CN115159973B - 一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法 - Google Patents

一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法 Download PDF

Info

Publication number
CN115159973B
CN115159973B CN202210932122.9A CN202210932122A CN115159973B CN 115159973 B CN115159973 B CN 115159973B CN 202210932122 A CN202210932122 A CN 202210932122A CN 115159973 B CN115159973 B CN 115159973B
Authority
CN
China
Prior art keywords
thermal expansion
cordierite
powder
temperature
regulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210932122.9A
Other languages
English (en)
Other versions
CN115159973A (zh
Inventor
张丛
刘发付
郭建斌
曹建武
郭在在
郭敏
杨双燕
孙孟勇
王静慧
王彦莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
No52 Institute Of China North Industry Group Yantai Branch Co
Original Assignee
No52 Institute Of China North Industry Group Yantai Branch Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by No52 Institute Of China North Industry Group Yantai Branch Co filed Critical No52 Institute Of China North Industry Group Yantai Branch Co
Priority to CN202210932122.9A priority Critical patent/CN115159973B/zh
Publication of CN115159973A publication Critical patent/CN115159973A/zh
Application granted granted Critical
Publication of CN115159973B publication Critical patent/CN115159973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明公开了一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法,包括以下两个方面的协同调控:(1)堇青石合成粉体的工艺调控粉体晶体结构,引起热膨胀曲线变化;(2)组分掺杂调控,显微结构变化调控热膨胀曲线。通过上述两方面的协同调控,拓宽使用温度区间,适用于多种工况温度条件,与现有技术相比,制备的低热膨胀陶瓷具备可调控的热膨胀性能,连续多个温度点满足超低热膨胀特性需求(热膨胀系数均<4.4*10‑8/℃)。

Description

一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法
技术领域
本发明属于高端机超高端光刻机精密部件用陶瓷的制备技术领域,尤其涉及一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法。
背景技术
研究资料显示,目前堇青石材料的研发更多的是偏向于如何降低宽温度范围内的平均热膨胀系数,如中国专利CN107032774A开发的适用于精密半导体部件领域的高致密化堇青石材料低热膨胀陶瓷,其热膨胀系数在-40℃~40℃范围内的平均值≤∣5∣*10-8,超低热膨胀系数点在-10℃附近,其热膨胀系数低于∣5∣*10-8,虽然在一定的温度范围内具备较低的平均热膨胀系数,但是其超低热膨胀特性温度范围较窄,对温度变化的要求较高,并且当温度超过0℃后,其热膨胀系数即超过∣5∣*10-8,可见,在常用温度范围内(0~40℃)不具备固定温度点的超低热膨胀特性,对于工况温度条件要求在0℃以上的应用环境,该堇青石材料低热膨胀陶瓷将难以满足生产需求。
中国专利CN112876228A公开了一种高模量堇青石基低热膨胀陶瓷,其针对高端、超高端光刻机实际应用工况温度条件,需要在20℃附近具备超低热膨胀特性,发明人通过添加了氮化硅等成分使超低热膨胀温度点向20℃附近偏移,使得2超低热膨胀点偏移至20℃附近,同时保证其致密度≥97%,弹性模量≥140GPa。但仅有此温度点附近满足超低热膨胀特性需求(小于4.4*10-8/℃),超低热膨胀点数量较少,对温度变化的要求仍然较高,并且也仅仅够满足高端、超高端光刻机实际应用工况温度条件,对其他温况条件的实际应用受到限制。
因此,在实际应用中,针对堇青石材料在宽的温度范围内平均热膨胀系数较低,精密半导体部件常用局部温度范围内(0~40℃),满足高端机超高端光刻机平台材料超低热膨胀特性需求(小于4.4*10-8/℃)的温度点数量较少、使用温度范围窄的问题,亟需寻找一种能够根据温况条件的需要对堇青石基低热膨胀陶瓷的热膨胀性能进行精准控制的方法,拓宽超低热膨胀特性温度范围(如图1所示),在精密半导体部件常用温度范围内(0~40℃)具备固定温度点的超低热膨胀特性,使得材料可以匹配多种温况条件。
发明内容
根据以上现有技术的不足,本发明的目的在于提供一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法。
为实现以上目的,所采用的技术方案是:
本发明的目的在于提供一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法,包括以下步骤:
①堇青石合成粉体的晶体结构调控:筛选合适粒径的三种高纯粉体按照Mg2Al4Si5O18的化学计量比配料并充分混合;通过优选的分散方式实现原材料的均匀分散;借助阶跃式升温法获得所需粒径的合成粉体,从而通过优化合成粉体晶体结构对热膨胀特性进行初步调节;
②筛选最佳的掺杂设计组合及组分配方设计完成对烧结体显微组织及相结构的调控,进一步对热膨胀曲线进行调节;
③在合适的烧结条件下获得所需样品。
进一步,步骤①中所选三种高纯粉体(纯度>99.9%)分别为Mg(OH)2、γ-Al2O3和SiO2,粒径分别为0.5μm、50nm、0.5μm。
进一步,步骤①中所述优选的分散方式包含:首先在去离子水和机械搅拌力作用下分散Mg(OH)2和SiO2两种粉体原料5~15分钟,随后继续在机械搅拌力的作用下分次缓慢加入γ-Al2O3,直至完全分散开后倒入球磨设备中继续球磨分散,分散时间48h。
进一步,步骤①中所述阶跃式升温控制:第一个区间段温度1200~1300℃,保温0.5~1h;第二个区间段温度1400~1430℃,保温2h。
进一步,步骤②中所述最佳的掺杂设计组合为AlN和Y2O3的组合掺杂剂,且该组合掺杂剂的总添加量为2~5wt%,其中,AlN占该组合掺杂剂总添加量重量的60%~70%。
进一步,步骤③中所述烧结条件为常压烧结1350℃/1.5h。
与现有技术相比,本发明的有益效果在于:
本发明的堇青石基低热膨胀陶瓷的热膨胀性能调控方法包括以下两个方面的协同调控:(1)堇青石合成粉体的工艺调控粉体晶体结构,引起热膨胀曲线变化;(2)组分掺杂调控,显微结构变化调控热膨胀曲线。通过上述两方面的协同调控,拓宽使用温度区间,适用于多种工况温度条件。与现有技术相比,制备的堇青石基低热膨胀陶瓷材料具备可调控的热膨胀性能,0~40℃范围内有连续多个温度点满足超低热膨胀特性需求(热膨胀系数均<4.4*10-8/℃),可以匹配多个温况条件。同时该材料亦具有较好的刚性,弹性模量>140GPa,致密度≥97%。
附图说明
图1为本发明改进方法效果的示意图;
图2为本发明实施例1合成粉体的XRD以及SEM图;
图3为本发明实施例1陶瓷烧结体组织微观结构图;
图4为本发明实施例1的热膨胀系数曲线;
图5为对比例1合成粉体的XRD及SEM图;
图6为对比例1陶瓷烧结体组织微观结构图,其中,三角形标注为斜方相(β-堇青石),圆形标注为六方相(α-堇青石);
图7为对比例1的热膨胀系数曲线;
图8为对比例2的热膨胀系数曲线。
具体实施方式
以下结合实例对本发明进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1
①按照Mg2Al4Si5O18的化学计量比配置三种高纯粉体Mg(OH)2、γ-Al2O3和SiO2,三种粉体粒径分别为0.5μm、50nm、0.5μm。
②在去离子水和机械搅拌力作用下分散Mg(OH)2和SiO2两种粉体原料15分钟,随后继续在机械搅拌力的作用下分次缓慢加入γ-Al2O3,直至完全分散开后倒入球磨设备中继续球磨分散,分散时间48h。
③分散均匀后的浆料经过干燥、破碎过筛后,利用阶跃式升温控制的方法固相合成堇青石粉体,区段控制为:1200℃/1h→1420/2h。
④在合成粉体的基础上进行掺杂,所使用的组合掺杂剂为AlN和Y2O3,且质量分数占比为2.5%,其中AlN占该组合掺杂剂总添加量重量的60%。
⑤将堇青石合成粉体与AlN和Y2O3的组合掺杂剂充分混合后造粒成型,常压烧结工艺1350℃/1.5h。
此实施例中,通过粉体粒径调控手段,获得的堇青石合成粉体微观形貌为片状,经处理后粒径可小于1μm,其粉体XRD以及SEM图如图2所示。经过掺杂处理后陶瓷显微组织SEM图如图3所示。通过两个方面的协同调控,获得的堇青石基低热膨胀陶瓷致密度为97.5%,弹性模量为140GPa,0℃、10℃、20℃、30℃、40℃附近点平均热膨胀系数均<4.4*10-8/℃,其局部温度点的热膨胀系数曲线如图4所示。
本实施案例中获得的粉体为单一相的六方晶型的α-堇青石,没有出现两种晶型共存,α晶型是堇青石呈现低热膨胀特性的主要因素,这样更有利于进行热膨胀性能的调控,并且曲线更加的干净平滑,纯度更高,在2θ=30°左右的地方没有杂峰出现,并且合成粉体粒径可控制在1μm左右。对于掺杂方面的改进,优化了烧结体相组织的排布,这些均增益于本发明中对热膨胀曲线的调控。
实施例2
①按照Mg2Al4Si5O18的化学计量比配置三种高纯粉体Mg(OH)2、γ-Al2O3和SiO2,三种粉体粒径分别为0.5μm、50nm、0.5μm。
②在去离子水和机械搅拌力作用下分散Mg(OH)2和SiO2两种粉体原料5分钟,随后继续在机械搅拌力的作用下分次缓慢加入γ-Al2O3,直至完全分散开后倒入球磨设备中继续球磨分散,分散时间48h。
③分散均匀后的浆料经过干燥、破碎过筛后,利用阶跃式升温控制的方法固相合成堇青石粉体,区段控制为:1200℃/0.5h→1420/2h。
④在合成粉体的基础上进行掺杂,所使用的组合掺杂剂为AlN和Y2O3,且质量分数占比为2.5%,其中AlN占该组合掺杂剂总添加量重量的70%。
⑤将堇青石合成粉体与AlN和Y2O3的组合掺杂剂充分混合后造粒成型,常压烧结工艺1350℃/1.5h。
通过粒径控制以及掺杂调控两个方面的协同作用,获得的堇青石基低热膨胀陶瓷致密度为97%,弹性模量为138GPa,0℃、10℃、20℃、30℃、40℃附近点平均热膨胀系数均<4.4*10-8/℃。
对比例1
将中国专利CN107032774A的较佳实施例的实施例1作为对比例1,方法如下:
(1)将高纯氧化镁、氧化铝以及氧化硅粉按堇青石(Mg2Al4Si5018)理论化学计量比例配料,在酒精介质以及研磨球作用下均匀混合后干燥,经冷等静压后手动造粒,过60#筛后于1420℃、保温2小时烧结工艺下合成堇青石粉体。
(2)按质量百分比分别称量84%的堇青石合成粉末(堇青石孰料),15%的堇青石生料,1%的烧结助剂,以及适量分散剂等。
(3)将配置好的原料置于酒精溶液中在研磨球的作用下进行球磨。
(4)将混合均匀后的浆料置于干燥箱中干燥,干燥温度为80℃,干燥结束后添加2%~4%的粘结剂在研钵中轻轻研磨,过筛后完成手动造粒。
(5)将造粒粉于200MPa压力下干压成型,在惰性气体保护环境下,于1380℃,保温1小时烧结工艺下烧成堇青石陶瓷试样。
此实施方式效果:制备得到的堇青石陶瓷材料致密度为96%,弹性模量为135GPa,热膨胀系数在-40℃~40℃范围内≤∣5∣*10-8。合成堇青石粉体含有两种晶型的堇青石(α和β),形貌呈颗粒块状,颗粒尺寸几十个微米左右,粉体形貌及物相分析如图5所示。制备的陶瓷组织较致密,如图6所示,由于合成粉体含有α和β两种相,陶瓷也呈现出两种不同形貌的相组织,其中,三角形标注为斜方相(β-堇青石),圆形标注为六方相(α-堇青石)。
相比于本发明的实施例1,对比例1制备的产品虽然在大的温度范围内平均热膨胀系数≤∣5∣*10-8,但随着进一步的研究发现,该产品的超低热膨胀温度点在-10℃附近(见图7),在常用温度范围内(0~40℃)不具备固定温度点的超低热膨胀特性,因此不能满足实际高端光刻机的服役条件要求。
对比例2
将中国专利CN112876228A的较佳实施例的实施例1作为对比例2,方法如下:
①将81wt%高纯堇青石粉体(实验室自制)、2.5wt%Si3N4粉、15wt%堇青石生料以及1.5wt%ZrO2-Y2O3组成的混合物置于球磨罐中,在酒精介质以及研磨球作用下均匀混合后进行手动造粒,过筛,获得流动性良好的造粒粉体。
②将造粒粉体先采用模压预成型,后借助冷等静压相方式获得无缺陷成型样品,模压成型工艺为60MPa/15s,冷等静压成型工艺为200MPa/30s。
③将步骤②中获得的样品置于恒温干燥箱中于150℃保温12h,进行充分的固化。
④将固化处理后的样品置于热压烧结炉中,于1370℃/1h烧结工艺条件下进行烧结。
中国专利CN112876228A在CN107032774A的基础上进行改进,因此堇青石粉沿用专利CN107032774A所述高纯粉,对比例2获得的堇青石基低热膨胀陶瓷致密度为97.2%,弹性模量为141GPa,20℃附近点平均热膨胀系数为3*10-8。对比例2通过添加了氮化硅等成分使超低热膨胀温度点向20℃附近偏移,使得20℃附近热膨胀系数低于∣5∣*10-8,同时保证其致密度≥97%,弹性模量≥140GPa。但超低热膨胀点数量较少,仅仅围绕在20℃附近(如图8所示),诸如需要进一步改进,改进后的方案即本发明的实施例方案。
本发明首先进行了合成粉体方面的改进,包括晶体形貌、粒径进行改进,由发明人在中国专利CN107434410A、CN112876228A、CN107032774A公开的(α+β)晶型变为本发明单一的α晶型,更利于热膨胀性能的调整;完善了掺杂设计,引入了与纯相堇青石材料热膨胀系数差别略大的AlN,可调控的空间更大;同时优化了烧结后显微组织,晶粒之间匹配更好,更利于实现对低热膨胀性能的调控。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法,其特征在于,包括以下步骤:
①堇青石合成粉体的晶体结构调控:筛选粒径的三种高纯粉体按照Mg2Al4Si5O18的化学计量比配料并充分混合;通过分散方式实现原材料的均匀分散;借助阶跃式升温法获得所需粒径的合成粉体,从而通过优化合成粉体晶体结构对热膨胀特性进行初步调节;
②筛选掺杂设计组合及组分配方设计完成对烧结体显微组织及相结构的调控,进一步对热膨胀曲线进行调节;
③在烧结条件下获得所需样品;
步骤①中所选三种高纯粉体纯度>99.9%,分别为Mg(OH)2、γ-Al2O3和SiO2,粒径分别为0.5μm、50nm、0.5μm;
步骤①中所述阶跃式升温控制:第一个区间段温度1200~1300℃,保温0.5~1h;第二个区间段温度1400~1430℃,保温2h;
步骤②中所述掺杂设计组合为AlN和Y2O3的组合掺杂剂,且该组合掺杂剂的总添加量为2~5wt%,其中,AlN占该组合掺杂剂总添加量重量的60%~70%。
2.根据权利要求1所述方法,其特征在于,步骤①中所述分散方式包含:首先在去离子水和机械搅拌力作用下分散Mg(OH)2和SiO2两种粉体原料5~15分钟,随后继续在机械搅拌力的作用下分次缓慢加入γ-Al2O3,直至完全分散开后倒入球磨设备中继续球磨分散,分散时间48h。
3.根据权利要求1所述方法,其特征在于,步骤③中所述烧结条件为常压烧结1350℃/1.5h。
CN202210932122.9A 2022-08-04 2022-08-04 一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法 Active CN115159973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210932122.9A CN115159973B (zh) 2022-08-04 2022-08-04 一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210932122.9A CN115159973B (zh) 2022-08-04 2022-08-04 一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法

Publications (2)

Publication Number Publication Date
CN115159973A CN115159973A (zh) 2022-10-11
CN115159973B true CN115159973B (zh) 2023-04-21

Family

ID=83477109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210932122.9A Active CN115159973B (zh) 2022-08-04 2022-08-04 一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法

Country Status (1)

Country Link
CN (1) CN115159973B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974540B (zh) * 2022-12-03 2023-11-24 昆明理工大学 一种稀土掺杂堇青石陶瓷材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548968B2 (ja) * 2000-06-05 2010-09-22 株式会社日本自動車部品総合研究所 セラミック担体およびセラミック触媒体
JP5313485B2 (ja) * 2006-11-28 2013-10-09 日本碍子株式会社 コーディエライトセラミックス、及びコーディエライトセラミックスの製造方法
CN103803957A (zh) * 2014-03-12 2014-05-21 哈尔滨工业大学 一种超低热膨胀系数的堇青石陶瓷材料及其制备方法
KR102377658B1 (ko) * 2016-03-23 2022-03-24 엔지케이 인슐레이터 엘티디 코디어라이트질 소결체, 그 제법 및 복합 기판
CN107032774B (zh) * 2017-03-15 2020-07-10 中国兵器科学研究院宁波分院 高致密化低热膨胀陶瓷制备方法
CN112876228A (zh) * 2021-01-26 2021-06-01 中国兵器工业第五二研究所烟台分所 一种高模量堇青石基低热膨胀陶瓷及其制备方法

Also Published As

Publication number Publication date
CN115159973A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN100445235C (zh) 一种氮化铝增强碳化硅陶瓷及其制备方法
CA1135728A (en) Partially stabilised zirconia ceramics
CN107434410B (zh) 一种堇青石陶瓷粉体的制备方法
CN115159973B (zh) 一种堇青石基低热膨胀陶瓷的热膨胀性能调控方法
CN108794016B (zh) 一种高红外透过率AlON透明陶瓷的快速制备方法
CN111533560A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
CN112851344A (zh) 一种中介电常数微波介质陶瓷及其制备方法
CZ285130B6 (cs) Siliciumnitridová keramika odolná vysokým teplotám a způsob její výroby
CN114315370B (zh) 一种(TiZrHfNbTa)CN高熵超高温碳氮化物陶瓷粉体的合成方法
JP4195518B2 (ja) ジルコニア含有アルミナ焼結体
CN113548891B (zh) 一种两相钽酸钴陶瓷块体及其制备方法
CN113563074B (zh) 一种两相钽酸钙陶瓷及其制备方法
CN108863395B (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
CN109053192B (zh) 一种MgAlON透明陶瓷粉体的制备方法
CN100519469C (zh) 一种低温制备大块致密高纯单相Y2SiO5陶瓷块体材料的方法
CN115073186B (zh) 一种氮化硅陶瓷烧结体及其制备方法
CN108546131B (zh) 氮化硅多孔陶瓷的制备方法
CN115010491B (zh) 一种高熵稀土钽酸盐陶瓷材料及其制备方法
KR20210088361A (ko) 질화규소 소결체의 제조방법 및 이에 따라 제조된 질화규소 소결체
CN117263665B (zh) 一种反应烧结制备堇青石陶瓷的方法
JP2966644B2 (ja) 窒化珪素質焼結体及びその製造方法
CN1273227A (zh) 原位合成TiN/O′-Sialon复相材料的制备工艺
JPS62875B2 (zh)
CN116396067B (zh) 一种近零温漂的黑滑石矿质微波介质陶瓷材料及其制备方法
JPH06100359A (ja) セラミックス焼結助剤の製造方法及びこれを用いたムライトセラミックスの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant