CN111334794A - 一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法 - Google Patents

一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法 Download PDF

Info

Publication number
CN111334794A
CN111334794A CN202010155390.5A CN202010155390A CN111334794A CN 111334794 A CN111334794 A CN 111334794A CN 202010155390 A CN202010155390 A CN 202010155390A CN 111334794 A CN111334794 A CN 111334794A
Authority
CN
China
Prior art keywords
substrate
transition layer
film
carbon
doped diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010155390.5A
Other languages
English (en)
Other versions
CN111334794B (zh
Inventor
王静
王宁
侯保荣
戈成岳
李红玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Oceanology of CAS
Original Assignee
Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Oceanology of CAS filed Critical Institute of Oceanology of CAS
Priority to CN202010155390.5A priority Critical patent/CN111334794B/zh
Publication of CN111334794A publication Critical patent/CN111334794A/zh
Application granted granted Critical
Publication of CN111334794B publication Critical patent/CN111334794B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于材料表面改性领域,具体涉及一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法。采用等离子体增强非平衡磁控溅射物理气相沉积(PEUMS‑PVD)和等离子体增强化学气相沉积(PECVD)相结合技术于基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜。本发明改性膜,表面致密,耐磨、耐蚀性能良好,尤其适用于海洋大气腐蚀环境,在处于海洋大气环境的精密仪器、微型散热器等具有很好的防护效果。

Description

一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄 膜及方法
技术领域
本发明属于材料表面改性领域,具体涉及一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法。
背景技术
铜是一种常用的导电、导热材料,但是在应用过程中存在强度低,易氧化,易磨损,耐腐性差等缺点。类金刚石薄膜(DLC)具备许多优异的性能,包括高硬度、高耐磨性、低摩擦系数、优良的化学惰性等。将DLC膜作为铜基体保护层,不仅可以提高铜基体的表面硬度、化学惰性,而且还不会降低基体的导热效率。但现阶段直接常用化学气相沉积法在铜基体上生长DLC膜有较大的困难。首先铜不是溶碳材料,DLC膜和铜基体的结合力小;其次DLC膜和铜基体的热膨胀系数相差较大,在冷却过程中易剥离、开裂。因此,为提高铜基体与DLC膜之间的结合强度,是现阶段实现基体高性能的主要目的。
发明内容
针对上述在铜基体上沉积DLC膜遇到的问题,本发明目的在于提供一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法。
为实现上述目的,本发明采取以下技术方案:
一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜的制备方法,采用等离子体增强非平衡磁控溅射物理气相沉积(PEUMS-PVD)和等离子体增强化学气相沉积(PECVD)相结合技术于基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜。
进一步的说,采用等离子体增强非平衡磁控溅射物理气相沉积技术(PEUMS-PVD),进行钛靶溅射,真空条件下于处理后的基体表面沉积Ti过渡层;而后,在Ti靶磁控溅射的同时真空下通入CH4和Ar,CH4/Ar流量比为3-4:1,在等离子增强非平衡磁控溅射物理气相沉积和化学气相沉积(PEUMS-PVD+PECVD)技术相结合下利用Ti与CH4发生反应,随着CH4和Ar通入量的增加于过渡层上沉积Ti掺杂DLC梯度膜;而后继续于真空下,通入CH4和Ar,CH4/Ar流量比为3-5:1,即于最外层生成类金刚石薄膜。
所述处理后的基体为基体抛光后依次采用丙酮、无水乙醇、去离子水对基体进行超声波清洗;清洗后采用氮气吹干,在3.0×10-3Pa真空条件下,等离子溅射清洗。
所述等离子溅射清洗为在10-3Pa真空条件下,通入氩气,在850W微波下,使氩离子在负250-400V偏压的作用下,对基体进行溅射清洗10-15min。
所述基体为铜基体。
具体为:
(1)采用不同型号的砂纸对金属基体进行水磨,然后采用砂磨膏抛光到镜面效果。
(2)化学清洗:分别采用丙酮、无水乙醇、去离子水对铜基体进行超声波清洗;
(3)清洗后的铜基体:采用氮气吹干,直接放进真空室;
(4)等离子溅射清洗:真空被抽至衬底真空10-3Pa后,通入氩气流量20sccm,打开微波源,功率达到850W时,在基片台上加负偏压(250-400V)并通入冷却水,使氩离子在负偏压的作用下,对铜片进行溅射清洗10-15min。
(5)Ti过渡层制备:采用等离子体增强非平衡磁控溅射物理气相沉积技术(PEUMS-PVD),进行钛靶溅射,在铜基体上制备Ti过渡层;Ti靶功率250-300W,氩气流量30sccm,基片偏压100-200V,制备时间30min。
(6)Ti/Ti掺杂DLC梯度膜制备:Ti靶溅射同时,再通入CH4和Ar(Ar/CH4流量比为1/3-4),利用等离子增强非平衡磁控溅射物理气相沉积和化学气相沉积(PEUMS-PVD+PECVD)技术相结合,制备Ti/Ti掺杂DLC梯度膜,形成梯度成分渐变层,通过控制Ar/CH4流量比所述的梯度成分渐变是,随着CH4的通入,由于CH4需在等离子中分解成中性原子和离子基团,使其才能与Ti发生反应。,随着反应的进行,部分CH4与Ti发生反应,生成TiC;还有部分CH4化学气相沉积生成DLC膜,即生成钛掺杂类金刚石薄膜,其中,Ti以TiC的形式与DLC共同存在;进而提高改性膜与基体之间的结合力;其中,Ti靶功率不变,基片偏压100-200V,制备时间30min。
(7)表层DLC膜制备:将Ti靶停止溅射,继续通入CH4和Ar(控制量范围),CH4/Ar流量比为5-3:1,基片偏压100-200V,溅射时间30min,即于最外层生成DLC膜。
一种基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜,按所述方法于基体表面溅射沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜。
所述改性薄膜为在Ti过渡层和类金刚石薄膜之间形成成分渐变层,渐变层为随着CH4在等离子中分解与Ti发生反应Ti以TiC的形式,与类金刚石膜共生存在而形成梯度。
所述Ti过渡层的厚度为50-100纳米,钛掺杂类金刚石薄膜厚度为150-200nm,表层类金刚石膜厚度为50-100纳米。
本发明的有益效果在于:
本发明将等离子体增强非平衡磁控溅射物理气相沉积(PEUMS-PVD)和等离子体增强化学气相沉积(PECVD)技术相结合,在基体与DLC膜之间引入梯度过渡层,获得Ti/Ti掺杂类金刚石/类金刚石膜的三明治结构,Ti/Ti掺杂类金刚石缓冲了膜层之间的内应力,提高了附着力,其制备的Ti掺杂类金刚石为梯度成分渐变层,形成界面缓冲,改善了DLC膜与铜基体之间的结合力。经测试,DLC膜与铜基体之间的结合强度大于400mN。
附图说明
图1为本发明实施例获得Ti过渡层及钛掺杂类金刚石薄膜结构示意图。
图2为本发明实施例获得Ti掺杂DLC膜的拉曼光谱图。
图3为本发明实施例获得Ti掺杂DLC膜的XPS窄谱解谱图,其中图3a为C1s的XPS窄谱解谱,图3b为Ti2p的XPS窄谱解谱。
图4为本发明实施例获得Ti掺杂DLC膜的成分随溅射深度变化的曲线图。
具体实施方式
以下通过具体的实施例对本发明作进一步说明,有助于本领域的普通技术人员更全面的理解本发明,但不以任何方式限制本发明。
本发明将等离子体增强非平衡磁控溅射物理气相沉积(PEUMS-PVD)和等离子体增强化学气相沉积(PECVD)技术相结合,通过Ti靶溅射,引入Ti过渡层,Ti过渡层的引入,降低了铜基体的界面位垒,促进DLC膜成核,并缓和DLC膜与铜基体之间由于热膨胀差引起的热应力,大大提高薄膜的质量。
本发明采用类金刚石薄膜(Diamond-like carbon)具备许多优异的性能,包括高硬度、高耐磨性、低摩擦系数、化学惰性等。而后在铜上沉积一层类金刚石薄膜,不仅不会影响其散热效率,而且可以提高基体的硬度和耐磨性,提高其耐划伤和耐腐蚀性能。本发明采用等离子体复合沉积技术,通过制备Ti过渡层,在铜基体上成功制备了钛掺杂类金刚石薄膜,表面致密,耐磨、耐蚀性能良好,尤其适用于海洋大气腐蚀环境,在处于海洋大气环境的精密仪器、微型散热器等具有很好的防护效果。
实施例1:
一种在铜基体上沉积Ti过渡层及钛掺杂类金刚石薄膜的制备方法,其方法步骤如下:
(1)将工业纯铜(厚度2cm)切割成10mm×10mm的试样。首先将试样依次用600#、800#、1000#、2000#的砂纸逐级水磨,然后采用W5、W3.5的金刚石磨砂膏表面抛光到镜面效果。
(2)分别采用丙酮、无水乙醇、去离子水依次对上述抛光后铜基体进行超声波清洗10min;
(2)清洗后的铜基体,采用氮气吹干,直接放进真空室;
(3)真空被抽至衬底真空3.0×10-3Pa后,通入氩气,流量20sccm,打开微波源,功率达到850W时,在基片台上加负偏压400V并通入冷却水,使氩离子在负偏压的作用下,对铜片进行溅射清洗10min。
(4)溅射清洗后采用Ti靶溅射,在铜基体上制备形成Ti过渡层;其条件为:Ti靶功率300W,氩气流量30sccm,基片偏压200V,制备时间30min。
(5)固定Ti靶功率300W不变,通入CH4气体,调整Ar/CH4流量比为1/3,于过渡层上形成成分渐变的Ti掺杂DLC梯度膜(参见图4),基片偏压200V,制备时间30min。
(6)Ti靶停止溅射,继续通入CH4和Ar,调整Ar/CH4流量比为1/4,制备DLC膜,基片偏压100V,溅射时间30min;即于铜基体上沉积Ti过渡层及钛掺杂类金刚石薄膜(参见图1)。
对上述铜基体上沉积Ti过渡层及钛掺杂类金刚石薄膜中的Ti掺杂DLC膜进行结构表征以及成分的检测:
1)采用Raman光谱对所制备的Ti掺杂DLC膜进行结构表征(参见图2)。
对上述实施例获得Ti掺杂DLC膜进行拉曼光谱测试,通过拉曼光谱进行拟合,由图2中拟合后的峰位图可见,在800cm-1和1800cm-1之间拉曼峰明显是由两个展宽峰组成,是典型的类金刚石膜结构,用高斯拟合法可以将其分为两个峰:D峰和G峰;由此可见在铜基体上制备Ti掺杂DLC膜。
2)Ti掺杂DLC膜成分表征:
通过X射线光电子能谱分析(XPS)方法对上述实施例获得Ti掺杂DLC膜成分进行测试(参见图3),由图3膜样品表面C1s和Ti2p的XPS窄谱及其解谱可见,图3a中样品的C1s窄谱可以拟合为四个结合能不同的峰,其结合能分别为:281.92eV、283.68eV、284.84eV、287.12eV。C1s谱中结合能为281.92eV的峰,属于与TiC的信号;位于283.68eV的峰为sp2C=C的信号峰,而结合能位于284.84eV的峰则与sp3C-C碳的信号峰相对应;最后,电子结合能位于287.12eV的峰对应于C=O的结合能;图3b对Ti2p的窄谱进行解谱,可以得到分别位于454.95eV、456.00eV、458.50eV、461.19eV、464.370eV的五个峰。结合能位于454.95eV的峰是与C结合生成TiC的Ti2p3/2的峰;电子结合能为461.19eV的峰为TiC中Ti2p1/2的信号;位于456eV的峰是Ti的有机复合物的Ti2p3/2的峰;位于458.50eV的峰为Ti的氧化物TiO2;位于464.37eV的第五个峰,为TiO2中Ti2p1/2的信号。
以上表征结果表明,样品膜表面存在Ti元素;Ti以TiC结构形式存在于DLC膜中。
3)Ti掺杂DLC膜样品成分随溅射深度变化的曲线:
通过X射线光电子能谱分析(XPS)方法对上述实施例获得Ti掺杂DLC膜样品成分随溅射深度进行测试(参见图4),由图4可以看出,在样品表层,几乎完全是DLC膜,伴随少量吸附氧气的C=O键;随着深度的变化,自20nm左右处,就出现TiC峰,此时是TiC与DLC共存的状态;随着溅射深度的增大,TiC峰逐渐增强,大于150nm以后,DLC信号峰几乎消失,此时为TiC过渡结构。由以上检测结果可以看出,在Ti过渡层与表层DLC之间,存在成分梯度渐变的Ti掺杂DLC膜梯度过渡层,Ti以TiC的形式与DLC膜共生,极大的提高了各膜层之间的结合力,提高了改性膜制备的成功率。

Claims (8)

1.一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜的制备方法,其特征在于:采用等离子体增强非平衡磁控溅射物理气相沉积(PEUMS-PVD)和等离子体增强化学气相沉积(PECVD)相结合技术于基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜。
2.按权利要求1所述的在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜的制备方法,其特征在于:采用等离子体增强非平衡磁控溅射物理气相沉积技术(PEUMS-PVD),进行钛靶溅射,真空条件下于处理后的基体表面沉积Ti过渡层;而后,在Ti靶磁控溅射的同时真空下通入CH4和Ar,CH4/Ar流量比为3-4:1,在等离子增强非平衡磁控溅射物理气相沉积和化学气相沉积(PEUMS-PVD+PECVD)技术相结合下利用Ti与CH4发生反应,随着CH4和Ar通入量的增加于过渡层上沉积Ti掺杂DLC梯度膜;而后继续于真空下,通入CH4和Ar,CH4/Ar流量比为3-5:1,即于最外层生成类金刚石薄膜。
3.按权利要求1所述的在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜的制备方法,其特征在于:所述处理后的基体为基体抛光后依次采用丙酮、无水乙醇、去离子水对基体进行超声波清洗;清洗后采用氮气吹干,在3.0×10-3Pa真空条件下,等离子溅射清洗。
4.按权利要求3所述的在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜的制备方法,其特征在于:所述等离子溅射清洗为在10-3Pa真空条件下,通入氩气,在850W微波下,使氩离子在负250-400V偏压的作用下,对基体进行溅射清洗10-15min。
5.按权利要求1-4任意一项所述的在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜的制备方法,其特征在于:所述基体为铜基体。
6.一种权利要求1所述方法在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜,其特征在于:按权利要求1所述方法于基体表面溅射沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜。
7.按权利要求6所述的含Ti过渡层及钛掺杂类金刚石薄膜,其特征在于:所述改性薄膜为在Ti过渡层和类金刚石薄膜之间形成成分渐变层,渐变层为随着CH4在等离子中分解与Ti发生反应Ti以TiC的形式,与类金刚石膜共生存在而形成梯度。
8.按权利要求6或7所述的Ti过渡层及钛掺杂类金刚石薄膜,其特征在于:所述Ti过渡层的厚度为50-100纳米,钛掺杂类金刚石薄膜厚度为150-200nm,表层类金刚石膜厚度为50-100纳米。
CN202010155390.5A 2020-03-09 2020-03-09 一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法 Expired - Fee Related CN111334794B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010155390.5A CN111334794B (zh) 2020-03-09 2020-03-09 一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010155390.5A CN111334794B (zh) 2020-03-09 2020-03-09 一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法

Publications (2)

Publication Number Publication Date
CN111334794A true CN111334794A (zh) 2020-06-26
CN111334794B CN111334794B (zh) 2022-03-29

Family

ID=71177980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010155390.5A Expired - Fee Related CN111334794B (zh) 2020-03-09 2020-03-09 一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法

Country Status (1)

Country Link
CN (1) CN111334794B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112553584A (zh) * 2020-11-04 2021-03-26 河北汉光重工有限责任公司 一种关节轴承内圈外表面沉积类金刚石薄膜的方法
CN113061845A (zh) * 2021-03-19 2021-07-02 安徽纯源镀膜科技有限公司 一种超黑高性能Ti-DLC涂层的制备工艺
CN114959585A (zh) * 2022-06-14 2022-08-30 上海锐畅医疗科技有限公司 一种生物医用复合涂层及其制备方法
CN115466924A (zh) * 2022-10-26 2022-12-13 西安交通大学 一种齿轮轴承组表面抗滚动接触疲劳薄膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2726834A1 (fr) * 1994-11-07 1996-05-15 Neuville Stephane Procede de depot sur au moins une piece d'un revetement protecteur de grande durete
CN101787520A (zh) * 2010-03-24 2010-07-28 中国地质大学(北京) 钨钛共掺杂类金刚石涂层材料及其制备技术
CN103510053A (zh) * 2012-06-29 2014-01-15 陈伟 金属表面镀制类金刚石薄膜的方法
CN104141109A (zh) * 2014-06-19 2014-11-12 武汉大学 钛金属表面原位合成TiC-DLC复合涂层的方法
CN105734527A (zh) * 2016-03-08 2016-07-06 仪征亚新科双环活塞环有限公司 一种用于活塞环表面的类金刚石镀层、活塞环及制备工艺
CN107400873A (zh) * 2017-07-26 2017-11-28 森科五金(深圳)有限公司 一种类金刚石薄膜及其制备方法
KR20190071231A (ko) * 2017-12-14 2019-06-24 신재원 티타늄 버퍼 층을 갖는 dlc 코팅 사이징 롤러

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2726834A1 (fr) * 1994-11-07 1996-05-15 Neuville Stephane Procede de depot sur au moins une piece d'un revetement protecteur de grande durete
CN101787520A (zh) * 2010-03-24 2010-07-28 中国地质大学(北京) 钨钛共掺杂类金刚石涂层材料及其制备技术
CN103510053A (zh) * 2012-06-29 2014-01-15 陈伟 金属表面镀制类金刚石薄膜的方法
CN104141109A (zh) * 2014-06-19 2014-11-12 武汉大学 钛金属表面原位合成TiC-DLC复合涂层的方法
CN105734527A (zh) * 2016-03-08 2016-07-06 仪征亚新科双环活塞环有限公司 一种用于活塞环表面的类金刚石镀层、活塞环及制备工艺
CN107400873A (zh) * 2017-07-26 2017-11-28 森科五金(深圳)有限公司 一种类金刚石薄膜及其制备方法
KR20190071231A (ko) * 2017-12-14 2019-06-24 신재원 티타늄 버퍼 층을 갖는 dlc 코팅 사이징 롤러

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YEONG JUJO 等: "Synthesis and electrochemical properties of Ti-doped DLC films by a hybrid PVD/PECVD process", 《APPLIED SURFACE SCIENCE》 *
王立达: "不锈钢表面掺硅类金刚石膜的制备、结构及性能", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112553584A (zh) * 2020-11-04 2021-03-26 河北汉光重工有限责任公司 一种关节轴承内圈外表面沉积类金刚石薄膜的方法
CN113061845A (zh) * 2021-03-19 2021-07-02 安徽纯源镀膜科技有限公司 一种超黑高性能Ti-DLC涂层的制备工艺
CN113061845B (zh) * 2021-03-19 2023-04-07 安徽纯源镀膜科技有限公司 一种超黑高性能Ti-DLC涂层的制备工艺
CN114959585A (zh) * 2022-06-14 2022-08-30 上海锐畅医疗科技有限公司 一种生物医用复合涂层及其制备方法
CN114959585B (zh) * 2022-06-14 2023-12-01 上海锐畅医疗科技有限公司 一种生物医用复合涂层及其制备方法
CN115466924A (zh) * 2022-10-26 2022-12-13 西安交通大学 一种齿轮轴承组表面抗滚动接触疲劳薄膜及其制备方法
CN115466924B (zh) * 2022-10-26 2024-01-16 西安交通大学 一种齿轮轴承组表面抗滚动接触疲劳薄膜及其制备方法

Also Published As

Publication number Publication date
CN111334794B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN111334794B (zh) 一种在基体表面沉积含Ti过渡层及钛掺杂类金刚石的改性薄膜及方法
CN107142463B (zh) 一种等离子体化学气相沉积与磁控溅射或离子镀复合的镀覆方法
CN111349901B (zh) 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法
CN106244986B (zh) 功能梯度的类金刚石碳薄膜及其制备方法和制品
CN113832430A (zh) 一种金刚石基非晶碳-氧化钇梯度复合增透膜的制备方法
CN111945119B (zh) 碳基薄膜、碳基薄膜的制备方法、刀具及应用
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
CN107858684B (zh) 金属-类金刚石复合涂层及其制备方法与用途以及涂层工具
CN111647851A (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN115044867A (zh) 一种TiAlWN涂层及其制备方法与应用
CN106756841A (zh) 一种刀具复合涂层的制备方法
CN111850484B (zh) 一种制备强韧化非晶碳基多相杂化薄膜的装置及方法
CN105441945B (zh) 一种高硬度低摩擦系数的纳米涂层及其制备方法
CN107881469B (zh) 类金刚石复合涂层及其制备方法与用途以及涂层工具
CN110735107A (zh) 一种类金刚石涂层制备前的离子表面刻蚀方法
CN113151797B (zh) 一种基于硬质合金表面镀ta-C膜的离子清洗工艺
CN112391593B (zh) 一种高Cr含量、韧性好的CrB2-Cr涂层及其制备工艺
CN113213774B (zh) 石墨烯玻璃及其制备方法
CN112831769B (zh) 一种红外光学产品复合增透膜及其制备方法
CN111471973A (zh) 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺
CN111647859A (zh) 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺
US20240045110A1 (en) Hard optical film, method for preparing same and use thereof
KR20140102345A (ko) 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착방법 및 그 장치
CN109082640B (zh) 一种氮掺杂的高附着性高硬度纳米结构w基涂层及其制备方法
CN111926292A (zh) 一种复合涂层及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220329

CF01 Termination of patent right due to non-payment of annual fee