CN115287622B - 一种分子膜碳纸及其制备方法和应用 - Google Patents

一种分子膜碳纸及其制备方法和应用 Download PDF

Info

Publication number
CN115287622B
CN115287622B CN202211067045.1A CN202211067045A CN115287622B CN 115287622 B CN115287622 B CN 115287622B CN 202211067045 A CN202211067045 A CN 202211067045A CN 115287622 B CN115287622 B CN 115287622B
Authority
CN
China
Prior art keywords
carbon paper
polymer film
preparation
molecular film
chemical deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211067045.1A
Other languages
English (en)
Other versions
CN115287622A (zh
Inventor
朱维
谢佳平
尚子奇
沈军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haidriver Beijing Energy Technology Co Ltd
Original Assignee
Haidriver Beijing Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haidriver Beijing Energy Technology Co Ltd filed Critical Haidriver Beijing Energy Technology Co Ltd
Priority to CN202211067045.1A priority Critical patent/CN115287622B/zh
Publication of CN115287622A publication Critical patent/CN115287622A/zh
Application granted granted Critical
Publication of CN115287622B publication Critical patent/CN115287622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及燃料电池技术领域,尤其涉及一种分子膜碳纸及其制备方法和应用。本发明提供了一种分子膜碳纸的制备方法,包括以下步骤:将高分子膜在酸液中进行浸渍处理后,热处理,得到预处理后的高分子膜;所述高分子膜的材料为导电聚合物;采用等离子气相化学沉积的方式,以乙炔为工作气,在所述预处理后的高分子膜表面沉积碳,得到所述分子膜碳纸。利用所述制备方法制备得到的分子膜碳纸同时具有较好的机械强度、疏水性和电导率。

Description

一种分子膜碳纸及其制备方法和应用
技术领域
本发明涉及燃料电池技术领域,尤其涉及一种分子膜碳纸及其制备方法和应用。
背景技术
燃料电池是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。它直接将燃料的化学能转化为电能,中间不经过燃烧过程,因而不受卡诺循环的限制,具有能量转化效率高的特点。
气体扩散层是质子交换膜燃料电池的重要组件,可以将燃料电池反应生成的水及时排出,也可起到气体扩散和支撑催化层的作用。因此气体扩散层结构需保证高机械强度的同时,还要具有良好的气体透过性和排水性。目前气体扩散层主要以碳纤维纸为基础材料,但碳纸原纸中胶黏剂经高温碳化后大量挥发仅残存少量碳物质,强度几乎丧失。目前的制作工艺是采用含碳量高的树脂浸渍碳纸原纸,经高温处理,树脂碳化后残留的碳对碳纤维起到粘结和增强作用,从而保持碳纸的形状和强度。然而目前碳纸的浸渍工艺制备的气体扩散层仍存在透气疏水性和电子传导能力不能兼具的缺点,而且其制备工艺繁琐且价格较高,不能较好的满足要求。为了更好地提高其性能,许多研究人员从气体扩散层的浸渍原料、结构和工艺方面开始入手进行改进优化,通过超声浸渍方法在碳纤维纸表面浸渍树脂石墨烯和稳定增强添加料混合溶液,并采用两次碳化来提高其透气性和碳含量,制备柔韧性、力学性能和透气性等较好的气体扩散层,但其疏水性较差。
发明内容
本发明的目的在于提供一种分子膜碳纸及其制备方法和应用,利用所述制备方法制备得到的分子膜碳纸同时具有较好的机械强度、疏水性和电导率。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种分子膜碳纸的制备方法,包括以下步骤:
将高分子膜在酸液中进行浸渍处理后,热处理,得到预处理后的高分子膜;所述高分子膜的材料为导电聚合物;
采用等离子气相化学沉积的方式,以乙炔为工作气,在所述预处理后的高分子膜表面沉积碳,得到所述分子膜碳纸。
优选的,所述高分子膜的材料包括聚乙烯、聚苯胺、聚吡咯、聚噻吩或聚苯乙炔。
优选的,所述酸液的质量浓度为20%~40%,所述酸液的温度为30~50℃。
优选的,所述酸液为盐酸、硝酸和硫酸中的一种或几种。
优选的,所述浸渍处理后还包括清洗;
所述清洗采用的清洗剂为水;所述热处理的温度为600~800℃,时间为3~4h。
优选的,所述等离子气相化学沉积的气氛为乙炔和惰性气体的混合气;
所述混合气中的乙炔的体积百分比为25%~75%。
优选的,所述惰性气体为氮气、氩气和氦气中的一种或几种。
优选的,所述等离子气相化学沉积的温度为400~800℃,时间为30~120min。
本发明还提供了上述技术方案所述制备方法制备得到的分子膜碳纸。
本发明还提供了上述技术方案所述分子膜碳纸在燃料电池气体扩散层中的应用。
本发明提供了一种分子膜碳纸的制备方法,包括以下步骤:将高分子膜在酸液中进行浸渍处理后,热处理,得到预处理后的高分子膜;所述高分子膜的材料为导电聚合物;采用等离子气相化学沉积的方式,以乙炔为工作气,在所述预处理后的高分子膜表面沉积碳,得到所述分子膜碳纸。本发明在制备过程中不需要使用胶黏剂和树脂,从根本上解决了高温下胶黏剂挥发的问题。本发明以高分子膜为基底,显著提高了分子膜碳纸的机械强度及疏水性;然后通过气相化学沉积法在所述高分子膜表面沉积碳,在沉积过程中碳原子完成了碳化和石墨化过程,碳在膜的孔径内形成传导电子的通道,提高了碳纸的电导率。通过该方法制备的碳纸同时具备较高的机械强度、良好的疏水性和电导率。所述气相化学沉积法工艺简单,不涉及到粘结剂,从原理上解决了碳纸机械强度低的问题。
与现有技术相比,本发明所述制备方法具有以下优势:
1)本发明采用高分子膜基底材料作为共轭性聚合物经过掺杂后,电导率可达到半导体甚至是金属导体水平;其中表面的疏水官能团极大的提高了燃料电池气体扩散层的疏水和排水能力;
2)本发明采用气相化学沉积法将碳沉积在高分子膜基底上,真空下辉光放电,乙炔分子键断裂在电场作用下碳沉积在高分子膜基底上。碳原子在膜的孔径内形成传导电子的通道,提高了分子膜碳纸的电导率;
3)所述方法工艺步骤简单,适用于大规模生产,制备得到的分子膜碳纸具有高电子传导能力,兼具较好的疏水性,能够有效提高燃料电池的效率。
具体实施方式
本发明提供了一种分子膜碳纸的制备方法,包括以下步骤:
将高分子膜在酸液中进行浸渍处理后,热处理,得到预处理后的高分子膜;
采用等离子气相化学沉积的方式,以乙炔为工作气,在所述预处理后的高分子膜表面沉积碳,得到所述分子膜碳纸。
在本发明中,若无特殊说明,所有制备原料均为本领域技术人员熟知的市售产品。
本发明将高分子膜在酸液中进行浸渍处理后,热处理,得到预处理后的高分子膜。
在本发明中,所述高分子膜的材料包括导电聚合物,优选包括聚乙烯、聚苯胺、聚吡咯、聚噻吩或聚苯乙炔。在本发明中,所述导电聚合物具有共轭双键,所述共轭双键的存在使得导电聚合物具有一维半导体的不稳定性,在掺杂改性后从绝缘状态跃迁到半导体或导体的状态。
在本发明中,所述酸液的质量浓度优选为20%~40%,更优选为25%~35%,最优选为28%~32%;所述酸液优选为盐酸、硝酸和硫酸中的一种或几种;当所述酸液为上述具体选择中的两种以上时,本发明对上述具体物质的配比没有任何特殊的限定,按任意配比进行混合即可。所述酸液的温度优选为30~50℃,更优选为35~45℃,最优选为38~42℃;所述浸渍处理的时间优选为4~5h。在本发明中,所述浸渍优选为将所述高分子膜浸没在酸液中。
在本发明中,所述浸渍处理后还优选包括清洗,所述清洗采用的清洗剂优选为水。
在本发明中,高分子膜本身的疏水官能团有利于增强气体扩散层的疏水和排水能力,所述浸渍处理的目的是洗去高分子膜表面上的杂质。
在本发明中,所述热处理的温度优选为600~800℃,更优选为650~750℃,最优选为780~820℃;时间优选为3~4h。
在本发明中,所述热处理的目的是去除热处理将高分子膜中的水分。
得到预处理后的高分子膜后,本发明采用等离子气相化学沉积的方式,以乙炔为工作气,在所述预处理后的高分子膜表面沉积碳,得到所述分子膜碳纸。
在本发明中,所述气相化学沉积的气氛优选为乙炔和惰性气体的混合气;所述混合气中的乙炔的体积百分比优选为25%~75%,更优选为30%~60%,最优选为40%~50%。在本发明中,所述惰性气体优选为氮气、氩气和氦气中的一种或几种;当所述惰性气体为上述具体选择中的两种以上时,本发明对上述气体的配比没有任何特殊的限定,按任意配比进行混合即可。
在本发明中,所述等离子气相化学沉积的温度优选为400~800℃,更优选为450~750℃,最优选为500~600℃;时间优选为30~120min,更优选为50~100min,最优选为60~80min。
在本发明中,所述等离子气相化学沉积优选在辉光放电的条件下进行,所述辉光放电优选在0~10Pa的条件下进行,所述辉光放电的功率优选为100~150W。
本发明还提供了上述技术方案所述制备方法制备得到的分子膜碳纸。
本发明还提供了上述技术方案所述分子膜碳纸在燃料电池气体扩散层中的应用。本发明对所述应用的方法没有任何特殊的限定,采用本领域技术人员熟知的方法进行即可。
下面结合实施例对本发明提供的分子膜碳纸及其制备方法和应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
将聚乙烯分子膜浸没在质量浓度为30%,温度为40℃的稀硝酸溶液中浸渍5h后,用大量的去离子水冲洗,600℃热处理3h,得到预处理后的高分子膜;
将所述预处理后的高分子膜放入气相化学沉积装置反应舱中,通入乙炔和惰性气体的混合气(惰性气体为氩气,乙炔的体积百分比为50%)至-0.02MPa,施加辉光放电(100W),进行等离子气相化学沉积,所述等离子气相化学沉积的温度为600℃,时间为90min,得到所述分子膜碳纸。
实施例2
将聚苯胺分子膜浸没在质量浓度为40%,温度为50℃的稀硫酸溶液中浸渍4h后,用大量的去离子水冲洗,700℃热处理4h,得到预处理后的高分子膜;
将所述预处理后的高分子膜放入气相化学沉积装置反应舱中,通入乙炔和惰性气体的混合气(惰性气体为氮气,乙炔的体积百分比为40%)至-0.04MPa,施加辉光放电(150W),进行等离子气相化学沉积,所述等离子气相化学沉积的温度为500℃,时间为60min,得到所述分子膜碳纸。
实施例3
将聚吡咯分子膜浸没在质量浓度为40%,温度为40℃的稀盐酸溶液中浸渍4h后,用大量的去离子水冲洗,600℃热处理4h,得到预处理后的高分子膜;
将所述预处理后的高分子膜放入气相化学沉积装置反应舱中,通入乙炔和惰性气体的混合气(惰性气体为氩气,乙炔的体积百分比为60%)至-0.05MPa,施加辉光放电(100w),进行等离子气相化学沉积,所述等离子气相化学沉积的温度为600℃,时间为120min,得到所述分子膜碳纸。
对比例1
制备方法与实施例1不同,具体制备过程为:采用真空浸渍的方法,将碳纤维纸在混合溶液中(所述混合溶液的溶质为酚醛树脂和聚酰亚胺,溶剂为甲醇溶剂,质量浓度为10%)进行浸渍(所述浸渍的条件为40℃,12h)后,固化(所述固化的条件为300℃,3h)、碳化(所述碳化的条件为800℃,1h)和石墨化(所述石墨化的条件为2000℃,1h),得到燃料电池气体扩散层。
对比例2
将聚乙烯分子膜浸没在质量浓度为30%,温度为40℃的稀硝酸溶液中浸渍5h后,用大量的去离子水冲洗,600℃热处理3h,得到预处理后的高分子膜;
在所述预处理后的高分子膜的表面喷涂碳粉(喷涂碳粉的条件为施加压力为15MPa,喷涂时间为15min,喷嘴口径为19mm,枪口与碳纸距离为0.2m)后,固化(所述固化的条件为350℃,2h)、碳化(所述碳化的条件为850℃,2h)和石墨化(所述石墨化的条件为2000℃,2h),得到燃料电池气体扩散层。
测试例
对实施例1~3所述分子膜碳纸和对比例1~2所述燃料电池气体扩散层进行性能测试,测试结果如表1所示:
表1实施例1~3所述分子膜碳纸和对比例1~2所述燃料电池气体扩散层的性能参数
Figure BDA0003827980680000061
由表1可知,本发明制备得到的分子膜碳纸具有较高透气率的同时具有较高的导电率,还兼具较好的疏水性和拉伸强度,此工艺展现出较好的应用前景。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种分子膜碳纸的制备方法,其特征在于,具体为以下步骤:
将高分子膜在酸液中进行浸渍处理后,清洗,热处理,得到预处理后的高分子膜;所述高分子膜的材料为导电聚合物;
采用等离子气相化学沉积的方式,以乙炔为工作气,在所述预处理后的高分子膜表面沉积碳,得到所述分子膜碳纸;
所述等离子气相化学沉积在辉光放电的条件下进行;
所述辉光放电的工作压力为0~10Pa;
所述辉光放电的功率为100~150W;
所述高分子膜的材料包括聚乙烯、聚苯胺、聚吡咯、聚噻吩或聚苯乙炔;
所述清洗采用的清洗剂为水;
所述热处理的温度为600~800℃,时间为3~4h;
所述等离子气相化学沉积的温度为400~800℃,时间为30~120min。
2.如权利要求1所述的制备方法,其特征在于,所述酸液的质量浓度为20%~40%,所述酸液的温度为30~50℃。
3.如权利要求1或2所述的制备方法,其特征在于,所述酸液为盐酸、硝酸和硫酸中的一种或几种。
4.如权利要求1所述的制备方法,其特征在于,所述等离子气相化学沉积的气氛为乙炔和惰性气体的混合气;
所述混合气中的乙炔的体积百分比为25%~75%。
5.如权利要求4所述的制备方法,其特征在于,所述惰性气体为氮气、氩气和氦气中的一种或几种。
6.权利要求1~5任一项所述制备方法制备得到的分子膜碳纸。
7.权利要求6所述分子膜碳纸在燃料电池气体扩散层中的应用。
CN202211067045.1A 2022-09-01 2022-09-01 一种分子膜碳纸及其制备方法和应用 Active CN115287622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211067045.1A CN115287622B (zh) 2022-09-01 2022-09-01 一种分子膜碳纸及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211067045.1A CN115287622B (zh) 2022-09-01 2022-09-01 一种分子膜碳纸及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115287622A CN115287622A (zh) 2022-11-04
CN115287622B true CN115287622B (zh) 2023-06-06

Family

ID=83833051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211067045.1A Active CN115287622B (zh) 2022-09-01 2022-09-01 一种分子膜碳纸及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115287622B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116598525A (zh) * 2023-07-18 2023-08-15 海卓动力(青岛)能源科技有限公司 一种磁控溅射双极板-膜电极总成和电堆及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728611B1 (ko) * 2005-11-25 2007-06-14 주식회사 진우엔지니어링 연료전지용 전극 촉매 및 그의 제조 방법
CN101435174B (zh) * 2007-11-14 2010-12-22 上海河森电气有限公司 一种燃料电池专用高性能碳纸的制造方法
US20090273106A1 (en) * 2008-05-02 2009-11-05 Yuan Ze University Porous Carbon Membranes and Their Forming Method
KR101550204B1 (ko) * 2013-10-15 2015-09-04 한국에너지기술연구원 전도성 고분자 첨가를 통한 연료전지 가스확산층용 탄소종이의 제조방법 및 이를 이용한 연료전지 가스확산층용 탄소종이
FR3072608B1 (fr) * 2017-10-20 2021-04-02 Commissariat Energie Atomique Structure multicouche integrant un tapis de nanotubes de carbone comme couche de diffusion dans une pemfc

Also Published As

Publication number Publication date
CN115287622A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN110876954B (zh) 一种泡沫状MXene/C3N4/金属复合电催化剂及其制备方法
WO2018113485A1 (zh) 一种高功率密度的质子交换膜燃料电池膜电极及其制备方法
CN111900416A (zh) 一种燃料电池气体扩散层用碳纸浸渍树脂的制备方法及其应用
CN115287622B (zh) 一种分子膜碳纸及其制备方法和应用
CN114300702B (zh) 一种含有氧化铈改性碳纳米纤维的燃料电池气体扩散层结构及其制备方法
CN106876741B (zh) 一种复合型质子交换膜的制备方法
CN112701297A (zh) 一种高稳定性非贵金属催化剂电极及其制备方法与应用
CN113991127A (zh) 一种质子交换膜燃料电池气体扩散层及其制备方法
CN112952114A (zh) 一种气体扩散层及其制备方法和应用
CN102738478B (zh) 基于3维质子导体的单电极和燃料电池膜电极及制备方法
Zhou et al. Advanced cathodic free-standing interlayers for lithium–sulfur batteries: understanding, fabrication, and modification
CN113871673A (zh) 一种复合质子交换膜及其制备方法
CN111146468B (zh) 一种燃料电池气体扩散层的多孔碳膜及其制备方法
CN111900417A (zh) 一种高碳含量燃料电池气体扩散层用碳纸的制备方法
CN109629227B (zh) 一种纤维基碳纳米管导电材料的制备方法
KR101995830B1 (ko) 연료 전지용 담체, 이의 제조 방법, 이를 포함하는 연료 전지용 전극, 연료 전지용 막-전극 어셈블리 및 연료 전지 시스템
CN107946621B (zh) 一种功能性石墨烯改性提高炭纤维或炭纤维复合材料耐腐蚀的方法
CN113066995B (zh) 一种pem燃料电池、高韧性多孔碳纸及其制备方法
CN114360917B (zh) 一种石墨炔-碳纳米管三维复合材料及其制备方法与应用
CN115224295A (zh) 一种具有耐腐蚀膜层的燃料电池双极板及其制备方法
CN113991125A (zh) 一种质子交换膜燃料电池催化剂浆料及其制备方法和应用
CN115621514B (zh) 一种燃料电池膜电极的制备方法
CN114583124B (zh) 一种等离子体联合臭氧的三元电池正极材料
CN115312329B (zh) 一种基于交联反应的杂原子掺杂多孔碳的制备方法
CN118039926A (zh) 一种燃料电池低载量有序化膜电极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant