CN106119785A - 一种具备耐磨耐蚀涂层钨镍合金的制备方法 - Google Patents

一种具备耐磨耐蚀涂层钨镍合金的制备方法 Download PDF

Info

Publication number
CN106119785A
CN106119785A CN201610470266.1A CN201610470266A CN106119785A CN 106119785 A CN106119785 A CN 106119785A CN 201610470266 A CN201610470266 A CN 201610470266A CN 106119785 A CN106119785 A CN 106119785A
Authority
CN
China
Prior art keywords
matrix
grinding
argon
powder
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610470266.1A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Sichuang Yuanbo Electronic Technology Co Ltd
Original Assignee
Suzhou Sichuang Yuanbo Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Sichuang Yuanbo Electronic Technology Co Ltd filed Critical Suzhou Sichuang Yuanbo Electronic Technology Co Ltd
Priority to CN201610470266.1A priority Critical patent/CN106119785A/zh
Publication of CN106119785A publication Critical patent/CN106119785A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0084Producing gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种耐磨耐蚀涂层钨镍合金的制备方法,该方法制备的钨镍合金,解决了传统细晶硬质合金制备过程中常出现“镍池”和孔洞的问题,以提高合金的综合性能,采用多层梯度的涂层结构,将涂层成分由Cr经CrN逐渐向CrAlSiN过渡,不仅减小了涂层晶粒尺寸和晶格中的残余应力,提高了薄膜的沉积厚度,从而大幅提高了涂层的承载抗磨能力。

Description

一种具备耐磨耐蚀涂层钨镍合金的制备方法
技术领域
本发明涉及合金材料制造领域,具体涉及一种具备耐磨耐蚀涂层钨镍合金的制备方法。
背景技术
硬质合金具有高强度、高硬度、优良的耐磨性、耐热性以及良好的抗腐蚀性等特点,因此广泛应用于高压、高转速、高温、腐蚀性介质等工作环境
WC-Ni硬质合金具有高强度、高硬度、优良的耐磨性、耐热性以及良好的抗腐蚀性等特点,因此广泛应用于高压、高转速、高温、腐蚀性介质等工作环境。由于Ni属于面心立方(F.c.c)晶系,塑性很好,在湿磨过程中容易发生塑性变形,形成片状的Ni粉团。工业生产以Ni作为粘结剂的硬质合金的球磨时间要长,即便是这样,也不能保证Ni粉的均匀细化,这是基于Ni粉存在着与Co粉截然不同的细化机理。
现有技术中主要通过添加合金元素,细化WC晶粒,通过严格的工艺控制,减少孔隙和缺陷等方法来改善WC-Ni硬质合金的性能。采用传统方法制备的WC-Ni混合料在真空烧结条件下常出现“镍池”和孔洞。“镍池”和孔洞会严重影响合金的综合性能,比如强度、耐磨性、耐腐蚀性等。
目前,利用PVD技术制备的CrN涂层是耐磨部件主要采用的防护涂层。然而,传统的具有柱状晶结构的CrN涂层在腐蚀介质中容易腐蚀脱落,并且涂层脆性较大,在接触应力作用下,涂层缺陷(微凸、微坑、应力集中处等)处易于萌生裂纹,导致涂层早期非正常剥落和加速疲劳磨损失效。因此,传统单一的CrN涂层已难以适应当前和未来高机械负荷和腐蚀环境中阀门密封件的苛刻工况服役环境和性能要求,如重载下的低摩擦、长寿命和耐蚀性等。
发明内容
本发明提供一种具备耐磨耐蚀涂层钨镍合金的制备方法,该方法制备的钨镍合金,解决了传统细晶硬质合金制备过程中常出现“镍池”和孔洞的问题,以提高合金的综合性能,采用多层梯度的涂层结构,将涂层成分由Cr经CrN逐渐向CrAlSiN过渡,不仅减小了涂层晶粒尺寸和晶格中的残余应力,提高了薄膜的沉积厚度,从而大幅提高了涂层的承载抗磨能力。
为了实现上述目的,本发明提供了一种具备耐磨耐蚀涂层钨镍合金的制备方法,该方法包括如下步骤:
(1)制备基体
按以下重量组份配制混合粉
碳化钨,90.1%-92.8%,费氏粒度0.8-1μm;
镍粉,5%-6%,费氏粒度0.5-1.0μm;
碳化铬,余量;
将上述配比的混合粉进行湿磨;其中球磨时间分段控制;先将碳化物粉及添加剂碳化铬加入球磨筒湿磨12-16小时,再加入镍粉湿磨14-18小时;
将球磨完毕的混合料料浆干燥;
将干燥混合料压制成所需形状的压制品;
将压制品放在烧结炉内高温烧结,烧结温度为1450-1470℃, 保温时间70-90min,烧结压力为4.5-5.0Mpa,获得钨镍合金基体;
(2)基体预处理
所述基体预处理,可依次进行研磨抛光、超声清洗和离子源清洗;
(3)溅射沉积
将预处理后的基体置于镀膜设备真空腔体中,选用Cr、AlSi靶,靶电流为50-100A,工件上施加-20—-50V负偏压,控制加热温度为400℃-450℃,通入氩气和氮气,通过控制氩气流量、氮气流量以及沉积时间在基体表面依次沉积Cr层、CrN层以及CrAlSiN层组成,具体如下:
(31)氩气流量保持为150sccm-200sccm,氮气流量为0sccm,沉积1.5-2.5h,得到Cr层;
(32)氩气流量保持为20-80sccm,氮气流量为100sccm-300sccm,沉积时间为3-5h,得到CrN层;
(33)氩气流量保持为50-100sccm,氮气流量为450sccm-700sccm,沉积时间为10-15h,得到CrAlSiN层;
待涂层沉积完毕后,在真空环境下冷却至220℃以下,然后在氮气保护气氛下冷却至100℃以下,最后放气至大气压,开腔出炉,即在基体表面获得复合涂层。
优选的,在所述步骤(2)中,所述研磨抛光,可将基体先在600目的金刚石砂轮盘上进行粗磨10min,然后在1200目的金刚石砂轮盘上进行细磨10min,再用W2.5的金刚石抛光粉进行抛光至试样表面均匀光亮,所述超声清洗,可将研磨抛光后的基体按以下顺序清洗,丙酮超声清洗5min→无水乙醇超声清洗5min→烘干待用,所述离子源清洗,可采用霍尔离子源对基体进行清洗5min,压强为2×10-2Pa,基体温度为300℃,氩气通量为10sccm,偏压为-100V,阴极电流为29.5A,阴极电压为19V,阳极电流为7A,阳极电压为80V,以清除基体表面的吸附气体以及杂质,提高沉积涂层与基体的结合强度以及成膜质量。
依据上述方法制备的钨镍合金,可达到显著改善和控制材料的组织结构的目的,使得制备的钨镍合金材料强度和硬度能达到完美的匹配,综合性能优良。
具体实施方式
实施例一
按以下重量组份配制混合粉 :
碳化钨,90.1%,费氏粒度0.8-1μm;
镍粉,5%,费氏粒度0.5-1.0μm;
碳化铬,余量。
将上述配比的混合粉进行湿磨;其中球磨时间分段控制;先将碳化物粉及添加剂碳化铬加入球磨筒湿磨12小时,再加入镍粉湿磨14小时。
将球磨完毕的混合料料浆干燥。
将干燥混合料压制成所需形状的压制品。
将压制品放在烧结炉内高温烧结,烧结温度为1450℃, 保温时间70-90min,烧结压力为4.5Mpa,获得钨镍合金基体。
基体预处理,所述基体预处理,可依次进行研磨抛光、超声清洗和离子源清洗。所述研磨抛光,可将基体先在600目的金刚石砂轮盘上进行粗磨10min,然后在1200目的金刚石砂轮盘上进行细磨10min,再用W2.5的金刚石抛光粉进行抛光至试样表面均匀光亮,所述超声清洗,可将研磨抛光后的基体按以下顺序清洗,丙酮超声清洗5min→无水乙醇超声清洗5min→烘干待用,所述离子源清洗,可采用霍尔离子源对基体进行清洗5min,压强为2×10-2Pa,基体温度为300℃,氩气通量为10sccm,偏压为-100V,阴极电流为29.5A,阴极电压为19V,阳极电流为7A,阳极电压为80V,以清除基体表面的吸附气体以及杂质,提高沉积涂层与基体的结合强度以及成膜质量。
将预处理后的基体置于镀膜设备真空腔体中,选用Cr、AlSi靶,靶电流为50-100A,工件上施加-20V负偏压,控制加热温度为400℃,通入氩气和氮气,通过控制氩气流量、氮气流量以及沉积时间在基体表面依次沉积Cr层、CrN层以及CrAlSiN层组成,具体如下:氩气流量保持为150sccm,氮气流量为0sccm,沉积1.5h,得到Cr层;氩气流量保持为20sccm,氮气流量为100sccm,沉积时间为3h,得到CrN层;氩气流量保持为50sccm,氮气流量为450sccm,沉积时间为10h,得到CrAlSiN层。
待涂层沉积完毕后,在真空环境下冷却至220℃以下,然后在氮气保护气氛下冷却至100℃以下,最后放气至大气压,开腔出炉,即在基体表面获得复合涂层。
实施例二
按以下重量组份配制混合粉 :
碳化钨, 92.8%,费氏粒度0.8-1μm;
镍粉, 6%,费氏粒度0.5-1.0μm;
碳化铬,余量。
将上述配比的混合粉进行湿磨;其中球磨时间分段控制;先将碳化物粉及添加剂碳化铬加入球磨筒湿磨16小时,再加入镍粉湿磨18小时。
将球磨完毕的混合料料浆干燥。
将干燥混合料压制成所需形状的压制品。
将压制品放在烧结炉内高温烧结,烧结温度为1470℃,保温时间90min,烧结压力为5.0Mpa,获得钨镍合金基体。
按如下重量百分比准备熔覆的的金属粉末: Zr 15%、Ni 8%、Si 2%、B 5%、C6%,钨粉为余量,球磨混合,金属粉末的粒度范围为60-100微米
使用连续光纤激光器,设定熔覆工艺,采用同步送粉方式对金属粉末进行多道熔覆,冷却至室温,在基体上制备一层合金涂层。
使用连续光纤激光器,设定重熔工艺,对制得的合金涂层进行激光表面重熔,冷却至室温,获得钨镍合金材料。
基体预处理,所述基体预处理,可依次进行研磨抛光、超声清洗和离子源清洗。所述研磨抛光,可将基体先在600目的金刚石砂轮盘上进行粗磨10min,然后在1200目的金刚石砂轮盘上进行细磨10min,再用W2.5的金刚石抛光粉进行抛光至试样表面均匀光亮,所述超声清洗,可将研磨抛光后的基体按以下顺序清洗,丙酮超声清洗5min→无水乙醇超声清洗5min→烘干待用,所述离子源清洗,可采用霍尔离子源对基体进行清洗5min,压强为2×10-2Pa,基体温度为300℃,氩气通量为10sccm,偏压为-100V,阴极电流为29.5A,阴极电压为19V,阳极电流为7A,阳极电压为80V,以清除基体表面的吸附气体以及杂质,提高沉积涂层与基体的结合强度以及成膜质量。
将预处理后的基体置于镀膜设备真空腔体中,选用Cr、AlSi靶,靶电流为50-100A,工件上施加-50V负偏压,控制加热温度为450℃,通入氩气和氮气,通过控制氩气流量、氮气流量以及沉积时间在基体表面依次沉积Cr层、CrN层以及CrAlSiN层组成,具体如下:氩气流量保持为200sccm,氮气流量为0sccm,沉积2.5h,得到Cr层;氩气流量保持为80sccm,氮气流量为300sccm,沉积时间为5h,得到CrN层;氩气流量保持为100sccm,氮气流量为700sccm,沉积时间为15h,得到CrAlSiN层。
待涂层沉积完毕后,在真空环境下冷却至220℃以下,然后在氮气保护气氛下冷却至100℃以下,最后放气至大气压,开腔出炉,即在基体表面获得复合涂层。

Claims (2)

1. 一种具备耐磨耐蚀涂层钨镍合金的制备方法,该方法包括如下步骤:
(1)制备基体
按以下重量组份配制混合粉
碳化钨,90.1%-92.8%,费氏粒度0.8-1μm;
镍粉,5%-6%,费氏粒度0.5-1.0μm;
碳化铬,余量;
将上述配比的混合粉进行湿磨;其中球磨时间分段控制;先将碳化物粉及添加剂碳化铬加入球磨筒湿磨12-16小时,再加入镍粉湿磨14-18小时;
将球磨完毕的混合料料浆干燥;
将干燥混合料压制成所需形状的压制品;
将压制品放在烧结炉内高温烧结,烧结温度为1450-1470℃, 保温时间70-90min,烧结压力为4.5-5.0Mpa,获得钨镍合金基体;
(2)基体预处理
所述基体预处理,可依次进行研磨抛光、超声清洗和离子源清洗;
(3)溅射沉积
将预处理后的基体置于镀膜设备真空腔体中,选用Cr、AlSi靶,靶电流为50-100A,工件上施加-20—-50V负偏压,控制加热温度为400℃-450℃,通入氩气和氮气,通过控制氩气流量、氮气流量以及沉积时间在基体表面依次沉积Cr层、CrN层以及CrAlSiN层组成,具体如下:
(31)氩气流量保持为150sccm-200sccm,氮气流量为0sccm,沉积1.5-2.5h,得到Cr层;
(32)氩气流量保持为20-80sccm,氮气流量为100sccm-300sccm,沉积时间为3-5h,得到CrN层;
(33)氩气流量保持为50-100sccm,氮气流量为450sccm-700sccm,沉积时间为10-15h,得到CrAlSiN层;
待涂层沉积完毕后,在真空环境下冷却至220℃以下,然后在氮气保护气氛下冷却至100℃以下,最后放气至大气压,开腔出炉,即在基体表面获得复合涂层。
2.如权利要求1所述的方法,其特征在于,在所述步骤(2)中,所述研磨抛光,可将基体先在600目的金刚石砂轮盘上进行粗磨10min,然后在1200目的金刚石砂轮盘上进行细磨10min,再用W2.5的金刚石抛光粉进行抛光至试样表面均匀光亮,所述超声清洗,可将研磨抛光后的基体按以下顺序清洗,丙酮超声清洗5min→无水乙醇超声清洗5min→烘干待用,所述离子源清洗,可采用霍尔离子源对基体进行清洗5min,压强为2×10-2Pa,基体温度为300℃,氩气通量为10sccm,偏压为-100V,阴极电流为29.5A,阴极电压为19V,阳极电流为7A,阳极电压为80V,以清除基体表面的吸附气体以及杂质,提高沉积涂层与基体的结合强度以及成膜质量。
CN201610470266.1A 2016-06-26 2016-06-26 一种具备耐磨耐蚀涂层钨镍合金的制备方法 Pending CN106119785A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610470266.1A CN106119785A (zh) 2016-06-26 2016-06-26 一种具备耐磨耐蚀涂层钨镍合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610470266.1A CN106119785A (zh) 2016-06-26 2016-06-26 一种具备耐磨耐蚀涂层钨镍合金的制备方法

Publications (1)

Publication Number Publication Date
CN106119785A true CN106119785A (zh) 2016-11-16

Family

ID=57268849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610470266.1A Pending CN106119785A (zh) 2016-06-26 2016-06-26 一种具备耐磨耐蚀涂层钨镍合金的制备方法

Country Status (1)

Country Link
CN (1) CN106119785A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782965A (zh) * 2016-12-27 2017-05-31 苏州思创源博电子科技有限公司 一种热敏薄膜电阻的制备方法
CN108286005A (zh) * 2018-03-07 2018-07-17 瞿凌飞 一种稀土记忆合金层的钨镍合金的制备方法
CN108285346A (zh) * 2018-03-07 2018-07-17 戴爱娟 一种具备硅涂层的钨镍合金材料的制备方法
CN109504940A (zh) * 2018-12-20 2019-03-22 广东工业大学 一种周期性纳米多层结构的AlCrN/AlCrSiNiN涂层及其制备方法和应用
CN113445047A (zh) * 2021-05-31 2021-09-28 沈阳理工大学 一种包含细晶钨与二硫化钨的自润滑涂层的电火花沉积制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215662A (zh) * 2008-01-07 2008-07-09 刘嵘 用于首饰、饰品的钨合金及其制备方法
CN101921982A (zh) * 2010-09-06 2010-12-22 厦门大学 在硬质合金基体表面制备纳米结构氮硅锆涂层的方法
CN105671499A (zh) * 2016-04-01 2016-06-15 中国科学院宁波材料技术与工程研究所 一种耐磨耐蚀CrAlSiN复合涂层及其制备方法
CN105695837A (zh) * 2014-11-26 2016-06-22 自贡硬质合金有限责任公司 一种WC-Ni细晶硬质合金的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215662A (zh) * 2008-01-07 2008-07-09 刘嵘 用于首饰、饰品的钨合金及其制备方法
CN101921982A (zh) * 2010-09-06 2010-12-22 厦门大学 在硬质合金基体表面制备纳米结构氮硅锆涂层的方法
CN105695837A (zh) * 2014-11-26 2016-06-22 自贡硬质合金有限责任公司 一种WC-Ni细晶硬质合金的制备方法
CN105671499A (zh) * 2016-04-01 2016-06-15 中国科学院宁波材料技术与工程研究所 一种耐磨耐蚀CrAlSiN复合涂层及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782965A (zh) * 2016-12-27 2017-05-31 苏州思创源博电子科技有限公司 一种热敏薄膜电阻的制备方法
CN108286005A (zh) * 2018-03-07 2018-07-17 瞿凌飞 一种稀土记忆合金层的钨镍合金的制备方法
CN108285346A (zh) * 2018-03-07 2018-07-17 戴爱娟 一种具备硅涂层的钨镍合金材料的制备方法
CN109504940A (zh) * 2018-12-20 2019-03-22 广东工业大学 一种周期性纳米多层结构的AlCrN/AlCrSiNiN涂层及其制备方法和应用
CN113445047A (zh) * 2021-05-31 2021-09-28 沈阳理工大学 一种包含细晶钨与二硫化钨的自润滑涂层的电火花沉积制备方法

Similar Documents

Publication Publication Date Title
CN106119785A (zh) 一种具备耐磨耐蚀涂层钨镍合金的制备方法
WO2017136971A1 (zh) (Ti,Al,Zr)N多组元复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法
CN101712215B (zh) 一种TiCN系列纳米梯度复合多层涂层的制备方法
WO2013099752A1 (ja) 硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
EP3396015A1 (en) Composite functional cutter coating for cutting titanium alloy and preparation method therefor
CN110004409B (zh) 具有高硬度和高结合力的CrAlN纳米梯度涂层及其制备工艺
CN108251797B (zh) 一种钛合金切削刀具用TiAlN/CrN多层涂层及其制备方法
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN105886870A (zh) 一种具备CrAlSiN复合涂层的钨合金的制备方法
CN109402590A (zh) 一种磁控溅射制备高熵合金涂层的方法
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
JP2022525212A (ja) 改良されたコーティングプロセス
CN109402564A (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN108977775A (zh) 一种TiAlSiN涂层刀具制备工艺
CN102560393A (zh) 镀膜件及其制造方法
CN112410727B (zh) 一种新型WCrSiN梯度涂层及其制备方法
CN109023243B (zh) 一种超强韧、低摩擦碳基刀具涂层及其制备方法
CN106893991A (zh) 一种Zr‑B‑O‑N纳米复合涂层制备工艺
CN102452193A (zh) 具有硬质涂层的被覆件及其制备方法
CN105951047A (zh) 一种具备氮钇锆硬质涂层钨镍合金的制备方法
CN102465258A (zh) 镀膜件及其制备方法
CN108239754A (zh) 一种具备耐磨耐蚀涂层钨镍合金的制备方法
CN106119786A (zh) 一种具备耐磨耐蚀涂层钼合金板材的制备方法
CN111647859B (zh) 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺
CN108239716A (zh) 一种具备氮钇锆硬质涂层钨镍合金的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116