CN115201687B - 基于在线宽频带阻抗的电池模型参数和SoC联合估计方法 - Google Patents

基于在线宽频带阻抗的电池模型参数和SoC联合估计方法 Download PDF

Info

Publication number
CN115201687B
CN115201687B CN202210823313.1A CN202210823313A CN115201687B CN 115201687 B CN115201687 B CN 115201687B CN 202210823313 A CN202210823313 A CN 202210823313A CN 115201687 B CN115201687 B CN 115201687B
Authority
CN
China
Prior art keywords
battery
moment
soc
covariance matrix
posterior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210823313.1A
Other languages
English (en)
Other versions
CN115201687A (zh
Inventor
胡海涛
耿安琪
彭元贞
陈彦宇
何正友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202210823313.1A priority Critical patent/CN115201687B/zh
Publication of CN115201687A publication Critical patent/CN115201687A/zh
Application granted granted Critical
Publication of CN115201687B publication Critical patent/CN115201687B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

本发明公开了一种基于在线宽频带阻抗的电池模型参数和SoC联合估计方法,涉及储能电池技术领域。包括以下步骤:建立双极化分数阶等效电路模型,同时建立频域阻抗方程和双拓展卡尔曼滤波状态方程;获取电池的SoC‑OCV的关系曲线以及电化学阻抗谱;获取双极化分数阶等效电路模型的初始参数;获取模型参数先验估计值以及先验协方差矩阵,同时获取电池状态先验估计值以及先验协方差矩阵;计算电池状态卡尔曼增益,同时获取电池状态后验估计值以及后验协方差矩阵;判断和阈值的大小关系,并根据大小关系进行不同的计算;将前一步获得的参数进行递归运算,最终所得结果即为目标值。该方法能够同时对电池模型参数和SoC进行估计,同时准确度较高,收敛速度较快。

Description

基于在线宽频带阻抗的电池模型参数和SoC联合估计方法
技术领域
本发明涉及储能电池技术领域,具体涉及一种基于在线宽频带阻抗的电池模型参数和SoC联合估计方法。
背景技术
规模化的储能电池系统所使用的单体电池容量大、电池簇单体数量多、充放电深度深且电堆电流大,在使用的过程中存在着巨大的安全隐患,因此对电池能量管系统(BMS)提出了更高的要求。荷电状态(SoC)是BMS中最关键的参数之一,精确的SoC估算可有效避免单体电芯的过充、过放;精确的电池模型及模型参数能够通过数学的形式模拟电池,便于通过算法实现电池的最优控制及管理。
常见的SoC估计方法有:安时积分法、开路电压法和人工智能算法等。其中,安时积分法高度依赖于传感器的进度和初始SoC的准确性;开路电压法是一种可以通过OCV-SoC关系曲线确定SoC的简单算法,但该方法需要电池经过长时间的静置来获取开路电压,不适合应用于实际现场;此外,随着技术的发展,一些人工智能算法应用与电池SoC也应用于电池SoC估算中,其性能取决于大量的训练数据。
基于模型的方法通常以一种电池模型为基础,由于电化学模型的复杂性,使得基于等效电路模型的拓展卡尔曼滤波器广泛用于SoC的估计中,此类方法收敛速度快,能够对SoC进行实时估计,但其估计精度受模型影响较大。双拓展卡尔曼滤波(DEKF)可同时对系统模型、电池SoC进行估计,提高了SoC估计的精度,但该算法在初始值不确定、电池电压电流变化缓慢时,容易出现发散,造成结果不准确。
综上所述,基于卡尔曼滤波的SoC在线估算方法存在的问题是:
SOC估算精度不高,收敛速度不快,滤波器稳定性差;
电池模型参数初始值不确定、运行过程中模型参数时变,导致卡尔曼滤波算法发散或不稳定。
发明内容
鉴于以上技术问题,本发明的目的是针对现有技术的缺陷,提供了一种基于在线宽频带阻抗的电池模型参数和SoC联合估计方法,其能够同时对电池模型参数和SoC进行估计,同时准确度较高,收敛速度较快。
本发明采用以下技术方案为:
一种基于在线宽频带阻抗的电池模型参数和SoC联合估计方法,包括以下步骤:
S1、建立双极化分数阶等效电路模型,所述双极化分数阶等效电路模型包括串联的电源、电阻R0、RSEI和RCT,同时还包括与RSEI并联的恒相角元件CPE1,与RCT并联的恒相角元件CPE2,建立所述双极化分数阶等效电路模型的频域阻抗方程,同时建立双极化分数阶等效电路模型的双拓展卡尔曼滤波状态方程;
S2、获取电池的SoC-OCV的关系曲线以及电化学阻抗谱;
S3、根据频域阻抗方程和电化学阻抗谱获取双极化分数阶等效电路模型的初始参数,并将所述参数作为双拓展卡尔曼滤波状态方程的初始值,同时设定初始值t=1,且t为正整数;
S4、获取模型参数先验估计值以及模型参数先验协方差矩阵,同时获取电池状态先验估计值以及电池状态先验协方差矩阵;
S5、计算电池状态卡尔曼增益,同时获取电池状态后验估计值以及电池状态后验协方差矩阵;
S6、判断|χest,k(1)-χ0(1)|和s×t的大小关系,其中,s为大于0小于1的常数,s越小计算量越大,但其计算结果相对精确;s越大状态估计结果越不精确,但其计算量相对较小,计算速度相对较快:本领域技术人员可根据实际需求选定合适的值。
若|χest,k(1)-χ0(1)|≥s×t,则在向电池在线注入幅值为Iamp、频率范围为[fmin,fmax]的宽频电流,其中Iamp、fmin、fmax均为大于0的常量,同时获取电池的宽频电压和电流,得到电池的阻抗谱。随后采用S3的方法获得此时双极化分数阶等效电路模型的参数,并令新获得参数等于此时模型参数的后验估计值,初始化模型参数协方差矩阵,并令t=t+1;
若|χest,k(1)-χ0(1)|<s×t,则计算此时模型参数的卡尔曼增益,随后计算模型参数的后验估计值,最后更新模型参数的协方差矩阵;
S7、将S6获得的参数估计值带入步骤1进行递归运算即得。
本发明的有益效果是:本发明针对双拓展卡尔曼滤波器在初始值不确定时,易出现不收敛问题,引入电池在线宽频带阻抗测量,将测量结果作为双拓展卡尔曼滤波器的初始值进行递归运算。在此基础上,选取一定SoC间隔测量电池的宽频带阻抗,获取准确的模型参数,并将其作为估计器下一次的参数估计值。所提方法将电池在线宽频带阻抗测量方法与双拓展卡尔曼滤波器进行有机融合,一方面提高了双拓展卡尔曼滤波器的收敛速度及稳定性,另一方面提高了电池模型参数及SoC估计的准确度。
附图说明
图1为本发明的流程示意图;
图2为本发明建立的双极化分数阶等效电路模型的结构示意图;
图3为本发明一种基于在线宽频带阻抗的电池模型参数和SoC联合估计方法的SoC估算结果对比图;
图4为本发明一种基于在线宽频带阻抗的电池模型参数和SoC联合估计方法的SoC估算误差对比图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现结合附图和实施例对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
如图1所示,一种基于在线宽频带阻抗的电池模型参数和SoC联合估计方法,包括以下步骤:
S1、建立双极化分数阶等效电路模型,所述双极化分数阶等效电路模型包括串联的电源、电阻R0、RSEI和RCT,同时还包括与RSEI并联的恒相角元件CPE1,与RCT并联的恒相角元件CPE2,建立所述双极化分数阶等效电路模型的频域阻抗方程,同时建立双极化分数阶等效电路模型的双拓展卡尔曼滤波状态方程;
对于双极化分数阶等效电路模型而言,其包括串联的电源、电阻R0、RSEI和RCT,同时还包括与RSEI并联的恒相角元件CPE1,与RCT并联的恒相角元件CPE2,具体结构参见图2,图2中,Uoc为开路电压,UL表示电池端电压;I表示流过整个电路的电流。其中,CPE1和CPE2的频域阻抗如下所示:
式中,α、β分别为恒相位角元件CPE1、CPE2的分数阶阶数;C1、C2分别为CPE1、CPE2的电容值;ω为角频率;
同时根据双极化分数阶等效电路模型中各元件,建立该模型的频域阻抗方程:
式中,Z(jω)为双极化等效电路模型的频域阻抗,Z1(jω)为恒相角元件CPE1的频域阻抗,Z2(jω)为恒相角元件CPE2的频域阻抗。
同时建立该模型的双拓展卡尔曼滤波状态方程:
UL,k=Uoc(SoCk)-R0,kIk-U1,k-U2,k+vk
式中,χk=[SoCk,U1,k,U2,k]T θk=[R0,k,RSEI,k,C1,kk,RCT,k,C2,kk]T;ωk是均值为0,方差为Qw的过程噪声;rk是均值为0,方差为Qr的过程噪声;vk是均值为0,方差为Qv的测量噪声;SoCk为k时刻电池的荷电状态;CQ为电池的容量;U1,k、U2,k分别是k时刻电阻RSEI、RCT两端电压,αk、βk分别为k时刻恒相位角元件CPE1、CPE2的分数阶阶数;Ts为采样周期;k为大于等于2的正整数。
S2、获取电池的SoC-OCV的关系曲线以及电化学阻抗谱;
SoC-OCV的关系曲线采用以下方法获得:每间隔10%SoC测量一次电池的开路电压,并利用6次多项式进行拟合获得,事实上,采用更多次的多项式比如7次多项式均可,但是其次数越高,计算难度越大,次数越低,则准确性越低,因此综合考虑计算准确性和计算难度,采用6次多项式进行拟合。所述6次多项式如下所示:
Uoc=p0+p1·SoC+p2·SoC2+p3·SoC3+p4·SoC4+p5·SoC5+p6·SoC6
式中,pi(i=0,1,…,6)为多项式系数,SoC为电池剩余电量状态,Uoc为电池开路电压。
电化学阻抗谱采用以下方法获得:电池工作前,向电池注入幅值为Iamp、频率范围为[fmin,fmax]、直流偏置为0的宽频电流,其中Iamp>0.2A、fmin≤10Hz、fmax≥1kHz,获取电池的宽频电压和电流,得到电池的阻抗谱。此处所指的电池工作前,是指电池在投入使用前;其中,宽频电流可通过DC/DC变换器注入电池。在本实施例中,注入幅值Iamp=0.2A,频率范围为1Hz~1kHz。
S3、根据频域阻抗方程对S2中的阻抗谱进行最小二乘拟合获取模型中的各个参数:R0的初始电阻值R0,0,RSEI的初始电阻值RSEI,0,RCT的初始电阻值RCT,0,恒相角元件CPE1的初始电容值C1,0,恒相角元件CPE2的初始电容值C2,0,恒相角元件CPE1的初始分数阶阶数α0,恒相角元件CPE2的初始分数阶阶数β0,并将这些参数作为双拓展卡尔曼滤波器的初始值,同时设定初始值t=1,且t为正整数;
S4、获取模型参数先验估计值以及模型参数先验协方差矩阵,同时获取电池状态先验估计值以及电池状态先验协方差矩阵;
其中,模型参数先验估计值和模型参数先验协方差矩阵如下所示:
式中,为k时刻的模型参数先验估计值;θest,k-1为k-1时刻的模型参数后验估计值;/>为k时刻的模型参数先验协方差矩阵;Pθ,k-1为k-1时刻的模型参数后验协方差矩阵。
电池状态先验估计值以及电池状态协方差矩阵如下所示:
式中,为k时刻的电池状态先验估计值;χest,k-1为k-1时刻的电池状态后验估计值;/>为k时刻的电池状态先验协方差矩阵;Pχ,k-1为k-1时刻的电池状态后验协方差矩阵。
S5、计算电池状态卡尔曼增益,同时获取电池状态后验估计值以及电池状态后验协方差矩阵;
其中,电池状态卡尔曼增益如下所示:
式中,为k时刻的状态卡尔曼增益;/>为k时刻的电池状态先验协方差矩阵;
电池状态后验估计值和电池状态后验协方差矩阵如下所示:
式中,χest,k为k时刻的电池状态后验估计值,为k时刻的状态先验估计值;χest,k-1为k-1时刻的状态后验估计值;Pχ,k-1为k时刻的状态后验协方差矩阵。
S6、判断|χest,k(1)-χ0(1)|和s×t的大小关系,s为大于0小于1的常数,s越小计算量越大,但其计算结果相对精确;s越大状态估计结果越不精确,但其计算量相对较小,计算速度相对较快:本领域技术人员可根据实际需求选定合适的值,本实施例中s=0.05。
若|χest,k(1)-χ0(1)|≥s×t,则在电池原有工作电流基础上叠加幅值为0.2A、频率范围为1Hz~1kHz的宽频电流,同时获取电池新的电压、电流,随后采用S3的方法获得此时双极化分数阶等效电路模型的参数:并令此时模型参数的后验估计值等于新获得参数,即θest,k=θdeis,同时初始化模型参数协方差矩阵;
若|χest,k(1)-χ0(1)|<s×t,则计算此时模型参数的卡尔曼增益,随后计算模型参数的后验估计值,最后更新模型参数的协方差矩阵:
首先计算模型参数的卡尔曼增益:
式中,为k时刻的参数卡尔曼增益;/> 为k时刻的模型参数的先验协方差矩阵;
随后计算模型参数的后验估计值:式中,θest,k为k时刻的模型参数后验估计值。
最后更新模型参数协方差矩阵:式中,Pθ,k为k时刻的模型参数后验协方差矩阵
S7、将S6获得的模型参数后验估计值θest,k带入S4进行递归运算。在运算过程中,若想知道k时刻的电池状态和模型参数,调取该时刻电池状态估计结果χest,k、模型参数θdeis,k的结果即得。
为验证本发明中SoC估计算法的准确性,将本发明提出方法与传统DEKF方法进行比较,结果如图3所示,误差结果如图4所示。从图中可以看出所提方法对SoC估算的精度较高,并且收敛速度较快。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (9)

1.一种基于在线宽频带阻抗的电池模型参数和SoC联合估计方法,其特征在于,包括以下步骤:
S1、建立双极化分数阶等效电路模型,所述双极化分数阶等效电路模型包括串联的电源、电阻R0、RSEI和RCT,同时还包括与RSEI并联的恒相角元件CPE1,与RCT并联的恒相角元件CPE2,建立所述双极化分数阶等效电路模型的频域阻抗方程,同时建立双极化分数阶等效电路模型的双拓展卡尔曼滤波状态方程;
双拓展卡尔曼滤波状态方程为:
双拓展卡尔曼滤波观测方程为:
UL,k=Uoc(SoCk)-R0,kIk-U1,k-U2,k+vk
式中,χk=[SoCk,U1,k,U2,k]T θk=[R0,k,RSEI,k,C1,kk,RCT,k,C2,kk]T;ωk是第k时刻均值为0,方差为Qw的过程噪声;rk是第k时刻均值为0,方差为Qr的过程噪声;SoCk为k时刻电池的荷电状态;CQ为电池的容量;U1,k、U2,k分别是k时刻电阻RSEI、RCT两端电压;αk、βk分别为k时刻恒相位角元件CPE1、CPE2的分数阶阶数;Ts为采样周期;k为大于等于2的正整数;Uoc为电池开路电压;
S2、获取电池的SoC-OCV的关系曲线以及电化学阻抗谱;
S3、根据频域阻抗方程和电化学阻抗谱获取双极化分数阶等效电路模型的初始参数,并将所述双极化分数阶等效电路模型的初始参数作为双拓展卡尔曼滤波状态方程的初始值,同时设定t=1,且t为正整数;
S4、获取模型参数先验估计值以及模型参数先验协方差矩阵,同时获取电池状态先验估计值以及电池状态先验协方差矩阵;
S5、计算电池状态卡尔曼增益,同时获取电池状态后验估计值以及电池状态后验协方差矩阵;
S6、判断|χest,k(1)-χ0(1)|和s×t的大小关系,其中,χest,k为k时刻的电池状态后验估计值;s为大于0小于1的常数:
若|χest,k(1)-χ0(1)|≥s×t,则再向电池在线注入幅值为Iamp、频率范围为[fmin,fmax]的宽频电流,其中Iamp、fmin、fmax均为大于0的常量,且fmin<fmax,同时获取电池的宽频电压和电流,得到电池的阻抗谱;随后采用S3的方法获得此时双极化分数阶等效电路模型的参数,并令新获得参数等于此时模型参数的后验估计值,初始化模型参数协方差矩阵,并令t=t+1;
若|χest,k(1)-χ0(1)|<s×t,则计算此时模型参数的卡尔曼增益,随后计算模型参数的后验估计值,最后更新模型参数的协方差矩阵;
S7、将S6获得的参数估计值带入步骤4进行递归运算即得整个工作过程的估计值。
2.根据权利要求1所述的方法,其特征在于,所述双极化分数阶等效电路模型的频域阻抗方程为:
式中,Z(jω)为双极化等效电路模型的频域阻抗,Z1(jω)为恒相角元件CPE1的频域阻抗,Z2(jω)为恒相角元件CPE2的频域阻抗,RSEI、RCT为电阻。
3.根据权利要求1所述的方法,其特征在于,所述SoC-OCV的关系曲线的获得方式如下:每间隔10%SoC测量一次电池的开路电压,并利用6次多项式进行拟合获得:所述6次多项式如下所示:
Uoc=p0+p1·SoC+p2·SoC2+p3·SoC3+p4·SoC4+p5·SoC5+p6·SoC6
式中,pi为多项式系数,i=0,1,…,6;SoC为电池剩余电量状态。
4.根据权利要求1所述的方法,其特征在于,所述电化学阻抗谱通过以下步骤测得:电池工作前,向电池注入幅值为Iamp、频率范围为[fmin,fmax]、直流偏置为0的宽频电流,其中Iamp、fmin、fmax均为大于0的常量,获取电池的宽频电压和电流,得到电池的阻抗谱。
5.根据权利要求1所述的方法,其特征在于,所述模型参数先验估计值以及先验协方差矩阵如下所示:
式中,为k时刻的模型参数先验估计值;θest,k-1为k-1时刻的模型参数后验估计值;为k时刻的模型参数先验协方差矩阵;Pθ,k-1为k-1时刻的模型参数后验协方差矩阵,Qr为过程噪声的方差。
6.根据权利要求1所述的方法,其特征在于,所述电池状态先验估计值以及先验协方差矩阵如下所示:
式中,为k时刻的电池状态先验估计值;χest,k-1为k-1时刻的电池状态后验估计值;为k时刻的电池状态先验协方差矩阵;Pχ,k-1为k-1时刻的电池状态后验协方差矩阵;Qw为过程噪声的方差。
7.根据权利要求1所述的方法,其特征在于,所述电池状态卡尔曼增益如下所示:
式中,为k时刻的状态卡尔曼增益;/>为k时刻的电池状态先验协方差矩阵;
8.根据权利要求1所述的方法,其特征在于,所述电池状态后验估计值和后验协方差矩阵如下所示:
式中,χest,k为k时刻的电池状态后验估计值,为k时刻的状态先验估计值;/>为k时刻的状态卡尔曼增益;χest,k-1为k-1时刻的状态后验估计值;/>为k时刻的状态卡尔曼增益;Pχ,k-1为k时刻的状态后验协方差矩阵;/>为k时刻的电池状态先验协方差矩阵;
9.根据权利要求1所述的方法,其特征在于,S6中当|χest,k(1)-χ0(1)|<s×t时的具体操作为:
首先计算模型参数的卡尔曼增益:
式中,为k时刻的参数卡尔曼增益;/> 为k时刻的模型参数的先验协方差矩阵;Qr为过程噪声的方差;
随后计算模型参数的后验估计值:式中,θest,k为k时刻的模型参数后验估计值;
最后更新模型参数的后验协方差矩阵:式中,Pθ,k为k时刻的模型参数后验协方差矩阵。
CN202210823313.1A 2022-07-13 2022-07-13 基于在线宽频带阻抗的电池模型参数和SoC联合估计方法 Active CN115201687B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210823313.1A CN115201687B (zh) 2022-07-13 2022-07-13 基于在线宽频带阻抗的电池模型参数和SoC联合估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210823313.1A CN115201687B (zh) 2022-07-13 2022-07-13 基于在线宽频带阻抗的电池模型参数和SoC联合估计方法

Publications (2)

Publication Number Publication Date
CN115201687A CN115201687A (zh) 2022-10-18
CN115201687B true CN115201687B (zh) 2023-08-29

Family

ID=83580910

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210823313.1A Active CN115201687B (zh) 2022-07-13 2022-07-13 基于在线宽频带阻抗的电池模型参数和SoC联合估计方法

Country Status (1)

Country Link
CN (1) CN115201687B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117420448B (zh) * 2023-12-19 2024-03-15 元能科技(厦门)有限公司 在线评估电芯化成一致性的方法及系统

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062841A (zh) * 2009-11-11 2011-05-18 北汽福田汽车股份有限公司 动力电池荷电状态的估测方法及系统
CN104142477A (zh) * 2013-05-08 2014-11-12 通用汽车环球科技运作有限责任公司 固态浓度模型结合经验等效电路模型的蓄电池状态估计器
CN104267261A (zh) * 2014-10-29 2015-01-07 哈尔滨工业大学 基于分数阶联合卡尔曼滤波的二次电池简化阻抗谱模型参数在线估计方法
KR20160002336A (ko) * 2014-06-30 2016-01-07 숭실대학교산학협력단 듀얼확장칼만필터를 이용한 배터리 상태 추정 방법, 시스템 및 이를 수행하기 위한 기록매체
CN108508366A (zh) * 2017-02-28 2018-09-07 霍尼韦尔国际公司 铅酸电池的模型参数的在线确定以及soc和soh的计算
CN109814041A (zh) * 2019-01-16 2019-05-28 上海理工大学 一种锂离子电池双卡尔曼滤波容量估计方法
CN109870651A (zh) * 2019-01-22 2019-06-11 重庆邮电大学 一种电动汽车动力电池系统soc和soh联合在线估算方法
CN110068772A (zh) * 2019-05-06 2019-07-30 重庆大学 基于改进分数阶模型的锂离子电池荷电状态估计方法
CN111007400A (zh) * 2019-11-22 2020-04-14 西安工程大学 基于自适应双扩展卡尔曼滤波法的锂电池soc估算方法
CN111505506A (zh) * 2020-05-15 2020-08-07 吉林大学 一种多尺度卡尔曼滤波与无迹卡尔曼滤波融合的电池soc估算方法
CN111965544A (zh) * 2020-07-17 2020-11-20 江苏大学 基于电压及电流双约束的车用并联动力电池的最小包络线soc估计方法
CN112285569A (zh) * 2020-10-29 2021-01-29 哈尔滨工业大学(威海) 一种基于动态阈值模型的电动汽车故障诊断方法
CN112305440A (zh) * 2020-09-27 2021-02-02 精进电动科技股份有限公司 一种电池剩余电量和健康状态联合估计方法
CN112881921A (zh) * 2021-01-08 2021-06-01 恒大新能源汽车投资控股集团有限公司 电池等效电路模型参数辨识方法、装置、设备及存储介质
CN113156214A (zh) * 2021-05-14 2021-07-23 西南交通大学 一种双模式扰动的宽频带阻抗测量方法及双模式扰动装置
CN113917346A (zh) * 2021-09-18 2022-01-11 桂林电子科技大学 一种考虑电流、电压偏差的锂电池soc估计方法
CN114091282A (zh) * 2021-11-27 2022-02-25 江南大学 基于分数阶模型的锂离子电池状态估计方法及系统
KR102412606B1 (ko) * 2022-02-10 2022-06-22 이중휘 배터리의 soh 추정 장치 및 방법
CN114705989A (zh) * 2022-03-03 2022-07-05 上海工程技术大学 一种基于改进正余弦算法的多尺度soc/soh估计方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062841A (zh) * 2009-11-11 2011-05-18 北汽福田汽车股份有限公司 动力电池荷电状态的估测方法及系统
CN104142477A (zh) * 2013-05-08 2014-11-12 通用汽车环球科技运作有限责任公司 固态浓度模型结合经验等效电路模型的蓄电池状态估计器
KR20160002336A (ko) * 2014-06-30 2016-01-07 숭실대학교산학협력단 듀얼확장칼만필터를 이용한 배터리 상태 추정 방법, 시스템 및 이를 수행하기 위한 기록매체
CN104267261A (zh) * 2014-10-29 2015-01-07 哈尔滨工业大学 基于分数阶联合卡尔曼滤波的二次电池简化阻抗谱模型参数在线估计方法
CN108508366A (zh) * 2017-02-28 2018-09-07 霍尼韦尔国际公司 铅酸电池的模型参数的在线确定以及soc和soh的计算
CN109814041A (zh) * 2019-01-16 2019-05-28 上海理工大学 一种锂离子电池双卡尔曼滤波容量估计方法
CN109870651A (zh) * 2019-01-22 2019-06-11 重庆邮电大学 一种电动汽车动力电池系统soc和soh联合在线估算方法
CN110068772A (zh) * 2019-05-06 2019-07-30 重庆大学 基于改进分数阶模型的锂离子电池荷电状态估计方法
CN111007400A (zh) * 2019-11-22 2020-04-14 西安工程大学 基于自适应双扩展卡尔曼滤波法的锂电池soc估算方法
CN111505506A (zh) * 2020-05-15 2020-08-07 吉林大学 一种多尺度卡尔曼滤波与无迹卡尔曼滤波融合的电池soc估算方法
CN111965544A (zh) * 2020-07-17 2020-11-20 江苏大学 基于电压及电流双约束的车用并联动力电池的最小包络线soc估计方法
CN112305440A (zh) * 2020-09-27 2021-02-02 精进电动科技股份有限公司 一种电池剩余电量和健康状态联合估计方法
CN112285569A (zh) * 2020-10-29 2021-01-29 哈尔滨工业大学(威海) 一种基于动态阈值模型的电动汽车故障诊断方法
CN112881921A (zh) * 2021-01-08 2021-06-01 恒大新能源汽车投资控股集团有限公司 电池等效电路模型参数辨识方法、装置、设备及存储介质
CN113156214A (zh) * 2021-05-14 2021-07-23 西南交通大学 一种双模式扰动的宽频带阻抗测量方法及双模式扰动装置
CN113917346A (zh) * 2021-09-18 2022-01-11 桂林电子科技大学 一种考虑电流、电压偏差的锂电池soc估计方法
CN114091282A (zh) * 2021-11-27 2022-02-25 江南大学 基于分数阶模型的锂离子电池状态估计方法及系统
KR102412606B1 (ko) * 2022-02-10 2022-06-22 이중휘 배터리의 soh 추정 장치 및 방법
CN114705989A (zh) * 2022-03-03 2022-07-05 上海工程技术大学 一种基于改进正余弦算法的多尺度soc/soh估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于双扩展卡尔曼滤波锂电池荷电状态估算研究;王文亮;电子测量技术;第43卷(第19期);全文 *

Also Published As

Publication number Publication date
CN115201687A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
CN110261779B (zh) 一种三元锂电池荷电状态与健康状态在线协同估计方法
CN106324521B (zh) 一种联合估计动力电池系统参数与荷电状态的方法
CN105116343B (zh) 最小二乘支持向量机的动力电池电荷状态估计方法及系统
CN110441694B (zh) 基于多重渐消因子卡尔曼滤波锂电池荷电状态估计方法
Shen et al. Error analysis of the model-based state-of-charge observer for lithium-ion batteries
CN108594135A (zh) 一种用于锂电池均衡充放电控制的soc估算方法
CN109633479B (zh) 基于嵌入式容积卡尔曼滤波的锂电池soc在线估算方法
CN104267261B (zh) 基于分数阶联合卡尔曼滤波的二次电池简化阻抗谱模型参数在线估计方法
CN112444749B (zh) 一种基于温度修正模型的锂电池荷电状态联合估计方法
CN102289557B (zh) 一种电池模型参数与剩余电量联合异步在线估计方法
CN109726501A (zh) 基于可变遗忘因子的rls锂电池模型参数在线辨识方法
CN105572596B (zh) 锂电池soc估算方法及系统
CN111965547A (zh) 一种基于参数辨识法的电池系统传感器故障诊断方法
CN114184962B (zh) 一种多算法融合的锂离子电池soc和soh联合估算方法
CN111428433B (zh) 基于混合滤波的锂离子电池状态计算方法
CN105699910A (zh) 一种锂电池剩余电量在线估计方法
CN115201687B (zh) 基于在线宽频带阻抗的电池模型参数和SoC联合估计方法
CN105203963A (zh) 一种基于开路电压滞回特性的荷电状态的估计方法
CN111537903B (zh) 一种基于hckf的电池soc估计方法
CN106970327A (zh) 一种电池的荷电状态估算方法及装置
CN110095723A (zh) 一种锂离子电池模型参数与soc在线联合估计方法
CN112147514B (zh) 基于rls的锂电池全工况自适应等效电路模型
CN108318819A (zh) 一种估算电池荷电状态的方法
CN106443496A (zh) 一种带改进型噪声估计器的电池荷电状态估计方法
CN116819340A (zh) 一种储能锂电池在线参数辨识与状态估计方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant