CN117303917B - 一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法 - Google Patents

一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法 Download PDF

Info

Publication number
CN117303917B
CN117303917B CN202311234046.5A CN202311234046A CN117303917B CN 117303917 B CN117303917 B CN 117303917B CN 202311234046 A CN202311234046 A CN 202311234046A CN 117303917 B CN117303917 B CN 117303917B
Authority
CN
China
Prior art keywords
silicon nitride
sintering
sintering aid
phase
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311234046.5A
Other languages
English (en)
Other versions
CN117303917A (zh
Inventor
丁杰
闫永杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanze Shanghai new Material Science And Technology Co ltd
Nantong Sanze Precision Ceramics Co ltd
Original Assignee
Sanze Shanghai new Material Science And Technology Co ltd
Nantong Sanze Precision Ceramics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanze Shanghai new Material Science And Technology Co ltd, Nantong Sanze Precision Ceramics Co ltd filed Critical Sanze Shanghai new Material Science And Technology Co ltd
Priority to CN202311234046.5A priority Critical patent/CN117303917B/zh
Publication of CN117303917A publication Critical patent/CN117303917A/zh
Application granted granted Critical
Publication of CN117303917B publication Critical patent/CN117303917B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3882Beta silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本申请涉及陶瓷领域,具体公开了一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法。该氮化硅陶瓷烧结助剂包括氮化硅镁、稀土无氧添加剂和β相氮化硅,氮化硅镁、稀土无氧添加剂和β相氮化硅的混合重量比为(3‑10):(3.5‑8):1,稀土无氧添加剂包括氟化钪、氟化钇、氟化镧、三氟化钐、氟化钆、四氟化铈、氟化镱、氟化铕中的至少一种。本申请采用氮化硅镁、稀土无氧添加剂和β相氮化硅复合作为烧结助剂,并经过两段升温烧结及两段保温处理,能制备出晶格氧含量低、晶格缺陷少、β相占比高的氮化硅陶瓷,其具有热导率高、弯曲强度高和断裂韧性优良的特点,兼备力学性能及导热性能。

Description

一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法
技术领域
本申请涉及陶瓷领域,更具体地说,它涉及一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法。
背景技术
氮化硅陶瓷具有高温强度大、抗氧化性强、耐磨损性好、热稳定性佳、热膨胀系数小、硬度高、抗热震和耐化学腐蚀等优良特性,应用越来越广泛。尤其是由于氮化硅陶瓷具有热导率高、力学性能优越、无毒、耐腐蚀、良好的化学稳定性等优点,在新能源、半导体器件、交通运输等领域具有广泛的应用前景。
申请人根据对现有技术的调研发现目前实际生产制备得到的氮化硅陶瓷热导率较低,主要是烧结助剂中带入了氧元素,使得陶瓷中的晶格氧含量较高,进而影响了导热性能、限制了氮化硅大规模应用。因此,目前导热氮化硅陶瓷的制备主要是通过长时间保温热处理来延长氮化硅溶解析出过程,使晶粒充分长大、纯化晶格、减少晶界相含量,来提高氮化硅陶瓷的导热性能;但是长时间保温热处理的制备方法不仅能耗高、制备生产周期长,且高温下长时间热处理也容易使得晶粒过分生长,降低了陶瓷的强度和可靠性,使制得的陶瓷不能很好地兼顾力学性能和导热性能。
发明内容
为了解决目前需要长时间保温热处理改善导热性能、但同时力学性能亦受损的问题,本申请提供一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法。
第一方面,本申请提供一种氮化硅陶瓷烧结助剂,采用如下的技术方案:
一种氮化硅陶瓷烧结助剂,包括氮化硅镁、稀土无氧添加剂和β相氮化硅,氮化硅镁、稀土无氧添加剂和β相氮化硅的混合重量比为(3-10):(3.5-8):1。
目前氮化硅陶瓷烧结制备中,一般采用稀土氧化物和镁化物作为烧结助剂,利用烧结助剂的低熔烧结,降低氮化硅陶瓷的烧结温度,且烧结过程中采用N2作为保护气,防止氮化硅高温分解;或是采用以αSi3N4粉和Si粉为主要原料,以稀土氧化物和镁化物作为烧结助剂,同时氮气作为保护气,通过两步烧结制备。但目前这些氮化硅陶瓷采用一步或两步烧结,采用气压烧结或热压烧结,均采用氧化镱、氧化钇、氧化铌、氧化钆、氧化钐、氧化镧、三氧化二铈中的一种或者多种作为稀土氧化物,采用氧化镁作为镁化物;而申请人研究发现这些烧结助剂会在氮化硅烧结过程中带入氧元素,使得晶格氧含量较高、晶格缺陷、β相含量较低,进而使制得的氮化硅热导率较低,导热性能较低。
对此,本申请采用氮化硅镁、稀土无氧添加剂和β相氮化硅复合作为烧结助剂,能制备出晶格氧含量低、晶格缺陷少、β相占比高的氮化硅陶瓷,其具有热导率高、弯曲强度高和断裂韧性优良的特点,且烧结体内部没有明显的晶格缺陷,烧结密度达到理论密度的99%以上。其中,采用的上述烧结助剂的Re~(3+)半径减小,所制得的氮化硅陶瓷大热导率增大,且氮化硅镁(MgSiN2)有利于形成长柱状Si3N4晶粒和三叉晶界,可显著提高Si3N4陶瓷的热导率;而β相氮化硅作为晶种,促使在晶种周围形成新的β相氮化硅,提高氮化硅陶瓷的β相占比,进而提到氮化硅的热导率。更为优选的,氮化硅镁在氮化硅陶瓷中的用量占比为4wt%、稀土无氧添加剂在氮化硅陶瓷中的用量占比为3.5wt%、β相氮化硅在氮化硅陶瓷中的用量占比为0.5wt%时,制得的氮化硅陶瓷综合性能较优异,热导率达131W/m·k,抗弯强度达940MPa,断裂韧性达7.58MPa·m1/2
优选的,所述稀土无氧添加剂包括氟化钪稀土无氧添加剂包括氟化钪、氟化钇、氟化镧、三氟化钐、氟化钆、四氟化铈、氟化镱、氟化铕中的至少一种。
采用的上述稀土无氧添加剂,与其他氧化物烧结助剂相比,不易生成硅的氮氧化物,在烧结过程中不带入氧元素,避免了因氧化膨胀而导致的开裂,可以提高氮化硅的高温力学性,其中,氟化钪(ScF3)能作为增密剂,能在细小颗粒的边缘生成了难熔相Sc2Si2O7,具有优异的高温抗变形性,且氟化钪本身低温时不会热膨胀,减少烧结初始阶段的坯体开裂的可能,且烧结制得的氟化钪致密的氮化硅(ScF3-Si3N4)在干燥或潮湿环境中具有较高的抗氧化性。
优选的,所述氮化硅镁的粒径为5-10μm,稀土无氧添加剂的粒径为10-20μm,β相氮化硅的粒径为0.5-5μm。
通过控制上述烧结助剂的粒径,在烧结过程熔融效率高,易于熔融形成液相、浸润氮化硅原粉,并与氮化硅原粉形成较好的结合力,使制得的氮化硅陶瓷晶格氧含量低、晶格缺陷少,具有优良的热导率。
第二方面,本申请提供一种高导热氮化硅陶瓷,采用如下的技术方案:
一种高导热氮化硅陶瓷,由包括以下原料制得:α相氮化硅原粉、烧结助剂浆料、分散剂、粘结剂、减水剂、增塑剂、塑型剂、脱模剂、去离子水;所述烧结助剂浆料由上述第一方面的氮化硅陶瓷烧结助剂与去离子水混合制得。
通过采用上述技术方案,使得烧结助剂浆料、分散剂、粘结剂、减水剂、增塑剂、塑型剂、脱模剂、去离子水等物料分散均匀,形成陶瓷浆料状态,便于后续进行喷雾造粒、压制成型、脱胶、烧结等工序,制备物料均匀、质量稳定的氮化硅陶瓷;其中,分散剂、粘结剂、增塑剂、塑型剂等有机物料在脱胶烧结过程中除去,使制得的氮化硅陶瓷兼备优良的力学性能和导热性能。
优选的,所述烧结助剂浆料的加入量为α相氮化硅原粉质量的3-5%,所述分散剂的加入量为α相氮化硅原粉质量的0.5-1%,所述粘结剂的加入量为α相氮化硅原粉质量的3-5%,所述减水剂的加入量为α相氮化硅原粉质量的0.2-0.6%,所述增塑剂的加入量为α相氮化硅原粉质量的0.5-1.5%,所述塑型剂的加入量为α相氮化硅原粉质量的0.5-1.5%,所述脱模剂的加入量为α相氮化硅原粉质量的0.5-1%,所述去离子水与α相氮化硅原粉的混合质量比为(0.8-1.2):1。
本申请以α相氮化铝原粉的质量为基准,控制烧结助剂浆料的用量,能促使生成β相氮化铝含量较高的氮化硅陶瓷;控制分散剂的用量,能促进体系中物料的分散,以制备稳定的氮化铝陶瓷浆料;控制粘结剂的用量,能将氮化硅原粉与烧结助剂等物料粘接稳定,使得经过压制成型后形成结构稳定的氮化硅陶瓷素坯;控制减水剂的用量,能提高浆料的颗粒润湿性、悬浮稳定性及浆料流变性,并使浆料具有适宜的粘度,易于进入喷雾造粒设备;控制增塑剂和塑型剂的用量,能提高氮化铝陶瓷的塑性,提高其强度等性能;控制脱模剂的用量,能使压制成型后的素坯易于脱模;控制去离子水的用量,能促使物料分散均匀,且流动性好,能采用喷雾造粒方式,使制得的粉料粒度均匀,易于烧结成型,减少有机溶剂的使用以及有机溶剂对喷雾造粒设备的损伤。
优选的,所述α相氮化硅原粉的平均粒度D50=0.5-2μm;所述烧结助剂浆料的粘度为150-250mPa·s;所述分散剂包括聚丙烯酰胺、偏硅酸钠、聚乙二醇脂肪酸脂、纤维素衍生物、1-甲基戊醇中的至少一种;所述粘结剂包括聚乙烯醇、聚丙烯酸、聚硅氮烷中的至少一种;所述减水剂包括三聚磷酸钠、六偏磷酸钠、乙烯二胺四乙酸钠、柠檬酸钠、亚胺三乙酸钠中的至少一种;所述增塑剂为乙二醇;所述塑型剂为尿素。
通过采用上述技术方案,能使制得的陶瓷浆料分散均匀,经喷雾造粒、压制成型、脱胶、烧结等工序制得的氮化硅陶瓷具有优良的力学性能和导热性能;其中,通过上述物料种类及用量,控制制得的陶瓷浆料的目标粘度为1000-2000mPa·s,固含量为50-70%,若浆料粘度较大,则加入去离子水和分散剂调节至粘度为1000-2000mPa·s,再进行后续的喷雾造粒工序,保证制得的造粒粉体粒度及形态均匀。更为优选的,所述分散剂是由聚丙烯酰胺和偏硅酸钠以重量比为1:1混合制得。
第三方面,本申请提供一种高导热氮化硅陶瓷的制备方法,采用如下的技术方案:一种高导热氮化硅陶瓷的制备方法,包括如下步骤:
S1、烧结助剂浆料的制备:将氮化硅镁、稀土添加剂和β相氮化硅加入至去离子水中,球磨搅拌,制得烧结助剂浆料;
S2、陶瓷浆料的制备:将步骤S1制得的烧结助剂浆料加入至球磨设备,加入去离子水和分散剂,然后依次加入粘结剂、减水剂、增塑剂、塑型剂,进行第一次球磨搅拌,然后加入α相氮化硅原粉,进行第二次球磨搅拌;最后加入脱模剂,进行第三次球磨搅拌,出料,制得陶瓷浆料;
S3、喷雾造粒:将步骤S2制得的陶瓷浆料在保护气氛下喷雾造粒,制得造粒粉体;
S4、压制成型:将步骤S3制得的造粒粉体依次进行干式压制和湿式等静压压制,制得素坯;
S5、初烧结及脱胶:将步骤S4制得的素坯在保护气氛下减压烧结,然后升温进行脱胶处理,制得坯体;
S6、二段升温烧结及二段保温处理:在保护气氛中,将步骤S5制得的坯体在550-1350℃条件下进行第一段升温处理,然后在1350-1800℃条件下进行第二段升温处理,再升温至1800-1900℃进行第一段保温处理,最后降温至1550-1600℃进行第二段保温处理,出料,制得高导热氮化硅陶瓷。
目前制备氮化硅陶瓷过程中,一般是将氮化硅原粉与烧结助剂混合后则进行压制、烧结处理,但是物料的结合性较低,制得得陶瓷强度较低;或是将氮化硅原粉与烧结助剂、分散剂、稳定剂等其他助剂成分混合后流延成型制备陶瓷流延膜,但成型后的陶瓷密度、硬度、抗弯强度、断裂韧性等力学性能均较低。
而本申请通过将添加有分散剂、粘结剂、减水剂、增塑剂、塑型剂、脱模剂的陶瓷浆料进行喷雾造粒,在分散剂、粘结剂等作用下,能使制得的造粒粉体粒度分布均匀,粉体形态均匀;且增塑剂、塑型剂等作用下,压制成型的素坯形态稳定、强度优良;再经初烧结和脱胶处理,将素坯中的水和有机物逐步排出,再而逐步升温烧结处理及保温处理,使烧结助剂溶解形成液相,浸润α相氮化硅,促使烧结助剂与α相氮化硅形成优良的结合力,且以烧结助剂中的β相氮化硅作为晶种,在β相氮化硅晶种为核心,促使α相氮化硅在晶种周围完全转变为β相氮化硅,形成稳定态,使制得的氮化硅陶瓷β相含量较高,热导率较高。
另外,喷雾造粒、初烧结、脱胶、升温烧结和保温处理均通入保护气氛,能避免带入氧元素,使氮化硅陶瓷的晶格氧含量较低,热导率较高。
优选的,在喷雾造粒之前,将陶瓷浆料过80-120目筛网,且造粒前保持3-10rpm的转速,确保陶瓷浆料不发生沉淀。
优选的,所述步骤S1中,氮化硅镁、稀土无氧添加剂、β相氮化硅和去离子水的混合重量比为(3-10):(3.5-8):1:100;所述步骤S1中,球磨搅拌的转速为300-500rpm,搅拌时间为120-180min。
通过上述技术方案,将烧结助剂球磨分散均匀,制得粘度为150-250mPa·s的烧结助剂浆料,便于后续与其他物料分散均匀以制备陶瓷浆料。
优选的,所述步骤S2中,球磨搅拌的料球比为1:(1-3);第一次球磨搅拌的时间为5-24h;第二次球磨搅拌的时间为24-48h;第三次球磨搅拌的时间为2-3h;三次球磨搅拌的转速为100-500rpm,三次球磨搅拌控制温度为20-30℃。
通过先将去离子水和分散剂先混合,起到体系中混合基体作用,再将制备陶瓷浆料的物料分批加入并分批球磨搅拌处理,并控制三次球磨的转速、时间和温度,能提高物料的分散均匀性,测试球磨的陶瓷浆料粘度为1000-2000mPa·s时,则停止球磨,此时陶瓷浆料的固含量为50-70%;若粘度过大,则继续加入分散剂和水进行调节,采用相同的搅拌转速(100-500rpm)和搅拌温度(20-30℃)进行调控,直至粘度调节至1000-2000mPa·s,以便于后续进行喷雾造粒,且制得的造粒粉体松装密度良好、粒度均匀、形貌均匀。
优选的,所述步骤S3中,喷雾造粒的保护气氛为氮气气氛或氩气气氛;喷雾造粒的离心转盘转速为10000-30000rpm,造粒进料口温度为190-250℃、出料口温度为80-110℃。
喷雾造粒过程中通入氮气或氩气气流,能避免造粒过程中带入氧元素,同时控制上述喷雾造粒的条件参数,能使制得的造粒粉体含水量为0.5-1.5%,松装密度为0.8-0.95g/cm3,休止角为30-31°,粒度分布在30-150μm,分体形貌保持95%以上为球形或类球形状态,使后续压制成型及烧结制得的氮化硅陶瓷具有优良的弯曲强度、断裂韧性等力学性能。
优选的,所述步骤S4中,干式压制的压力为120-180MPa,湿式等静压压制的压力为150-200MPa。
通过先干式压制处理,起到初步成型的作用,然后再增加压力进行湿式等静压压制,使制得的素坯的密度≥1.75g/cm3,并具有一定强度,具体以尺寸为宽度10mm*高度10mm*长度50mm的条状素坯采用万能测试机在0.5mm/min速度下压制,测得弯曲强度为1-5MPa。
优选的,所述步骤S5中,初烧结是在压力为-0.05~-0.04MPa条件下从常温升温至常温至500℃进行减压烧结;升温是以速率为1-1.5℃/min的速度升温至550-650℃,然后进行脱胶处理。
通过在氮气气氛或氩气气氛的气流下,控制上述初烧结压力及温度,在常温升温至500℃的升温过程中能将物料中的水分和有机物逐步排出;同时控制脱胶处理的升温速率,使升温过程缓慢,避免升温过快而使得水分或有机物挥发过快并导致坯体开裂的情况,且烧结助剂中的氟化钪具有控制坯体收缩的作用,避免坯体在升温过程中出现开裂现象。
优选的,所述步骤S6中,保护气氛为氮气氛围或氩气氛围;第一段升温处理的升温速率为5-15℃/min,第一段升温处理的气压压力为-0.03~-0.01MPa;所述步骤S6中,第二段升温处理的升温速率为2-5℃/min,第二段升温处理的气压压力为3-3.5MPa。
第一段保温处理的保温时长为2-3h,第一段保温处理的气压压力为4-4.5MPa;第一段保温处理的温度降温至第二段保护处理的温度过程中,降温速率为1-2℃/min,第二段保温处理的保温时间为2-8h。
本申请在脱脂处理后,提高升温烧结过程的升温速率至5-15℃/min,降低能耗,且在该升温速率及550-1350℃升温区间内,氟化钪的收缩作用下,坯体变化不大;再而增大第二段升温的气压压力、降低升温速率,使得第二段升温过程逐步升温,促使烧结助剂开始熔融。当继续升温至1800-1900℃,增大气压压力,使烧结助剂完全熔融、形成液相,并浸润α相氮化硅原粉,使烧结助剂与α相氮化硅原粉形成良好的结合力,并以β相氮化硅为晶种,促使α相氮化硅完全转变为β相氮化硅,且新形成的β相氮化硅结合在晶种的周围,形成长柱型的稳定态。最后,控制降温速率为1-2℃/min逐步降温至1550-1600℃进行第二段保温处理,促使晶粒长大,减少晶粒缺陷问题,使最终烧结形成的氮化硅陶瓷的相对密度达到95%以上,硬度达25-35GPa,断裂韧性达5.5-7.5MPa·m1/2,抗弯强度达680-950MPa,热导率达95-135W/m·k。
综上所述,本申请具有以下有益效果:
1、本申请采用氮化硅镁、稀土无氧添加剂和β相氮化硅复合作为烧结助剂,能制备出晶格氧含量低、晶格缺陷少、β相占比高的氮化硅陶瓷,其具有热导率高、弯曲强度高和断裂韧性优良的特点。
2、本申请通过将添加有分散剂、粘结剂、减水剂、增塑剂、塑型剂、脱模剂的陶瓷浆料进行喷雾造粒,能使制得的造粒粉体粒度分布均匀,粉体形态均匀,压制成型的素坯形态稳定、强度优良,经高温烧结、低温烧结的两段保温处理制得的氮化硅陶瓷β相含量较高,热导率较高。
3、本申请通过控制初烧结、脱胶、二段升温烧结和二段保温处理的温度变化速率和气压压力,能使物料体系中的水分和有机物顺利排出,并且烧结助剂熔融形成液相,并浸润α相氮化硅原粉,使烧结助剂与α相氮化硅原粉形成良好的结合力,以β相氮化硅为晶种,促使α相氮化硅完全转变为β相氮化硅,且新形成的β相氮化硅结合在晶种的周围,形成长柱型的稳定态。
具体实施方式
以下结合实施例对本申请作进一步详细说明。
氮化硅烧结助剂的制备例
制备例1
一种氮化硅陶瓷烧结助剂,通过如下步骤配制:
取350g粒径为5-10μm的氮化硅镁、350g粒径为10-20μm的稀土无氧添加剂(氟化钪)、100g粒径为0.5-5μm的β相氮化硅混合,得到氮化硅陶瓷烧结助剂。
制备例2-5
制备例2-5与上述制备例1的区别在于:物料种类及用量的差异,具体参见下表1。
表1制备例1-5的物料种类、物料用量对照表
制备对比例1
制备对比例1与上述制备例3的区别在于:采用氧化镧等量替代350g的氟化钪,即烧结助剂由400g粒径为5-10μm的氮化硅镁、350g粒径为10-20μm的氧化镧、50g粒径为0.5-5μm的β相氮化硅混合。
制备对比例2
制备对比例2与上述制备例3的区别在于:采用氧化镁等量替代50g的β相氮化硅,即烧结助剂由400g粒径为5-10μm的氮化硅镁、350g粒径为10-20μm的氧化镧、50g粒径为0.5-5μm的氧化镁混合。
制备对比例3
制备对比例3与上述制备例3的区别在于:采用氧化镁等量替代400g的氮化硅镁,即烧结助剂由400g粒径为5-10μm的氧化镁、350g粒径为10-20μm的氟化钪、50g粒径为0.5-5μm的β相氮化硅混合。
制备对比例4
制备对比例4与上述制备例3的区别在于:烧结助剂由560g粒径为10-20μm的氧化镧、240g粒径为0.5-5μm的氧化镁混合。
实施例
实施例1
一种高导热氮化硅陶瓷,通过如下步骤制得:
S1、烧结助剂浆料的制备:将制备例1制得的烧结助剂和10kg去离子水加入至行星球磨设备中,在转速为300rpm的条件下搅拌180min,搅拌至测得浆料粘度为150-250mPa·s,则停止搅拌,出料,制得烧结助剂浆料。
S2、陶瓷浆料的制备:称量1kg平均粒度D50=0.5-2μm的α相氮化硅原粉,以该1kgα相氮化硅原粉的质量为准,将40g步骤S1制得的烧结助剂浆料加入至卧式球磨设备中,加入1kg去离子水、8g分散剂、(4g聚丙烯酰胺、4g偏硅酸钠)、40g粘结剂(改性聚乙烯醇)、50g减水剂(三聚磷酸钠)、10g增塑剂(乙二醇)、10g塑型剂(尿素),在料球比为1:2、转速为300rpm条件下进行第一次球磨,球磨12h;
然后加入预先称量的1kgα相氮化硅原粉,在转速为300rpm条件下进行第二次球磨,球磨36h;最后加入8g脱模剂,在转速为300rpm条件下进行第三次球磨,球磨2h;
三次球磨的全程开启球磨冷却循环水,控制浆料的球磨温度为20-30℃;
取浆料进行测试,测得浆料粘度为1000-2000mPa·s,则停止球磨,出料,并将浆料过100目筛网,制得陶瓷浆料;同时保持6rpm转速进行搅拌,确保浆料不发生沉淀。
本步骤S2中,该料球比是指含有α相氮化硅原粉、脱模剂的整个陶瓷浆料体系全部物料质量与磨球质量的比值。
S3、喷雾造粒:通入氮气气流至喷雾造粒设备,将步骤S2制得的陶瓷浆料进行喷雾造粒,控制喷雾造粒的离心转盘转速为120000rpm,造粒进料口温度为220℃、出料口温度为100℃,制得造粒粉体。
S4、压制成型:将步骤S3制得的造粒粉体在压力为150MPa条件下进行干式压制,再用180MPa的压力进行湿式等静压压制,制得素坯;素坯尺寸为为宽度10mm*高度10mm*长度50mm的条状结构。
S5、初烧结及脱胶:将步骤S4成型好的素坯放入气压炉中,充入氮气,在压力为-0.05MPa条件下从常温升温至500℃进行初烧结,然后以速率为1.2℃/min的速度升温至600℃进行脱胶处理,制得坯体。
S6、二段升温烧结及二段保温处理:气压炉中保持氮气流通,将步骤S5制得的坯体在速率为10℃/min、压力为-0.02MPa的条件下升温至1350℃,此为第一段升温处理;
然后在速率为3℃/min、压力为3MPa的条件下升温至1800℃,此为第二段升温处理;
再升温至1900℃,在压力为4.5MPa条件下保温处理2h,此为第一段保温处理;
最后在速率为1.5℃/min的条件下降温至1600℃,在压力为4MPa条件下保温处理5h,此为第二段保温处理,出料,制得高导热氮化硅陶瓷。
其中,本实施例中的聚丙烯酰胺选自碧波牌分子量1800W、目数为80目的聚丙烯酰胺,购自巩义市碧波供水材料有限公司;聚乙烯醇选自可乐丽国际贸易(上海)有限公司KURARAY POVALTM牌聚乙烯醇。上述的原料厂家型号,均为支撑实施例中所采用的助剂,为试验所采用,在制备氮化硅陶瓷过程中,原料不仅限于上述厂家型号。
实施例2-7
实施例2-7与上述实施例1的区别在于:物料及工艺条件的差异,具体参见下表2。
表2实施例1-7的原料及工艺条件对照表
上述实施例3的聚硅氮烷选自安徽艾约塔硅油有限公司IOTA 9118型聚硅氮烷,分子量为1200-1400,粘度为10cp-40cp。
上述实施例中的脱模剂选自美琪林MQ-16型脱模剂。
对比例
对比例1
本对比例1与上述实施例5的区别在于:步骤S6中,气压炉中保持氮气流通,将步骤S5制得的坯体在速率为10℃/min、压力为-0.02MPa的条件下直接升温至1800℃;再而升温至1900℃进行第一段保温处理(保温压力为4.5MPa、保温时长为2h),第一段保温处理后,以1.5℃/min的速率降温至1600℃进行第二段保温处理(保温压力为4.5MPa、保温时长为5h).
对比例2
本对比例2与上述实施例5的区别在于:步骤S6中,气压炉中保持氮气流通,将步骤S5制得的坯体在速率为10℃/min、压力为-0.02MPa的条件下升温至1350℃(第一段升温处理);再而在速率为3℃/min、压力为3MPa的条件下升温至1800℃(第二段升温处理);再升温至1900℃,在压力为4.5MPa条件下直接保温处理7h。
对比例3
本对比例3与上述实施例5的区别在于:
步骤S2,陶瓷浆料的制备包括如下步骤:称量1kg平均粒度D50=0.5-2μm的α相氮化硅原粉,以该1kgα相氮化硅原粉的质量为准,加入1kg去离子水和和40g步骤S1制得的烧结助剂浆料在料球比为1:2、转速为300rpm条件下进行第一次球磨,球磨12h;取浆料进行测试,测得浆料粘度为890mPa·s,出料,制得陶瓷浆料。
步骤S3,将步骤S2制得的陶瓷浆料进行喷雾造粒(喷雾造粒条件参数与实施例5相同),制得陶瓷粉体。
步骤S4,将步骤S3制得的陶瓷粉体与8g分散剂、(4g聚丙烯酰胺、4g偏硅酸钠)、40g粘结剂(改性聚乙烯醇)、50g减水剂(三聚磷酸钠)、10g增塑剂(乙二醇)、10g塑型剂(尿素)、8g脱模剂,混合均匀后进行压制,先在压力为150MPa条件下进行干式压制,再用180MPa的压力进行湿式等静压压制,制得素坯(素坯尺寸与实施例5相同)。
步骤S5至步骤S6与实施例5相同。
对比例4
本对比例4与上述实施例5的区别在于:不需步骤S1将制备例3的烧结助剂与去离子水调配成烧结助剂浆料;直接将1.48g氮化硅镁、1.30g氟化钪、0.185gβ相氮化硅混合,然后与1kg平均粒度D50=0.5-2μm的α相氮化硅原粉混合均匀,在压力为150MPa条件下进行干式压制,再用180MPa的压力进行湿式等静压压制,制得素坯;(素坯尺寸与实施例5相同)。
步骤S5至步骤S6与实施例5相同。
对比例5
本对比例5与上述实施例5的区别在于:步骤S1中采用制备对比例1的烧结助剂与去离子水混合制备烧结助剂浆料。
对比例6
本对比例6与上述实施例5的区别在于:步骤S1中采用制备对比例2的烧结助剂与去离子水混合制备烧结助剂浆料。
对比例7
本对比例7与上述实施例5的区别在于:步骤S1中采用制备对比例3的烧结助剂与去离子水混合制备烧结助剂浆料。
对比例8
本对比例8与上述实施例5的区别在于:步骤S1中采用制备对比例4的烧结助剂与去离子水混合制备烧结助剂浆料。
性能检测试验
将制得的实施例1-7及对比例1-8制得的氮化硅陶瓷进行相对密度、硬度、断裂韧性、抗弯强度、热导率等性能测试,测试方法及测试结果如下所示。
(一)测试方法
相对密度参考标准《GB/T 25995-2010精细陶瓷密度和显气孔率试验方法》进行测定;
硬度参考标准《GB/T 16534-2009精细陶瓷室温硬度试验方法》进行测定;
断裂韧性参考标准《GB/T 23806-2009精细陶瓷断裂韧性试验方法-单边预裂纹梁法》进行测定;
抗弯强度参考标准《GB/T 6569-2006精细陶瓷弯曲强度试验方法》进行测定;
热导率参考标准《GB/T 39862-2021高热导率陶瓷导热系数的检测》进行测定。
(二)测试结果
表3实施例1-7及对比例1-8制得的氮化硅陶瓷性能数据表
本申请采用氮化硅镁、稀土无氧添加剂和β相氮化硅复合作为烧结助剂,并经过两段升温烧结及两段保温处理制得的氮化硅陶瓷具有优良的热导率、弯曲强度和断裂韧性等性能,能兼备力学性能及导热性能。
对比例1的氮化硅陶瓷制备工艺中以10℃/min的速率直接升温至1800℃,并没有分段升温至1350℃后再升温至1800℃,所制得的氮化硅陶瓷的硬度、弯曲强度和断裂韧性均有所下降,说明本申请先采用高速率升温至1350℃、后采用低速率缓慢升温至1800℃,能使烧结助剂完全熔融,并降低坯体的开裂情况,使制得的氮化硅具有优良的硬度、弯曲强度和断裂韧性等力学性能。
对比例2的氮化硅陶瓷制备工艺中在1850℃烧结保温7h后,则直接降温出料,并没有分段降温至1580℃再保温处理,所制得的氮化硅陶瓷热导率显著下降,硬度、弯曲强度和断裂韧性等力学性能稍有下昂,说明本申请以1-2℃/min的速率从1850℃逐步降温1580℃并进行第二段保温处理,能促使晶粒长大,减少晶粒缺陷问题,使氮化硅具有优良的热导率。
对比例3的氮化硅陶瓷制备工艺是将烧结助剂浆料与α相氮化硅原粉混合及喷雾造粒后,再与分散剂等其他助剂物料混合,继而压制成型、烧结;对比例4则是将烧结助剂与α相氮化硅原粉混合后直接压制形成素坯,继而烧结。对比例3-4所制得的氮化硅陶瓷的硬度、抗弯强度、断裂韧性均明显下降,热导率也有所降低,说明本申请通过先将分散剂、粘结剂等其他助剂成分与烧结助剂浆料、α相氮化硅原粉混合造粒后,再压制成型、烧结,能使氮化硅陶瓷具有优良的力学性能。
对比例5的烧结助剂采用制备对比例1的氮化硅镁、稀土氧化物(氧化镧)和β相氮化硅复合方案,对比例6的烧结助剂采用制备对比例2的氮化硅镁、稀土无氧添加物(氟化钪)和氧化镁复合方案,对比例8的烧结助剂采用制备对比例3的氧化镁、稀土无氧添加物(氟化钪)和β相氮化硅复合方案,对比例8的烧结助剂采用制备对比例4的稀土氧化物(氧化镧)和氧化镁复合方案。上述对比例5-8所制得的氮化硅陶瓷的热导率均显著下降,说明本申请采用氮化硅镁、稀土无氧添加剂和β相氮化硅复合作为烧结助剂,制得的氮化硅陶瓷具有优良的热导率、弯曲强度和断裂韧性等性能,能兼备力学性能及导热性能。
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。

Claims (8)

1.一种高导热氮化硅陶瓷,其特征在于:由包括以下原料制得:α相氮化硅原粉、烧结助剂浆料、分散剂、粘结剂、减水剂、增塑剂、塑型剂、脱模剂、去离子水;所述烧结助剂浆料由氮化硅陶瓷烧结助剂与去离子水混合制得;
所述氮化硅陶瓷烧结助剂包括氮化硅镁、稀土无氧添加剂和β相氮化硅,氮化硅镁、稀土无氧添加剂和β相氮化硅的混合重量比为(3-10):(3.5-8):1;
所述高导热氮化硅陶瓷的制备包括如下步骤:
S1、烧结助剂浆料的制备:将氮化硅镁、稀土添加剂和β相氮化硅加入至去离子水中,球磨搅拌,制得烧结助剂浆料;
S2、陶瓷浆料的制备:将步骤S1制得的烧结助剂浆料加入至球磨设备,加入去离子水和分散剂,然后依次加入粘结剂、减水剂、增塑剂、塑型剂,进行第一次球磨搅拌,然后加入α相氮化硅原粉,进行第二次球磨搅拌;最后加入脱模剂,进行第三次球磨搅拌,出料,制得陶瓷浆料;
S3、喷雾造粒:将步骤S2制得的陶瓷浆料在保护气氛下喷雾造粒,制得造粒粉体;
S4、压制成型:将步骤S3制得的造粒粉体依次进行干式压制和湿式等静压压制,制得素坯;
S5、初烧结及脱胶:将步骤S4制得的素坯在保护气氛下减压烧结,然后升温进行脱胶处理,制得坯体;
S6、二段升温烧结及二段保温处理:在保护气氛中,将步骤S5制得的坯体在550-1350℃条件下进行第一段升温处理,然后在1350-1800℃条件下进行第二段升温处理,再升温至1800-1900℃进行第一段保温处理,最后降温至1550-1600℃进行第二段保温处理,出料,制得高导热氮化硅陶瓷;
所述步骤S6中,第一段升温处理的升温速率为5-15℃/min,第二段升温处理的升温速率为2-5℃/min;第一段保温处理的温度降温至第二段保护处理的温度过程中,降温速率为1-2℃/min。
2.根据权利要求1所述的一种高导热氮化硅陶瓷,其特征在于:所述稀土无氧添加剂包括氟化钪、氟化钇、氟化镧、三氟化钐、氟化钆、四氟化铈、氟化镱、氟化铕中的至少一种。
3.根据权利要求1或2所述的一种高导热氮化硅陶瓷,其特征在于:所述氮化硅镁的粒径为5-10μm,稀土无氧添加剂的粒径为10-20μm,β相氮化硅的粒径为0.5-5μm。
4.根据权利要求1所述的一种高导热氮化硅陶瓷,其特征在于:所述烧结助剂浆料的加入量为α相氮化硅原粉质量的3-5%,所述分散剂的加入量为α相氮化硅原粉质量的0.5-1%,所述粘结剂的加入量为α相氮化硅原粉质量的3-5%,所述减水剂的加入量为α相氮化硅原粉质量的0.2-0.6%,所述增塑剂的加入量为α相氮化硅原粉质量的0.5-1.5%,所述塑型剂的加入量为α相氮化硅原粉质量的0.5-1.5%,所述脱模剂的加入量为α相氮化硅原粉质量的0.5-1%,所述去离子水与α相氮化硅原粉的混合质量比为(0.8-1.2):1。
5.根据权利要求1或4所述的一种高导热氮化硅陶瓷,其特征在于:所述α相氮化硅原粉的平均粒度D50=0.5-2μm;所述烧结助剂浆料的粘度为150-250mPa·s;所述分散剂包括聚丙烯酰胺、偏硅酸钠、聚乙二醇脂肪酸脂、纤维素衍生物、1-甲基戊醇中的至少一种;所述粘结剂包括聚乙烯醇、聚丙烯酸、聚硅氮烷中的至少一种;所述减水剂包括三聚磷酸钠、六偏磷酸钠、乙烯二胺四乙酸钠、柠檬酸钠、亚胺三乙酸钠中的至少一种;所述增塑剂为乙二醇;所述塑型剂为尿素。
6.根据权利要求1所述的一种高导热氮化硅陶瓷,其特征在于:所述步骤S1中,氮化硅镁、稀土无氧添加剂、β相氮化硅和去离子水的混合重量比为(3-10):(3.5-8):1:100;所述步骤S1中,球磨搅拌的转速为300-500rpm,搅拌时间为120-180min;
所述步骤S2中,球磨搅拌的料球比为1:(1-3);第一次球磨搅拌的时间为5-24h;第二次球磨搅拌的时间为24-48h;第三次球磨搅拌的时间为2-3h;三次球磨搅拌的转速为100-500rpm,三次球磨搅拌控制温度为20-30℃。
7.根据权利要求1所述的一种高导热氮化硅陶瓷,其特征在于:所述步骤S3中,喷雾造粒的保护气氛为氮气气氛或氩气气氛;喷雾造粒的离心转盘转速为10000-30000rpm,造粒进料口温度为190-250℃、出料口温度为80-110℃;
所述步骤S4中,干式压制的压力为120-180MPa,湿式等静压压制的压力为150-200MPa;
所述步骤S5中,初烧结是在压力为-0.05~-0.04MPa条件下从常温升温至500℃进行减压烧结;升温是以速率为1-1.5℃/min的速度升温至550-650℃,然后进行脱胶处理。
8.根据权利要求1所述的一种高导热氮化硅陶瓷,其特征在于:所述步骤S6中,保护气氛为氮气氛围或氩气氛围;第一段升温处理的气压压力为-0.03~-0.01MPa;第二段升温处理的气压压力为3-3.5MPa;
第一段保温处理的保温时长为2-3h,第一段保温处理的气压压力为4-4.5MPa;第二段保温处理的保温时间为2-8h。
CN202311234046.5A 2023-09-23 2023-09-23 一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法 Active CN117303917B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311234046.5A CN117303917B (zh) 2023-09-23 2023-09-23 一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311234046.5A CN117303917B (zh) 2023-09-23 2023-09-23 一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法

Publications (2)

Publication Number Publication Date
CN117303917A CN117303917A (zh) 2023-12-29
CN117303917B true CN117303917B (zh) 2024-07-30

Family

ID=89249228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311234046.5A Active CN117303917B (zh) 2023-09-23 2023-09-23 一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法

Country Status (1)

Country Link
CN (1) CN117303917B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118675671A (zh) * 2024-08-20 2024-09-20 江西省千陶新型材料有限公司 一种用于耐磨陶瓷釉料生产加工的参数优化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107399974A (zh) * 2016-05-22 2017-11-28 河北高富氮化硅材料有限公司 一种添加氟化物制备高导热氮化硅陶瓷的方法
CN109437890A (zh) * 2018-10-12 2019-03-08 东莞市煜田新材料有限公司 一种氧化锆陶瓷烧结助剂及其制法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101794410B1 (ko) * 2015-08-17 2017-11-07 한국과학기술원 고 열전도도 질화규소 소결체 및 이의 제조 방법
CN109206141A (zh) * 2018-08-27 2019-01-15 广东工业大学 一种高硬高韧氮化硅陶瓷及其制备方法和应用
CN115557792B (zh) * 2022-10-17 2023-11-03 天津大学 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法
CN116477955B (zh) * 2023-04-07 2024-07-19 中国工程物理研究院材料研究所 一种高导热氮化硅材料及其制备方法
CN116768637A (zh) * 2023-06-20 2023-09-19 河北鼎瓷电子科技有限公司 一种高韧性高强度高导热的氮化硅陶瓷基板的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107399974A (zh) * 2016-05-22 2017-11-28 河北高富氮化硅材料有限公司 一种添加氟化物制备高导热氮化硅陶瓷的方法
CN109437890A (zh) * 2018-10-12 2019-03-08 东莞市煜田新材料有限公司 一种氧化锆陶瓷烧结助剂及其制法与应用

Also Published As

Publication number Publication date
CN117303917A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
CN117303917B (zh) 一种氮化硅陶瓷烧结助剂、高导热氮化硅陶瓷及制备方法
CN100445235C (zh) 一种氮化铝增强碳化硅陶瓷及其制备方法
CN107721424B (zh) 一种凝胶注模成型制备yag透明陶瓷的方法
CN108203300B (zh) 一种高韧性、高电阻率碳化硅陶瓷的制备方法
CN115557792B (zh) 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法
CN110407213B (zh) 一种(Ta, Nb, Ti, V)C高熵碳化物纳米粉体及其制备方法
CN113105252A (zh) 一种制备氮化硅陶瓷的烧结助剂及其应用、氮化硅陶瓷的制备方法
CN108794016B (zh) 一种高红外透过率AlON透明陶瓷的快速制备方法
CN112159237A (zh) 一种高导热氮化硅陶瓷材料及其制备方法
CN113061023B (zh) 一种3d打印超轻多孔钇钡铜氧高温超导块材的制备方法
CN101734923A (zh) 一种氮化铝多孔陶瓷及其制备方法
CN112723875B (zh) 一种氧化镓掺杂氧化锡陶瓷靶材及制备方法
JP2951771B2 (ja) 希土類酸化物−アルミナ−シリカ焼結体およびその製造方法
CN115838290B (zh) 一种无压液相烧结碳化硅陶瓷及其制备方法
CN114890797A (zh) 一种氮化硅陶瓷基片的制备方法
CN115849885B (zh) 高纯高强度氧化铝陶瓷基板及其制备方法
CN112456971A (zh) 一种氧化镍基陶瓷靶材材料的冷等静压成型制备方法
CN110483080B (zh) 一种碳化硅粉体及其制备方法
CN112321280A (zh) 一种氧化镍基陶瓷靶材材料的凝胶注模成型制备方法
CN113354418B (zh) 一种真空热压烧结法制备的高性能氮化铝陶瓷基板及制备方法
CN117923926A (zh) 一种添加导电颗粒和导电纤维的氮化硅基导电陶瓷及其制备方法
CN116283251B (zh) 一种氧化铝陶瓷及其制备方法与应用
CN104230344A (zh) 一种添加多元烧结助剂的AlN陶瓷低温烧结制备方法
CN114702306B (zh) 一种95氧化铝陶瓷基片的制备方法及其产品
CN107382343B (zh) 一种AlON-BN复相陶瓷材料及其制备方法、应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant