CN115323300A - 钛合金配对摩擦副抗微动损伤防护方法 - Google Patents

钛合金配对摩擦副抗微动损伤防护方法 Download PDF

Info

Publication number
CN115323300A
CN115323300A CN202210879966.1A CN202210879966A CN115323300A CN 115323300 A CN115323300 A CN 115323300A CN 202210879966 A CN202210879966 A CN 202210879966A CN 115323300 A CN115323300 A CN 115323300A
Authority
CN
China
Prior art keywords
titanium alloy
friction pair
layer
pair part
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210879966.1A
Other languages
English (en)
Other versions
CN115323300B (zh
Inventor
马国佳
余庆陶
刘星
孙刚
贾东旭
张昊泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Beijing Aeronautical Manufacturing Technology Research Institute
Original Assignee
AVIC Beijing Aeronautical Manufacturing Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Beijing Aeronautical Manufacturing Technology Research Institute filed Critical AVIC Beijing Aeronautical Manufacturing Technology Research Institute
Priority to CN202210879966.1A priority Critical patent/CN115323300B/zh
Publication of CN115323300A publication Critical patent/CN115323300A/zh
Application granted granted Critical
Publication of CN115323300B publication Critical patent/CN115323300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F3/00Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/04Treatment of selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种钛合金配对摩擦副抗微动损伤防护方法,包括:在第一钛合金摩擦副零件表面形成激光冲击强化层;在所述激光冲击强化层上形成CuNiIn软涂层;在第二钛合金摩擦副零件表面形成软硬DLC纳米叠层薄膜。通过对第一钛合金摩擦副零件进行激光冲击强化,使其表面形成压应力改性的激光冲击强化层,用以提高第一钛合金摩擦副零件的疲劳强度和抗微动疲劳能力,防止裂纹在基体材料上的萌生,然后在激光冲击强化层上制备CuNiIn软涂层,来减少微动的滑移和混合区。在第二钛合金摩擦副零件软硬DLC纳米叠层薄膜,硬质DLC层用以增加接触表面强度,DLC润滑层用以降低表面摩擦系数,通过表面减摩来达到减缓磨损程度。

Description

钛合金配对摩擦副抗微动损伤防护方法
技术领域
本发明涉及钛合金加工技术领域,具体涉及一种钛合金配对摩擦副抗微动损伤防护方法。
背景技术
微动磨损是指相互压紧的金属表面间由于小振幅振动而产生的一种复合形式的磨损,一般发生在紧配合的轴颈,一般认为微动磨损的机理是:摩擦表面间的法向压力是表面上的微凸体黏着,微动磨损区域摩擦热量不易扩散,易导致对磨金属粘连,黏合点被小振幅振动剪断成为磨屑,同时因为振幅极小磨屑不易排出,磨屑接着被氧化,被氧化的磨屑在磨损过程中起着磨粒的作用,硬质金属氧化物磨屑进一步加速磨损,使摩擦表面形成麻点或虫纹形伤疤,这些麻点或伤疤是应力集中的根源,在交变的应力下导致裂纹逐渐在表面或次表面萌生并且扩展从而引起微动疲劳。
近年来,轻质钛合金的高比强度、较宽的工作温度和优异的耐腐蚀性能,使其在航空航天工业得到广泛应用,但是由于钛合金最外层电子结构排布缺陷,钛合金导热性差、易粘连、氧化物硬度高,同时由于航空航天服役环境苛刻,其零部件微动磨损问题比较突出,如飞机钛合金紧固件微动损伤失效、发动机风扇的叶盘或叶盘失效,以及一些销类和轴类零件微动损伤失效等。
目前,微动磨损表面防护主要有三种方法,一是消除微动的滑移和混合区,以减少微动磨损;二是增加接触表面强度,通过提高基体表面接触强度和耐磨性能,以减小微动磨损;三是降低表面摩擦系数。
上述三种微动磨损表面防护的方法较为单一,防护效果差等问题。
因此,本发明提供了一种钛合金配对摩擦副抗微动损伤防护方法。
发明内容
(1)要解决的技术问题
本发明实施例提供了一种钛合金配对摩擦副抗微动损伤防护方法,解决了现有技术中微动磨损表面防护方法较为单一,防护效果差的技术问题。
(2)技术方案
为了解决上述技术问题,本发明提出了一种钛合金配对摩擦副抗微动损伤防护方法,包括:
在第一钛合金摩擦副零件表面形成激光冲击强化层;
在所述激光冲击强化层上形成CuNiIn软涂层;
在第二钛合金摩擦副零件表面形成软硬DLC纳米叠层薄膜。
可选地,所述在第一钛合金摩擦副零件表面形成激光冲击强化层,包括:
在第一钛合金摩擦副零件表面获取激光强化区和非激光强化区;
对所述激光强化区进行激光冲击强化,形成所述激光强化层;
对所述非激光强化区进行喷砂处理。
可选地,所述对所述激光强化区进行激光冲击强化,形成所述激光强化层,包括:
将铝箔胶带粘贴在所述激光强化区;
将去离子水流过所述铝箔胶带,以形成水膜;
采用激光器在所述水膜上进行激光冲击强化,以形成所述激光强化层。
可选地,所述水膜的厚度为0.5~2mm。
可选地,采用热喷涂方法在所述第一钛合金摩擦副零件表面形成CuNiIn软涂层。
可选地,所述在所述第二钛合金摩擦副零件表面形成软硬DLC纳米叠层薄膜,包括:
在所述第二钛合金摩擦副零件表面形成渗氮层;
在所述渗氮层表面形成过渡层;
在所述过渡层表面形成硬质DLC层;
在所述硬质DLC层上形成DLC润滑层。
可选地,所述在所述渗氮层表面形成过渡层,包括:
在所述渗氮层表面形成金属层或硅层;
在所述金属层或硅层表面形成金属氮化物层或碳化硅层。
可选地,所述在所述第二钛合金摩擦副零件表面形成渗氮层,包括:
将所述第二钛合金摩擦副零件放入真空环境内;
对所述第二钛合金摩擦副零件进行离子清洗;
对所述第二钛合金摩擦副零件进行渗氮,以在所述第二钛合金摩擦副零件表面形成渗氮层。
可选地,所述渗氮层的厚度大于10μm。
可选地,所述第一钛合金摩擦副零件为轴形,所述第二钛合金摩擦副零件为环状结构。
(3)有益效果
综上,本发明的钛合金配对摩擦副抗微动损伤防护方法中,通过对第一钛合金摩擦副零件进行激光冲击强化,使其表面形成压应力改性的激光冲击强化层,用以提高第一钛合金摩擦副零件的疲劳强度和抗微动疲劳能力,防止裂纹在基体材料上的萌生,然后在激光冲击强化层上制备CuNiIn软涂层,来减少微动的滑移和混合区,利用CuNiIn软涂层消除微动的滑移和混合区。在第二钛合金摩擦副零件上形成软硬DLC纳米叠层薄膜,软硬DLC纳米叠层薄膜通过沉积方法和工艺参数来控制其SP3含量和硬度,硬质DLC层用以增加接触表面强度,DLC润滑层用以降低表面摩擦系数,通过表面减摩来达到减缓磨损程度。利用软硬DLC纳米叠层薄膜产生高硬度,增加接触表面强度,通过软硬DLC纳米叠层薄膜设计,形成软硬交替结构,释放硬质膜层应力,同时通过纳米叠层结构,可以使软硬DLC纳米叠层薄膜整体产生的高硬度,提高其表面接触表面强度和承载能力,通过软硬DLC纳米叠层薄膜在磨损中不断释放石墨(sp2)相,降低表面摩擦系数,通过表面减摩来达到减缓磨损程度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中第一钛合金摩擦副零件和第二钛合金摩擦副零件的剖面图;
图2是本发明一实施例中第一钛合金摩擦副零件的TEM图;
图3是本发明一实施例中第二钛合金摩擦副零件的TEM图。
图中:1-第一钛合金摩擦副零件;2-激光冲击强化层;3-CuNiIn软涂层;4-第二钛合金摩擦副零件;5-渗氮层;6-金属层或硅层;7-金属氮化物层或碳化硅层;8-硬质DLC层;9-DLC润滑层。
具体实施方式
下面结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本发明的原理,但不能用来限制本发明的范围,即本发明不限于所描述的实施例,在不脱离本发明的精神的前提下覆盖了零件、部件和连接方式的任何修改、替换和改进。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参照附图并结合实施例来详细说明本发明。
需要明确的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。本发明并不局限于上文所描述并在图中示出的特定步骤和结构。并且,为了简明起见,这里省略对已知方法技术的详细描述。
请参照图1至图3,本实施例提出了一种钛合金配对摩擦副抗微动损伤防护方法,包括:
S1、在第一钛合金摩擦副零件1表面形成激光冲击强化层2;
S2、在所述激光冲击强化层2上形成CuNiIn软涂层3;
S3、在第二钛合金摩擦副零件4表面形成软硬DLC(Diamond-likeCarbon,类金刚石)纳米叠层薄膜。
本实施例的钛合金配对摩擦副抗微动损伤防护方法中,通过对第一钛合金摩擦副零件1进行激光冲击强化,使其表面形成压应力改性的激光冲击强化层2,用以提高第一钛合金摩擦副零件1的疲劳强度和抗微动疲劳能力,防止裂纹在基体材料上的萌生,然后在激光冲击强化层2上制备CuNiIn软涂层3,来减少微动的滑移和混合区,利用CuNiIn软涂层3消除微动的滑移和混合区。在第二钛合金摩擦副零件4上形成软硬DLC纳米叠层薄膜,软硬DLC纳米叠层薄膜通过沉积方法和工艺参数来控制其SP3含量和硬度,软硬DLC纳米叠层薄膜包括硬质DLC层8和DLC润滑层9,硬质DLC层8用以增加接触表面强度,DLC润滑层9用以降低表面摩擦系数,通过表面减摩来达到减缓磨损程度。利用软硬DLC纳米叠层薄膜产生高硬度,增加接触表面强度,通过软硬DLC纳米叠层薄膜设计,形成软硬交替结构,释放硬质膜层应力,同时通过纳米叠层结构,可以使软硬DLC纳米叠层薄膜整体产生的高硬度,提高其表面接触表面强度和承载能力,通过软硬DLC纳米叠层薄膜在磨损中不断释放石墨(sp2)相,降低表面摩擦系数,通过表面减摩来达到减缓磨损程度。
其中,DLC是一种非晶碳,CuNiIn软涂层3中,Cu表示铜元素,Ni表示镍元素,In表示铟元素。
在一实施例中,所述第一钛合金摩擦副零件1为轴形,所述第二钛合金摩擦副零件4为环状结构。
对于环、套类半闭式结构或可拆分式环、套类结构,采用阴极弧和磁控溅射来制备过渡层和DLC涂层;对于环、套类封闭式结构,则采用PECVD技术使四甲基硅烷、乙炔、氢气等气体放电,沉积过渡层和DLC涂层。
在一实施例中,所述在第一钛合金摩擦副零件1表面形成激光冲击强化层2,包括:
S11、在第一钛合金摩擦副零件1表面获取激光强化区和非激光强化区;
S12、对所述激光强化区进行激光冲击强化,形成所述激光强化层;
S13、对所述非激光强化区进行喷砂处理。
具体的,采用46目刚玉砂非激光强化区喷砂处理,处理后采用高压空气清除表面残余颗粒。喷砂处理能够去除非激光强化区氧化层,还能够适当增加非激光强化区的粗糙度,可以增大CuNiIn软涂层3的涂层结合力;
在一实施例中,所述对所述激光强化区进行激光冲击强化,形成所述激光强化层,包括:
S121、将铝箔胶带粘贴在所述激光强化区;
S122、将去离子水流过所述铝箔胶带,以形成水膜;
S123、采用激光器在所述水膜上进行激光冲击强化,以形成所述激光强化层。
其中,铝箔胶带作为吸收层,水膜作为抑制层。激光器发射的激光脉冲轰击铝箔胶带,铝箔胶带离化形成等离子体,等离子体的膨胀受到水膜的抑制作用对表面施加瞬间的压应力,在表面形成1~3mm深的压应力层,压应力层一方面可以抵消CuNiIn软涂层3所带来的疲劳强度下降,还可以较大幅度提高第一钛合金摩擦副零件1的疲劳寿命。此外,即使第一钛合金摩擦副零件1表面因磨损发生裂纹萌生,压应力层的也可以有效阻止裂纹的扩展。
在一实施例中,所述水膜的厚度为0.5~2mm。
在一实施例中,采用热喷涂方法在所述第一钛合金摩擦副零件1表面形成CuNiIn软涂层3。同时打开风刀,控制第一钛合金摩擦副零件1温度,待第一钛合金摩擦副零件1热喷涂结束并冷却后,采用磨床将CuNiIn软涂层3磨削至要求尺寸。
在一实施例中,所述在所述第二钛合金摩擦副零件4表面形成软硬DLC纳米叠层薄膜,包括:
S31、在所述第二钛合金摩擦副零件4表面形成渗氮层5;
S32、在所述渗氮层5表面形成过渡层;
S33、在所述过渡层表面形成硬质DLC层8;
S34、在所述硬质DLC层8上形成DLC润滑层9。
使用气相沉积技术(磁控溅射复合阴极弧或PECVD)在过渡层表面沉积4~10微米左右硬质DLC层8和DLC润滑层9。具体的,对于环、套类半闭式结构或可拆分式环、套类结构,采用阴极弧沉积制备较硬的W-DLC(a-C)膜层,采用磁控溅射沉积制备较软的W-DLC(a-C)膜层,通过不同制备方法实现不同膜层硬度及SP3/SP2占比,单膜层最佳厚度应控制在200nm以下;对于环、套类封闭式结构,采用PECVD技术使四甲基硅烷、乙炔、氢气等气体放电,沉积叠层DLC(a-C:H/Si-a-C:H),通过不同气体流量比控制,实现不同膜层硬度及SP3/SP2占比,单膜层最佳厚度应控制在200nm以下。
通过软硬DLC纳米叠层薄膜设计,形成软硬交替结构,释放硬质DLC层8应力,同时通过纳米叠层结构,可以使DLC叠层整体产生的高硬度,提高其表面接触表面强度和承载能力,通过DLC润滑层9在磨损中不断释放石墨(sp2)相,降低表面摩擦系数,通过表面减摩来达到减缓磨损程度。
对于环、套类半闭式结构或可拆分式环、套类结构:采用不同制备方法形成不同硬度及SP3/SP2占比的膜层,其中阴极弧沉积方法离化率高,可以形成SP3键含量较高的DLC,因此用于硬质DLC层8制备,磁控溅射沉积方法离化率低,可以形成SP2键含量较高的DLC(也称为GLC),因此用于DLC润滑层9制备。对于环、套类封闭式结构:采用PECVD技术使四甲基硅烷、乙炔等气体放电形成Si-a-C:H薄膜,通过Si原子替代薄膜中的C原子,形成Si-C键,减少C-C畸变,释放了应力,从而形成含SP2含量较多的,软DLC膜层,采用PECVD技术使乙炔、氢气等气体放电形成a-C:H薄膜,形成SP3键含量较高的DLC。
在一实施例中,所述在所述渗氮层5表面形成过渡层,包括:
S321、在所述渗氮层5表面形成金属层或硅层6;
S322、在所述金属层或硅层6表面形成金属氮化物层或碳化硅层7。
使用气相沉积技术(PVD,阴极弧或磁控溅射)或PECVD(空心阴极、阳极层、微波及射频等离子体沉积等)在渗氮层5表面沉积2微米以下的过渡层。其中,过渡层包括金属层或硅层6中的一者和金属氮化物层或碳化硅层7中的一者。在所述金属氮化物层或碳化硅层7表面形成硬质DLC层8。
具体的,对于环、套类半闭式结构或可拆分式环、套类结构,阴极弧或磁控溅射放电粒子可达的第二钛合金摩擦副零件4,则采用阴极弧或磁控溅射沉积金属和金属化合物组合的过渡层,对于环、套类封闭式结构的第二钛合金摩擦副零件4,阴极弧或磁控溅射放电粒子不可达的零件,则采用PECVD技术使四甲基硅烷、乙炔、氢气等气体放电,沉积Si和SiC组合的过渡层。
通过对第二钛合金摩擦副零件4的渗氮层5表面沉积过渡层,降低了硬质DLC层8、DLC润滑层9和第二钛合金摩擦副零件4之间由于热膨胀系数不一致导致的应力,同时在硬质DLC层8、DLC润滑层9和第二钛合金摩擦副零件4形成了支撑层,使硬度逐渐过渡,减小由于硬度不匹配导致的接触应力集中,最终表现为提高薄膜结合力;由于PVD沉积过程中,粒子输运有一定方向性,对于环、套类封闭式结构内壁很难均匀镀制,而PECVD沉积,主要通过气体放电,粒子输运有绕射性,因此采用PECVD沉积更为合适。
在一实施例中,所述在所述第二钛合金摩擦副零件4表面形成渗氮层5,包括:
S311、将所述第二钛合金摩擦副零件4放入真空环境内;
S312、对所述第二钛合金摩擦副零件4进行离子清洗;
S313、对所述第二钛合金摩擦副零件4进行渗氮,以在所述第二钛合金摩擦副零件4表面形成渗氮层5。
具体的,S311、将所述第二钛合金摩擦副零件4放入真空环境内,包括:将第二钛合金摩擦副零件4放入真空室装夹,将真空室抽真空后通入氩气,并打开离子源与工件偏压,对第二钛合金摩擦副零件4表面进行离子清洗,去除表面氧化物与有机物。通过惰性气体离子对第二钛合金摩擦副零件4表面沉积区域进行轰击,可以去除第二钛合金摩擦副零件4表面的有机物和金属氧化物,同时活化金属基体表面,增大薄膜结合力。
在一实施例中,所述渗氮层5的厚度大于10μm。,具体的,采用低温等离子渗氮技术,对第二钛合金摩擦副零件4进行渗氮,通过低温等离子体渗氮,能够提高第二钛合金摩擦副零件4的硬度,从而减少第二钛合金摩擦副零件4与过渡层之间物理性能的错配,提高硬质DLC层8和DLC润滑层9结合强度。
下面通过具体实施例对本发明的技术方案及技术效果进行详细说明,以下实施例仅仅是本发明的部分实施例,并非对本发明作出具体限定。
实施例1
当第二钛合金摩擦副零件4为环、套类半闭式结构或可拆分式环、套类结构,所述钛合金配对摩擦副抗微动损伤防护方法包括:
1.将第一钛合金摩擦副零件1用去离子水超声波清洗30min后,采用酒精进一步擦拭后晾干,选择第一钛合金摩擦副零件1进行激光冲击强化。具体的,将铝箔胶带粘贴在激光强化区作为吸收层,将第一钛合金摩擦副零件1固定到工装上,然后将去离子水均匀流过铝箔胶带,形成0.5~2mm的水膜,作为抑制层,使用激光器,对水膜进行均匀强化,选择脉宽15纳秒,脉冲频率30焦耳、光斑尺寸4mm*4mm,频率2赫兹。
2.将激光强化后的第一钛合金摩擦副零件1用脱脂纱布和酒精擦拭干净,使用工装、胶带对钛合金零件的非激光强化区进行防护,将零件装入工装,旋转,然后采用46目刚玉砂喷砂处理,处理后采用高压空气清除表面残余颗粒。
3.在喷砂后2小时内,采用超音速火焰喷涂制备CuNiIn软涂层3,其中氧气流量820升/分钟,煤油流量20升/小时,铜镍铟粉末送粉速率70克/分钟,喷枪口距表面320mm,工件转速8转/分钟,同时打开风刀,控制零件温度在200℃以下,涂层厚度在0.4mm,待零件喷涂结束,并冷却后采用磨床将涂层磨削至0.15mm;
4.将第二钛合金摩擦副零件4进行非镀膜区域防护,放入真空室装夹,将真空室内气压降至0.1Pa,通入氩气,流量为150sccm,并打开微波气体离子源,将功率设定为600W,将工件偏压增加至1000V,对工件表面进行离子清洗30min,去除表面氧化物与有机物;
5.采用低温等离子渗技术,对第二钛合金摩擦副零件4进行渗氮,保持微波气体离子源功率不变,将氩气关闭,通入氮气,流量为200sccm,工件偏压调为300V,真空室内温度调整为400℃,工作时间6-8小时,使渗层深度达到≥10μm;
6.使用阴极弧沉积技术进行金属Ti和金属氮化物TiN沉积,关闭氮气,将真空室温度调至300℃,氩气流量调整为150sccm,真空室内气压保持为1.3Pa,工件偏压120V,打开Ti阴极弧靶将电流调整为100A,在工件表面沉积Ti金属层30min,然后将氩气流量调整为50sccm,氮气流量100sccm,沉积TiN层40min,使金属层和金属氮化物层总厚度在2微米以下。
7.关闭氮气、离子源和偏压,但保留氩气,将真空室温度降至150℃,然后采用阴极弧源与磁控溅射源交替沉积形成4微米左右软硬DLC纳米叠层薄膜,将氩气流量调整为150sccm,真空室内气压保持为1.3Pa,打开C阴极弧源靶,电流调整为100A,打开W磁控溅射靶,调节电流1A,调节工件偏压为120V,沉积时间5min,将C阴极弧源靶关闭,打开C磁控溅射靶,电流调整为10A,其它不变,沉积时间10min,形成单膜层约200nm的软硬叠层DLC,交替沉积10次。
8.关闭靶源、偏压和加热装置,在Ar气气氛下进行冷却,至少2小时。
实施例2
当第二钛合金摩擦副零件4为环、套类封闭式结构,所述钛合金配对摩擦副抗微动损伤防护方法包括:
1.将第一钛合金摩擦副零件1用去离子水超声波清洗30min后,采用酒精进一步擦拭后晾干,选择第一钛合金摩擦副零件1进行激光冲击强化。具体的,将铝箔胶带粘贴在激光强化区作为吸收层,将零件固定到工装上,然后将去离子水均匀流过铝箔胶带,形成0.5-2mm的水膜作为抑制层,使用激光器,对水膜进行均匀强化,选择脉宽15纳秒,脉冲频率30焦耳、光斑尺寸4mm*4mm,频率2赫兹。
2.将激光强化后的第一钛合金摩擦副零件1用脱脂纱布和酒精擦拭干净,使用工装、胶带对钛合金零件的非激光强化区进行防护,将零件装入工装,旋转,然后采用46目刚玉砂喷砂处理,处理后采用高压空气清除表面残余颗粒。
3.在喷砂后2小时内,采用超音速火焰喷涂制备CuNiIn软涂层3,其中氧气流量820升/分钟,煤油流量20升/小时,铜镍铟粉末送粉速率70克/分钟,喷枪口距表面320mm,工件转速8转/分钟,同时打开风刀,控制零件温度在200℃以下,涂层厚度在0.4mm,待零件喷涂结束,并冷却后采用磨床将涂层磨削至0.15mm;
4.将第二钛合金摩擦副零件4进行非镀膜区域防护,放入真空室装夹,将真空室内气压降至0.1Pa,通入氩气,流量为150sccm,并打开微波气体离子源,将功率设定为600W,将工件偏压增加至1000V,对工件表面进行离子清洗30min,去除表面氧化物与有机物;
5.采用低温等离子渗技术,对第二钛合金摩擦副零件4进行渗氮,保持微波气体离子源功率不变,将氩气关闭,通入氮气,流量为200sccm,工件偏压调为300V,真空室内温度调整为400℃,工作时间6-8小时,使渗层深度达到≥10μm;
6.使用微波气体离子源,功率设定600W,真空室内温度调整为150℃,采用四甲基硅烷和氢气作为反应气体,气体流量分别60sccm和40sccm,氩气作为辅助放电气体,流量为20sccm,基体偏压为80V,进行粘结层Si膜沉积,沉积30min,然后再通入乙炔气体,流量为60sccm,关闭氩气,氢气流量调为50sccm,其它不变,沉积SiC膜层,沉积时间40min,形成1微米左右的Si+SiC的过渡层。
7.使用微波气体离子源,功率设定为800W,通过控制交替改变输入真空室反应气体种类,形成4微米左右的叠层a-C:H/Si-a-C:H涂层,其中a-C:H膜层沉积采用乙炔和氢气作为反应气体,气体流量分别为160sccm和30sccm,基体偏压为80V,沉积时间为10min,Si-a-C:H膜层沉积采用四甲基硅烷和乙炔作为反应气体,气体流量分别为60sccm和160sccm,基体偏压为80V,沉积时间为10min,形成单膜层约200nm的软硬叠层DLC,如此交替控制通入气体种类和流量,重复10次。
8.关离子源、偏压和加热装置,在Ar气气氛下进行冷却,至少2小时。
以上仅为本发明的实施例而已,并不限制于本发明。在不脱离本发明的范围的情况下对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围内。

Claims (10)

1.一种钛合金配对摩擦副抗微动损伤防护方法,其特征在于,包括:
在第一钛合金摩擦副零件表面形成激光冲击强化层;
在所述激光冲击强化层上形成CuNiIn软涂层;
在第二钛合金摩擦副零件表面形成软硬DLC纳米叠层薄膜。
2.根据权利要求1所述的钛合金配对摩擦副抗微动损伤防护方法,其特征在于,所述在第一钛合金摩擦副零件表面形成激光冲击强化层,包括:
在第一钛合金摩擦副零件表面获取激光强化区和非激光强化区;
对所述激光强化区进行激光冲击强化,形成所述激光强化层;
对所述非激光强化区进行喷砂处理。
3.根据权利要求2所述的钛合金配对摩擦副抗微动损伤防护方法,其特征在于,所述对所述激光强化区进行激光冲击强化,形成所述激光强化层,包括:
将铝箔胶带粘贴在所述激光强化区;
将去离子水流过所述铝箔胶带,以形成水膜;
采用激光器在所述水膜上进行激光冲击强化,以形成所述激光强化层。
4.根据权利要求3所述的钛合金配对摩擦副抗微动损伤防护方法,其特征在于,所述水膜的厚度为0.5~2mm。
5.根据权利要求1所述的钛合金配对摩擦副抗微动损伤防护方法,其特征在于,采用热喷涂方法在所述第一钛合金摩擦副零件表面形成CuNiIn软涂层。
6.根据权利要求1所述的钛合金配对摩擦副抗微动损伤防护方法,其特征在于,所述在所述第二钛合金摩擦副零件表面形成软硬DLC纳米叠层薄膜,包括:
在所述第二钛合金摩擦副零件表面形成渗氮层;
在所述渗氮层表面形成过渡层;
在所述过渡层表面形成硬质DLC层;
在所述硬质DLC层上形成DLC润滑层。
7.根据权利要求6所述的钛合金配对摩擦副抗微动损伤防护方法,其特征在于,所述在所述渗氮层表面形成过渡层,包括:
在所述渗氮层表面形成金属层或硅层;
在所述金属层或硅层表面形成金属氮化物层或碳化硅层。
8.根据权利要求6所述的钛合金配对摩擦副抗微动损伤防护方法,其特征在于,所述在所述第二钛合金摩擦副零件表面形成渗氮层,包括:
将所述第二钛合金摩擦副零件放入真空环境内;
对所述第二钛合金摩擦副零件进行离子清洗;
对所述第二钛合金摩擦副零件进行渗氮,以在所述第二钛合金摩擦副零件表面形成渗氮层。
9.根据权利要求6所述的钛合金配对摩擦副抗微动损伤防护方法,其特征在于,所述渗氮层的厚度大于10μm。
10.根据权利要求1至9任一项所述的钛合金配对摩擦副抗微动损伤防护方法,其特征在于,所述第一钛合金摩擦副零件为轴形,所述第二钛合金摩擦副零件为环状结构。
CN202210879966.1A 2022-07-25 2022-07-25 钛合金配对摩擦副抗微动损伤防护方法 Active CN115323300B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210879966.1A CN115323300B (zh) 2022-07-25 2022-07-25 钛合金配对摩擦副抗微动损伤防护方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210879966.1A CN115323300B (zh) 2022-07-25 2022-07-25 钛合金配对摩擦副抗微动损伤防护方法

Publications (2)

Publication Number Publication Date
CN115323300A true CN115323300A (zh) 2022-11-11
CN115323300B CN115323300B (zh) 2023-04-07

Family

ID=83920310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210879966.1A Active CN115323300B (zh) 2022-07-25 2022-07-25 钛合金配对摩擦副抗微动损伤防护方法

Country Status (1)

Country Link
CN (1) CN115323300B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352493A (en) * 1991-05-03 1994-10-04 Veniamin Dorfman Method for forming diamond-like nanocomposite or doped-diamond-like nanocomposite films
CN101518935A (zh) * 2008-12-06 2009-09-02 舟山市汉邦机械科技有限公司 Pvd纳米复合陶瓷涂层螺杆及其制造方法
CN105506625A (zh) * 2015-12-22 2016-04-20 中国航空工业集团公司北京航空制造工程研究所 一种基于模具基体工作表面的防护涂层的制备方法
CN106191794A (zh) * 2016-06-30 2016-12-07 上海材料研究所 钛合金表面超硬减摩耐磨复合膜层的覆层方法及钛合金材料
CN108118294A (zh) * 2017-12-25 2018-06-05 珠海格力节能环保制冷技术研究中心有限公司 气缸结构及具有其的压缩机
CN111218663A (zh) * 2020-03-05 2020-06-02 上海新弧源涂层技术有限公司 一种类金刚石保护性涂层及其制备方法
CN111961837A (zh) * 2020-08-13 2020-11-20 大连理工大学 一种激光冲击与涂层润滑复合改性的抗微动疲劳防护方法
CN112458274A (zh) * 2020-10-27 2021-03-09 成都飞机工业(集团)有限责任公司 一种基于钛合金工件表面抗微动磨损涂层的制备方法
CN114000147A (zh) * 2021-11-03 2022-02-01 江苏徐工工程机械研究院有限公司 一种耐磨橡胶材料及制备方法
CN114351088A (zh) * 2022-01-06 2022-04-15 中国矿业大学 一种固体自润滑涂层及其制备方法
CN114481027A (zh) * 2022-01-29 2022-05-13 中国航空制造技术研究院 一种类金刚石厚膜及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352493A (en) * 1991-05-03 1994-10-04 Veniamin Dorfman Method for forming diamond-like nanocomposite or doped-diamond-like nanocomposite films
CN101518935A (zh) * 2008-12-06 2009-09-02 舟山市汉邦机械科技有限公司 Pvd纳米复合陶瓷涂层螺杆及其制造方法
CN105506625A (zh) * 2015-12-22 2016-04-20 中国航空工业集团公司北京航空制造工程研究所 一种基于模具基体工作表面的防护涂层的制备方法
CN106191794A (zh) * 2016-06-30 2016-12-07 上海材料研究所 钛合金表面超硬减摩耐磨复合膜层的覆层方法及钛合金材料
CN108118294A (zh) * 2017-12-25 2018-06-05 珠海格力节能环保制冷技术研究中心有限公司 气缸结构及具有其的压缩机
CN111218663A (zh) * 2020-03-05 2020-06-02 上海新弧源涂层技术有限公司 一种类金刚石保护性涂层及其制备方法
CN111961837A (zh) * 2020-08-13 2020-11-20 大连理工大学 一种激光冲击与涂层润滑复合改性的抗微动疲劳防护方法
US20220049325A1 (en) * 2020-08-13 2022-02-17 Dalian University Of Technology Method for protection against fretting fatigue by compound modification via laser shock peening and coating lubrication
CN112458274A (zh) * 2020-10-27 2021-03-09 成都飞机工业(集团)有限责任公司 一种基于钛合金工件表面抗微动磨损涂层的制备方法
CN114000147A (zh) * 2021-11-03 2022-02-01 江苏徐工工程机械研究院有限公司 一种耐磨橡胶材料及制备方法
CN114351088A (zh) * 2022-01-06 2022-04-15 中国矿业大学 一种固体自润滑涂层及其制备方法
CN114481027A (zh) * 2022-01-29 2022-05-13 中国航空制造技术研究院 一种类金刚石厚膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
俞应炜等: "安装螺栓激光强化及火焰喷涂CuNiIn工艺研究", 《新技术新工艺》 *

Also Published As

Publication number Publication date
CN115323300B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
JP2004010923A (ja) 摺動部材及びその製造方法
JP6337944B2 (ja) 被覆工具
RU2360032C1 (ru) Способ получения износостойких сверхтвердых покрытий
JP2011089172A (ja) ダイヤモンドライクカーボン皮膜形成部材及びその製造方法
CN113186493B (zh) 一种金刚石/金属碳化物复合耐磨涂层的制备方法
JP4558549B2 (ja) 被覆部材の製造方法
JP2004169137A (ja) 摺動部材
CN111378927A (zh) 一种敷设在弹性基底上的硬质薄膜结构及制备方法
CN111334794A (zh) 一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法
JP3980053B2 (ja) 硬質物質層の製造方法
JP4122387B2 (ja) 複合硬質皮膜、その製造方法及び成膜装置
CN107058948A (zh) 一种软硬复合涂层刀具及其制备方法
CN109023264B (zh) 一种高硬TiCN纳米复合薄膜及其制备方法、模具
CN106119785A (zh) 一种具备耐磨耐蚀涂层钨镍合金的制备方法
JP2004084014A (ja) ダイヤモンドライクカーボン膜のコーティング方法および塑性加工用金型
JP2007277663A (ja) 摺動材
JP2003247060A (ja) 非晶質炭素被膜の製造方法及び非晶質炭素被覆摺動部品
JP5126867B2 (ja) 炭素膜の製造方法
JP2013087325A (ja) 硬質炭素膜及びその形成方法
CN115323300B (zh) 钛合金配对摩擦副抗微动损伤防护方法
CN109023243A (zh) 一种超强韧、低摩擦碳基刀具涂层及其制备方法
JP6308298B2 (ja) 被覆工具の製造方法
CN110735107A (zh) 一种类金刚石涂层制备前的离子表面刻蚀方法
WO2023066510A1 (en) Method for forming hard and ultra-smooth a-c by sputtering
CN109554667B (zh) 一种TA15合金表面耐磨Nb-N共渗层及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant