm,镁铝尖晶石粉体为50nm。用于制备透明陶瓷的粉体粒径大多集中在几百纳米,原因是粒径小的粉体烧结活性更高,烧结时更容易致密化,粒径过大的粉体不能用于制备透明陶瓷,因为其在很高的温度下也难以致密化。此外,对于湿法成型,陶瓷粉体粒径越小,越难以制备高固含量的陶瓷浆料,粉体粒径越大,更容易提高固含量。所以,想要获得用于制备透明陶瓷的浆料,粒径要小,固含量要高。控制水基陶瓷浆料的固含量为40~52vol.%,并调节水基陶瓷浆料的分散剂含量以使其中陶瓷粉体表面带有电荷而以静电斥力方式均匀分散。对于易水化的粉体(如氮化铝),配制浆料前使用正磷酸、柠檬酸、磷酸铵、油酸等进行表面包覆处理。
纤维素的加入。本发明中,加入纤维素的目的是改善陶瓷浆料的打印效果。纤维素的选择要遵守以下原则:一是所选用的纤维素在水中具有较强的溶解能力;二是纤维素的粘度要合适,过低的粘度对浆料的作用不明显,过高的粘度容易使浆料失去流动性,难以调节其最佳含量。所述纤维素可选择为具有羟基、羧基官能团或羧甲基化衍生物,25℃的粘度在1000~5000mPa·s,加入量为陶瓷粉体质量的0.2~1wt.%。其中,所述纤维素类增稠剂为羟乙基纤维素、羟丙基纤维素、2-羟乙基甲基纤维素、2-羟丙基甲基纤维素中的至少一种。
向水基陶瓷浆料中加入适量的纤维素,通过高速离心混合使纤维素均匀分布在陶瓷浆料中。本发明中,加入纤维素后,通过5~10分钟的高速离心混合使纤维素分散均匀,并通过进一步的陈化,使浆料更加均匀,使用时更加稳定。
透明陶瓷素坯的制备。具体来说,在进行3D打印之前,将浆料装入注射器中,然后用端盖密封,在转速为2000转/分钟,气压为5kPa下离心除气;然后,将注射器安装到3D打印机上;按照编程规划的路径,在玻璃基板上形成实心结构。打印好的样品放置在温度为25℃,湿度为85%的恒温恒湿环境中缓慢干燥即可获得结构完整的素坯。
透明陶瓷的烧结。本发明将陶瓷坯体经高温烧结得到透明陶瓷。针对不同材质的透明陶瓷,烧结温度和保温时间也各不相同。
总的来说,本发明利用水溶性纤维素对高固含量、低粘度的陶瓷浆料进行改性,在不添加其它有机物的条件下,获得打印效果好并且能够长时间稳定的透明陶瓷浆料,打印后所得透明陶瓷坯体形状完整、无结构塌陷且具有较高的致密度。坯体烧结后显微结构均匀,光学性能好。通过阿基米德原理测量体积密度和紫外分光光度计测量陶瓷直线透过率,可知本发明制备的素坯的相对理论密度可达57%以上,抛光后的透明陶瓷接近理论透过率。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
(1)浆料制备:以中位粒径D50=450nm氧化铝粉体为原料,以超纯水为溶剂,使用0.3wt%聚丙烯酸铵作为分散剂;通过球磨制备分散均匀、固含量为52vol.%的陶瓷浆料;
(2)纤维素改性:向浆料中加入0.52wt.%(相对于粉体质量)羟乙基纤维素,高速离心混合10分钟;
(3)陈化:将上述(2)获得的陶瓷浆料分成6份,放置在温度为25℃,湿度为85%环境中静置0小时、1小时、1.5小时、2小时、2.5小时或3小时;
(4)打印:将上述陈化后的陶瓷浆料装入注射器中,然后用端盖密封,在转速为2000转/分钟,气压为5kPa下离心除气;然后,将注射器安装到3D打印机上;按照编程规划的路径,在玻璃基板上形成实心结构;
(5)干燥:将素坯放置在温度为25℃,湿度为85%恒温恒湿环境中缓慢干燥;
(6)烧结:将陶瓷生坯在1850℃保温6小时,随炉冷却,得到透明氧化铝陶瓷。
图1示出实施例1制备出的氧化铝陶瓷浆料不同分散剂含量下的粘度(未添加纤维素),可以看到最佳分散剂含量为0.3wt.%。
图2示出实施例1制备出的透明氧化铝陶瓷样品(厚度1mm)及其直线透过率曲线。
实施例2
本实施例适用于制备氮氧化铝透明陶瓷的浆料。以中位粒径D50分别为650nm和850nm的氧化铝与氮化铝混合粉体为原料,氮化铝粉体使用前在含有正磷酸的蒸馏水中均匀混合以达到表面包覆的效果,以超纯水为溶剂,使用0.4wt%聚丙烯酸铵作为分散剂,通过球磨制备分散均匀、固含量为50vol.%的陶瓷浆料。向浆料中加入0.65wt.%(相对于粉体质量)羟乙基纤维素,高速离心混合10分钟。将上述陶瓷浆料放置在温度为25℃,湿度为85%环境中静置1小时。打印与干燥过程与实例1中相同。将陶瓷生坯在1900℃保温20小时,随炉冷却,得到透明氮氧化铝陶瓷。
图3示出实施例2制备出的氮氧化铝陶瓷浆料不同分散剂含量下的粘度(未添加纤维素),可以看到最佳分散剂含量为0.4wt.%。
图4示出实施例2制备出的透明氮氧化铝陶瓷样品(厚度0.77mm)及其直线透过率曲线。
实施例3
本实施例制备镁铝尖晶石陶瓷浆料。以中位粒径D50=50nm的镁铝尖晶石粉体为原料,以超纯水为溶剂,使用3.0wt%聚丙烯酸铵作为分散剂,通过球磨制备分散均匀、固含量为46vol.%的陶瓷浆料。向浆料中加入0.43wt.%(相对于粉体质量)羟乙基纤维素,高速离心混合10分钟。将上述陶瓷浆料放置在温度为25℃,湿度为85%环境中静置2小时。打印与干燥过程与实例1中相同。将陶瓷生坯在1500℃保温5小时,随炉冷却,得到透明镁铝尖晶石陶瓷。
图5示出实施例3制备出的镁铝尖晶石陶瓷浆料不同分散剂含量下的粘度(未添加纤维素),可以看到最佳分散剂含量为3.0wt.%。
Claims (10)
1.一种直书写用透明陶瓷浆料的制备方法,其特征在于,包括:
(1)将陶瓷粉体、分散剂和水混合,得到水基陶瓷浆料并控制水基陶瓷浆料的固含量为40~52 vol.%,所述陶瓷粉体的粒径为50 nm~2.5μm;
(2)向水基陶瓷浆料中加入纤维素类增稠剂,搅拌均匀,同时控制浆料温度不高于30℃;然后在恒温恒湿环境中进行密封陈化1~3小时,最后得到所述直书写用透明陶瓷浆料。
2.根据权利要求1所述的制备方法,其特征在于,所述陶瓷粉体为氧化物陶瓷粉体,优选为氧化铝、氮化铝、氧化钇、氧化镥、镁铝尖晶石中的至少一种;更优选地,当陶瓷粉体为氮化铝、氧化钇中至少一种时,在配制水基陶瓷浆料之前使用正磷酸、柠檬酸、磷酸铵、油酸中的至少一种对其进行表面包覆处理。
3.根据权利要求1或2所述的制备方法,其特征在于,所述分散剂为丙烯酸聚合物,优选为聚丙烯酸、聚丙烯酸铵、聚甲基丙烯酸铵中的至少一种;所述分散剂的加入量为陶瓷粉体质量的0.2~3.5wt.%。
4.根据权利要求1-3中任一项所述的制备方法,其特征在于,所述纤维素类增稠剂为羟乙基纤维素、羟丙基纤维素、2-羟乙基甲基纤维素、2-羟丙基甲基纤维素中的至少一种;所述纤维素类增稠剂的加入量为陶瓷粉体质量的0.2~0.65 wt.%。
5.根据权利要求1-4中任一项所述的制备方法,其特征在于,步骤(1)中,所述混合的方式为球磨混合;所述球磨混合的转速为250~300转/分钟,时间为30~120分钟。
6.根据权利要求1-5中任一项所述的制备方法,其特征在于,步骤(2)中,所述搅拌均匀的方式为离心混合;所述离心混合为在1000~2000转/分钟的转速下混合5~10分钟。
7.根据权利要求1-6中任一项所述的制备方法,其特征在于,所述恒湿恒温环境的条件包括:温度为20~25℃,湿度为80~85%。
8.一种根据权利要求1-7中任一项所述的制备方法制备的直书写用透明陶瓷水基浆料。
9.一种透明陶瓷坯体的3D打印方法,其特征在于,包括:先将权利要求8所述的直书写用透明陶瓷水基浆料装入注射器中,然后用端盖密封,在转速为2000 转/分钟,气压为5kPa下离心除气;再然后,将注射器安装到3D打印机上;按照编程规划的路径,在表面平整的基板上形成实心结构的透明陶瓷坯体。
10.一种透明陶瓷的制备方法,其特征在于,将权利要求9所述的3D打印方法制备的透明陶瓷坯体经过脱粘和烧结,制备得到透明陶瓷。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110617773.4A CN115432998B (zh) | 2021-06-03 | 2021-06-03 | 一种直书写用透明陶瓷浆料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110617773.4A CN115432998B (zh) | 2021-06-03 | 2021-06-03 | 一种直书写用透明陶瓷浆料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115432998A true CN115432998A (zh) | 2022-12-06 |
CN115432998B CN115432998B (zh) | 2023-05-09 |
Family
ID=84271848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110617773.4A Active CN115432998B (zh) | 2021-06-03 | 2021-06-03 | 一种直书写用透明陶瓷浆料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115432998B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116425531A (zh) * | 2023-03-14 | 2023-07-14 | 中国科学院上海光学精密机械研究所 | 一种红外透明陶瓷墨水及其制备与应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009029855A (ja) * | 2007-07-24 | 2009-02-12 | National Institute Of Advanced Industrial & Technology | ダイレクトライティング用コロイドゲル材料 |
WO2017058727A1 (en) * | 2015-09-29 | 2017-04-06 | The Penn State Research Foundation | Cold sintering ceramics and composites |
CN107434417A (zh) * | 2016-05-26 | 2017-12-05 | 苏州拜博机电科技有限公司 | 使坯体保形的陶瓷粉体浆料及直写成型三维结构制备方法 |
CN108456457A (zh) * | 2016-12-12 | 2018-08-28 | 中南大学 | 3d直写氧化锆陶瓷墨水 |
CN111848141A (zh) * | 2020-07-24 | 2020-10-30 | 江苏师范大学 | 一种浆料直写成型3d打印用陶瓷膏体的制备方法 |
CN111875404A (zh) * | 2020-07-29 | 2020-11-03 | 东北大学 | 一种应用于自由直写成形技术的碳化硅浆料制备方法 |
-
2021
- 2021-06-03 CN CN202110617773.4A patent/CN115432998B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009029855A (ja) * | 2007-07-24 | 2009-02-12 | National Institute Of Advanced Industrial & Technology | ダイレクトライティング用コロイドゲル材料 |
WO2017058727A1 (en) * | 2015-09-29 | 2017-04-06 | The Penn State Research Foundation | Cold sintering ceramics and composites |
CN107434417A (zh) * | 2016-05-26 | 2017-12-05 | 苏州拜博机电科技有限公司 | 使坯体保形的陶瓷粉体浆料及直写成型三维结构制备方法 |
CN108456457A (zh) * | 2016-12-12 | 2018-08-28 | 中南大学 | 3d直写氧化锆陶瓷墨水 |
CN111848141A (zh) * | 2020-07-24 | 2020-10-30 | 江苏师范大学 | 一种浆料直写成型3d打印用陶瓷膏体的制备方法 |
CN111875404A (zh) * | 2020-07-29 | 2020-11-03 | 东北大学 | 一种应用于自由直写成形技术的碳化硅浆料制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116425531A (zh) * | 2023-03-14 | 2023-07-14 | 中国科学院上海光学精密机械研究所 | 一种红外透明陶瓷墨水及其制备与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN115432998B (zh) | 2023-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0968067B1 (en) | Process for shaping parts from ceramic and metal powders comprising a gel formation | |
CN108748611B (zh) | 一种陶瓷坯体的成型方法 | |
CN110204334B (zh) | 一种高致密度氧化锆粉末注射成型专用料及其制备方法 | |
CN111423239A (zh) | 一种微波陶瓷介质滤波器及其加工成型方法 | |
WO1987006495A1 (en) | Liquefaction of highly loaded particulate suspensions | |
CN1534001A (zh) | 由流延法制备氧化锆陶瓷的方法及其由该方法获得的产品 | |
CN111394706A (zh) | 一种晶粒尺寸可控ito陶瓷靶材的制备方法 | |
CN112851342B (zh) | 一种氧化锆陶瓷材料及其制备方法和应用 | |
CN113878113B (zh) | 一种陶瓷-不锈钢复合材料及其制备方法 | |
CN115432998B (zh) | 一种直书写用透明陶瓷浆料的制备方法 | |
CN115849885B (zh) | 高纯高强度氧化铝陶瓷基板及其制备方法 | |
CN112209419A (zh) | 一种高松装密度热喷涂用球形氧化钇粉的制备方法 | |
CN113277859A (zh) | 一种纳米包覆氧化铝颗粒及用其制备的高纯抗热震氧化铝陶瓷材料 | |
CN1315754C (zh) | 陶瓷坯体的半水基注模凝胶法精密成型方法 | |
CN113880588A (zh) | 一种均匀包覆的AlON粉体及其透明陶瓷的制备方法 | |
CN117303917B (zh) | 一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法 | |
CN116354729B (zh) | 一种SiC陶瓷零部件及其制备方法与应用 | |
CN116253567B (zh) | 一种碳化硅超细粉的改性方法及凝胶注无压烧结制备碳化硅陶瓷的方法 | |
JP2008019144A (ja) | ジルコニア含有セラミックス複合材料の製造方法 | |
CN107619285A (zh) | 叠层片式电子元器件流延浆料及其制备方法 | |
CN110253735A (zh) | 陶瓷坯体、陶瓷制品及其相应的制备方法 | |
Szafran et al. | NEW MULTIFUNCTIONAL COMPOUNDS IN GELCASTING PROCESS- INTRODUCTION TO THEIR SYNTHESIS AND APPLICATION | |
CN115650731A (zh) | 一种电子陶瓷浆料及其制备方法 | |
CN115554939A (zh) | 一种氮化铝微胶囊及其制备方法 | |
CN113501713A (zh) | 一种基于Isobam凝胶流延技术制备Li3MgNbO6微波介质陶瓷的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |