CN115304377A - Lgps陶瓷片及其制备方法、lgps陶瓷片的压制模具 - Google Patents

Lgps陶瓷片及其制备方法、lgps陶瓷片的压制模具 Download PDF

Info

Publication number
CN115304377A
CN115304377A CN202211113236.7A CN202211113236A CN115304377A CN 115304377 A CN115304377 A CN 115304377A CN 202211113236 A CN202211113236 A CN 202211113236A CN 115304377 A CN115304377 A CN 115304377A
Authority
CN
China
Prior art keywords
gep
lgps
ceramic
preparation
ceramic chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211113236.7A
Other languages
English (en)
Inventor
张俊凯
王钊
鲁铭
王婧姝
郎集会
吕俊呈
陈广博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Normal University
Original Assignee
Jilin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Normal University filed Critical Jilin Normal University
Priority to CN202211113236.7A priority Critical patent/CN115304377A/zh
Publication of CN115304377A publication Critical patent/CN115304377A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/04Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form with one ram per mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/5154Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on phosphides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及固态电解质的制备技术领域,具体涉及一种LGPS陶瓷片及其制备方法、LGPS陶瓷片的压制模具,本发明提供的制备方法,包括以下步骤:将Li10GeP2S12粉末进行压制成型,得到所述Li10GeP2S12陶瓷片;所述压制成型的压力为0.5~3.0GPa,保压时间为3~10min。本发明采用高压力(0.5~3.0GPa)对Li10GeP2S12粉末进行压制,可以降低晶界处的气孔数目,形成区域晶粒间接触良好的“捷径”,降低晶界势垒和迁移路径,提高离子在固相中的迁移速率,从而提高了离子电导率。

Description

LGPS陶瓷片及其制备方法、LGPS陶瓷片的压制模具
技术领域
本发明涉及固态电解质的制备技术领域,具体涉及一种LGPS陶瓷片及其制备方法、LGPS陶瓷片的压制模具。
背景技术
相对于液态锂电池来说,固态锂电池具有更高的能量密度和更好的安全稳定性,被认为是下一代电池体系的重要候选者。其中,固态电解质是全固态锂电池的核心部件。根据电解质的成分区分,电解质分为聚合物固态电解质和无机固态电解质。得益于自身高的锂离子电导率,良好的稳定性,无机固态电解质成为固态电解质重要的开发目标。然而,由于无机固态电解质内部晶界阻抗大以及电极/电解质之间界面阻抗高,导致无机固态电解质实际锂离子电导率低的问题。这个缺陷制约了全固态锂电池的发展,造成了电池差的电化学性能,限制了锂离子电池能量密度的发挥。
一直以来,国内外很多研究者通过元素替换和掺杂的方式来改善离子导电通道以及填隙离子或离子空位的浓度,提高无机固态电解质自身的离子电导率。然而,无机固态电解质材料的性质很大程度上取决于晶界的密度,较大的晶界电阻势必会降低无机固态电解质的离子电导性能,因此,调控晶界的微结构是从材料形貌角度提高离子电导率的关键。目前来讲,针对无机固态电解质,往往通过高温来影响晶界。虽然高温处理能够有效减少晶界处的气孔数目,提高晶粒间的接触,但是高温处理一方面能耗较高,另一方面经常会导致样品的非晶化或玻璃化,不仅破坏了材料的晶体结构,反而使得材料的电导率降低。
发明内容
有鉴于此,本发明提供了一种LGPS(Li10GeP2S12)陶瓷片及其制备方法、LGPS(Li10GeP2S12)陶瓷片的压制模具,本发明提供的制备方法,无需经过高温过程,且制备得到的Li10GeP2S12陶瓷片具有较高的电导率。
为了实现上述发明目的,本发明提供了一种Li10GeP2S12陶瓷片的制备方法,包括以下步骤:
将Li10GeP2S12粉末进行压制成型,得到所述Li10GeP2S12陶瓷片;
所述压制成型的压力为0.5~3.0GPa,保压时间为3~10min。
优选地,所述Li10GeP2S12粉末的粒径为0.1~1μm。
本发明还提供了上述所述的制备方法制备得到的Li10GeP2S12陶瓷片,所述Li10GeP2S12陶瓷片的电导率为2.5~5.0mS·cm-1
本发明还提供了上述所述的Li10GeP2S12陶瓷片的压制模具,包括铜板1和可拆卸的样品成型环2;
所述铜板中央设有凹槽11;所述凹槽的中心为中空腔12;
所述中空腔12用于可拆卸地设置所述样品成型环2;
所述样品成型环2的厚度与所述中空腔12的高度相同。
优选地,还包括脱模件3。
优选地,所述脱模件3包括与所述凹槽11和中空腔12匹配的凸台。
优选地,所述样品成型环2的材质为叶腊石。
本发明提供了一种Li10GeP2S12陶瓷片的制备方法,包括以下步骤:将Li10GeP2S12粉末进行压制成型,得到所述Li10GeP2S12陶瓷片;所述压制成型的压力为0.5~3.0GPa,保压时间为3~10min。本发明采用高压力(0.5~3.0GPa)对Li10GeP2S12粉末进行压制成型,可以降低晶界处的气孔数目,形成区域晶粒间接触良好的“捷径”,降低晶界势垒和迁移路径,提高离子在固相中的迁移速率,从而提高了离子电导率。
附图说明
图1为Li10GeP2S12陶瓷片的压制模具,其中1-铜板,2-样品成型环,3-脱模件,11-凹槽,12-中空腔;
图2为实施例1在1.5GPa压力下和对比例1制备而成的陶瓷片的电导率测试图;
图3为实施例1在1.5GPa压力下和对比例1制备而成的陶瓷片的电镜扫描图;
图4为实施例1在1.5GPa压力下压制后的LGPS和对比例1制备得到的陶瓷片的比容量测试图。
具体实施方式
本发明提供了一种Li10GeP2S12陶瓷片的制备方法,包括以下步骤:
将Li10GeP2S12粉末进行压制成型,得到所述Li10GeP2S12陶瓷片。
在本发明中,如无特殊说明,本发明所用的原料均优选为市售产品。
在本发明中,所述Li10GeP2S12粉末的粒径优选为0.1~1μm,更优选为0.2~0.6μm。在本发明中,所述压制成型前,还包括所述Li10GeP2S12粉末进行球磨,本发明对所述球磨不作具体限定,采用本领域技术人员熟知的操作将球磨至上述粒径即可。
在本发明中,所述压制成型的压力为0.5GPa~3.0GPa,优选为1.5~2.0GPa。保压时间为3~10min,优选为5min;在本发明中,升温至所述压制成型的压力的升压速率优选为0.5GPa/min。
在本发明中,压制成型后,优选还包括退压。在本发明中,所述退压的方式优选为一次淬压。
本发明还提供了上述所述的制备方法制备得到的Li10GeP2S12陶瓷片。
在本发明中,所述Li10GeP2S12陶瓷片的电导率优选为2.5~5mS·cm-1,更优选为2.6~4.7mS·cm-1
本发明所述的Li10GeP2S12陶瓷片的压制模具如图1所示,由图1可知,所述压制模具包括铜板1和可拆卸的样品成型环2;
所述铜板中央设有凹槽11;所述凹槽的中心为中空腔12;
所述中空腔12用于可拆卸地设置所述样品成型环2;
所述样品成型环2的厚度与所述中空腔12的高度相同。
在本发明中,所述压制模具包括铜板1,本发明对所述铜板1的尺寸不作具体限定,具体优选为长度为50mm,宽度为50mm,厚度为5mm的铜板。
在本发明中,所述铜板1中央设有凹槽11,所述凹槽11的形状优选为圆形凹槽或方形凹槽,更优选为圆形凹槽。在本发明中,所述圆形凹槽的直径具体优选为30mm,高度优选为4mm。
在本发明中,所述凹槽11的中心为中空腔12,所述中空腔12优选为方状中空腔或柱状中空腔;所述柱状中空腔的直径具体优选为16mm,厚度优选为1mm。
在本发明中,所述中空腔12用于可拆卸地设置所述样品成型环2。在本发明中,所述样品成型环2的材质优选为叶腊石。在本发明中,所述样品成型环优选为方环样品成型环或圆环样品成型环。在本发明中,所述圆环样品成型环的外径具体优选为22mm。在本发明中,所述样品成型环2的厚度与所述中空腔12的高度相同,在本发明中,具体优选为1mm。在本发明中,所述样品成型环能够同时起到封压以及方便脱模的作用。
在本发明中,所述压制模具优选还包括脱模件3,所述脱模件3优选包括与所述凹槽11和中空腔12匹配的凸台。在本发明中,所述脱模件3的材质优选为不锈钢。
在本发明中,对所述压制模具的使用方法不做具体限定,采用本领域技术人员熟知的使用方法将装载好样品的模具与油压机配合使用即可。
在本发明中,所述Li10GeP2S12的装载优选为将模具放置于垫块上后,于模具中添加所述Li10GeP2S12,进行预压成型。
在本发明中,所述垫块的材质优选为Cr钢;所述预压成型的压力优选为10~20MPa,在本发明中,所述预压成型的目的是将粉末状Li10GeP2S12压实在样品腔,便于后续与油压机配合使用。
下面结合实施例对本发明提供的技术方案进行详细地说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1~7
油压机事先预设压力设置分别为0.5、1.0、1.5、2.0、2.5以及3.0GPa,升压速率和保压时间统一设置为0.5GPa/min和5min。
取300mg粒径为0.2μm的Li10GeP2S12陶瓷片粉末在真空手套箱内放入图1所示结构的模具中,(模具预先放置于Cr钢垫块),在10MPa下进行预压成型,然后将装载完样品的模具放入密封盒后从真空手套箱取出置于油压机按照预设加压程序进行压制成型,压制成型后进行退压,然后用脱模件将陶瓷片脱模,分别得到不同压制压力下的厚度1mm,直径16mm的Li10GeP2S12陶瓷片(简称为LGPS)。
对比例1
与实施例1的区别仅仅在于压力设置为0.03GPa。
测试例
将实施例1和对比例1制备得到的LGPS按照不锈钢/LGPS/不锈钢的叠加方式组装成对称型测试模型,采用交流阻抗谱法进行离子电导率测试,测试结果见图2。从图2可知:1.5GPa压力下制备而成的陶瓷片锂离子电导率表现为最高,为4.62mS·cm-1
将实施例1在1.5GPa压力下和对比例1制备而成的陶瓷片进行电镜扫描,扫描电镜图见图3,其中图3a为对比例1制备而成的陶瓷片的扫描电镜图,图3b为1.5GPa压力下制备而成的陶瓷片的扫描电镜图。由图3可知:1.5GPa处理后的LGPS陶瓷片孔洞更少,颗粒之间更紧密。
将实施例1在1.5GPa压力下压制后的LGPS和对比例1制备得到的LGPS作为固态电解质,磷酸铁锂为正极,锂片为负极,组装成2032型纽扣电池(LFePO4/LGPS/Li),进行电化学性能(比容量)测试,测试结果见图4,从图4可知:LGPS陶瓷片与电极之间构建了很好的离子导电通道,界面阻抗更小,磷酸铁锂正极比容量可达143.9mAh/g。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种Li10GeP2S12陶瓷片的制备方法,其特征在于,包括以下步骤:
将Li10GeP2S12粉末进行压制成型,得到所述Li10GeP2S12陶瓷片;
所述压制成型的压力为0.5~3.0GPa,保压时间为3~10min。
2.根据权利要求1所述的制备方法,其特征在于,所述Li10GeP2S12粉末的粒径为0.1~1μm。
3.权利要求1或2所述的制备方法制备得到的Li10GeP2S12陶瓷片,其特征在于,所述Li10GeP2S12陶瓷片的电导率为2.5~5mS·cm-1
4.用于权利要求3权利要求所述的Li10GeP2S12陶瓷片的压制模具,其特征在于,包括铜板(1)和可拆卸的样品成型环(2);
所述铜板中央设有凹槽(11);所述凹槽的中心为中空腔(12);
所述中空腔(12)用于可拆卸地设置所述样品成型环(2);
所述样品成型环(2)的厚度与所述中空腔(12)的高度相同。
5.根据权利要求4所述的压制模具,其特征在于,还包括脱模件(3)。
6.根据权利要求5所述的压制模具,其特征在于,所述脱模件(3)包括与所述凹槽(11)和中空腔(12)匹配的凸台。
7.根据权利要求4所述的压制模具,其特征在于,所述样品成型环(2)的材质为叶腊石。
CN202211113236.7A 2022-09-14 2022-09-14 Lgps陶瓷片及其制备方法、lgps陶瓷片的压制模具 Pending CN115304377A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211113236.7A CN115304377A (zh) 2022-09-14 2022-09-14 Lgps陶瓷片及其制备方法、lgps陶瓷片的压制模具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211113236.7A CN115304377A (zh) 2022-09-14 2022-09-14 Lgps陶瓷片及其制备方法、lgps陶瓷片的压制模具

Publications (1)

Publication Number Publication Date
CN115304377A true CN115304377A (zh) 2022-11-08

Family

ID=83867462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211113236.7A Pending CN115304377A (zh) 2022-09-14 2022-09-14 Lgps陶瓷片及其制备方法、lgps陶瓷片的压制模具

Country Status (1)

Country Link
CN (1) CN115304377A (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231704A1 (en) * 2006-03-30 2007-10-04 Ohara Inc. Lithium ion conductive solid electrolyte and production process thereof
US20090081553A1 (en) * 2007-09-25 2009-03-26 Seiko Epson Corporation Electrochemical device
CN105789682A (zh) * 2014-12-17 2016-07-20 中国电子科技集团公司第十八研究所 安全高倍率全固态电池的制备方法
CN109638360A (zh) * 2018-11-09 2019-04-16 哈尔滨工业大学无锡新材料研究院 一种全固态锂硫电池的制备方法及制备模具
JP2020064832A (ja) * 2018-10-19 2020-04-23 三菱瓦斯化学株式会社 固体電解質材料およびその成形体
CN111244535A (zh) * 2020-02-27 2020-06-05 浙江大学 对锂稳定性高的硫化物固体电解质材料及其制备方法和应用
CN111509293A (zh) * 2020-04-15 2020-08-07 国联汽车动力电池研究院有限责任公司 一种降低氧化物电解质晶界阻抗及界面阻抗的方法
CN112768757A (zh) * 2021-01-18 2021-05-07 南开大学 空气稳定的多元稀土氧化物掺杂的锂锗磷硫固体电解质及其制备方法
CN113823830A (zh) * 2021-09-10 2021-12-21 四川大学 Al3+掺杂改性的LGPS型锂离子固态电解质及其制备方法
CN113948764A (zh) * 2021-09-01 2022-01-18 上海屹锂新能源科技有限公司 一种硫化物固态电解质材料制备方法和应用
CN114725485A (zh) * 2022-04-13 2022-07-08 中汽创智科技有限公司 一种全固态电池及其制备方法
CN114784369A (zh) * 2022-05-05 2022-07-22 南方科技大学 一种固态电解质及其制备方法和应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231704A1 (en) * 2006-03-30 2007-10-04 Ohara Inc. Lithium ion conductive solid electrolyte and production process thereof
US20090081553A1 (en) * 2007-09-25 2009-03-26 Seiko Epson Corporation Electrochemical device
CN105789682A (zh) * 2014-12-17 2016-07-20 中国电子科技集团公司第十八研究所 安全高倍率全固态电池的制备方法
JP2020064832A (ja) * 2018-10-19 2020-04-23 三菱瓦斯化学株式会社 固体電解質材料およびその成形体
CN109638360A (zh) * 2018-11-09 2019-04-16 哈尔滨工业大学无锡新材料研究院 一种全固态锂硫电池的制备方法及制备模具
CN111244535A (zh) * 2020-02-27 2020-06-05 浙江大学 对锂稳定性高的硫化物固体电解质材料及其制备方法和应用
CN111509293A (zh) * 2020-04-15 2020-08-07 国联汽车动力电池研究院有限责任公司 一种降低氧化物电解质晶界阻抗及界面阻抗的方法
CN112768757A (zh) * 2021-01-18 2021-05-07 南开大学 空气稳定的多元稀土氧化物掺杂的锂锗磷硫固体电解质及其制备方法
CN113948764A (zh) * 2021-09-01 2022-01-18 上海屹锂新能源科技有限公司 一种硫化物固态电解质材料制备方法和应用
CN113823830A (zh) * 2021-09-10 2021-12-21 四川大学 Al3+掺杂改性的LGPS型锂离子固态电解质及其制备方法
CN114725485A (zh) * 2022-04-13 2022-07-08 中汽创智科技有限公司 一种全固态电池及其制备方法
CN114784369A (zh) * 2022-05-05 2022-07-22 南方科技大学 一种固态电解质及其制备方法和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HU, CH: "Insights into structural stability and Li superionic conductivity of Li10GeP2S12 from first-principles calculations", 《CHEMICAL PHYSICS LETTERS》, vol. 591, pages 16 - 20, XP028549061, DOI: 10.1016/j.cplett.2013.11.003 *
HU,CH: ""Insights into structural stability and Li superionic conductivity of Li10GeP2S12 from first-principles calculations"", 《CHEMICAL PHYSICS LETTERS》, vol. 591, pages 16 - 20, XP028549061, DOI: 10.1016/j.cplett.2013.11.003 *
SAKUDA, A: "Recent progress on interface formation in all-solid-state batteries", 《CURRENT OPINION IN ELECTROCHEMISTRY》, vol. 6, no. 1, pages 108 - 114 *
SAKUDA, ATSUSHI: ""Recent progress on interface formation in all-solid-state batteries"", 《CURRENT OPINION IN ELECTROCHEMISTRY》, vol. 6, no. 2, pages 108 - 114 *
SAKUDA, ATSUSHI: ""Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery"", 《SCIENTIFIC REPORTS》, vol. 2, pages 1 - 5 *
孙翠翠等: "固体氧化物燃料电池电解质GDC掺杂Li2CO3,Na2CO3材料的结构和导电性能研究", 《吉林化工学院学报》, vol. 36, no. 7, pages 91 - 94 *

Similar Documents

Publication Publication Date Title
US20180166741A1 (en) Composite membrane comprising solid electrolyte, method of making said composite membrane, and electrochemical cell comprising said composite membrane
JP6430427B2 (ja) コバルト酸リチウム焼結体及び該焼結体を用いて作製されるスパッタリングターゲット及びコバルト酸リチウム焼結体の製造方法並びにコバルト酸リチウムからなる薄膜
CN109638360A (zh) 一种全固态锂硫电池的制备方法及制备模具
CN107591568B (zh) 一种层叠式全固态锂离子电池的制备方法
KR101876059B1 (ko) 듀플렉스 고체전해질막의 제조방법, 이에 의해 제조된 듀플렉스 고체전해질막 및 이를 이용한 전고체전지의 제조방법
CN109560248A (zh) 复合正极材料、叠层单元及制备方法和全固态锂离子电池
CN112939601A (zh) 一种电解质材料、其制备方法和应用
JP6134439B2 (ja) LiCoO2スパッタリングターゲット及びその製造方法並びに正極材薄膜
JP7183529B2 (ja) 積層体グリーンシート、全固体二次電池及びその製造方法
JP2016103381A (ja) 全固体電池の製造方法
CN115304377A (zh) Lgps陶瓷片及其制备方法、lgps陶瓷片的压制模具
KR20160078884A (ko) 전고체전지의 제조 방법, 및 전고체전지
KR100980209B1 (ko) 건식 공정을 이용한 용융탄산염 연료전지용 다공성 금속전극의 제조방법
CN114573338B (zh) 一种高储能密度介电陶瓷的制备方法及应用
CN109346752B (zh) 一种电解质支撑的固体氧化物燃料电池锆基电解质薄膜的制备方法
JP2012246167A (ja) 圧粉焼結体の作製方法
CN113594541A (zh) 一种等离子体磁过滤技术制备lagp基固体电解质的方法
CN106848189A (zh) 一种高密度锂离子电池极片的制备方法
JP6585251B2 (ja) コバルト酸リチウム焼結体及び該焼結体を用いて作製されるスパッタリングターゲット及びコバルト酸リチウム焼結体の製造方法並びにコバルト酸リチウムからなる薄膜
KR101047717B1 (ko) 용융탄산염 연료전지용 전해질 함침형 다공성 금속 전극의 동시 건식 제조 방법
KR20110127406A (ko) 연료전지용 분리판 제조 시스템
CN115160011A (zh) 一种一步烧结制备直孔固态锂电池陶瓷电解质的方法及其应用
KR20180081916A (ko) 진공을 이용한 전해액 주액 방법
KR101044163B1 (ko) 건식 공정을 이용한 용융탄산염 연료전지용 다공성 금속 전극의 제조방법
CN115312841A (zh) 一种固态锂电池陶瓷复合电解质及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination