CN115137880A - 一种具有涂层的医疗设备 - Google Patents

一种具有涂层的医疗设备 Download PDF

Info

Publication number
CN115137880A
CN115137880A CN202210661346.0A CN202210661346A CN115137880A CN 115137880 A CN115137880 A CN 115137880A CN 202210661346 A CN202210661346 A CN 202210661346A CN 115137880 A CN115137880 A CN 115137880A
Authority
CN
China
Prior art keywords
antibody
cells
antibodies
polydopamine
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210661346.0A
Other languages
English (en)
Other versions
CN115137880B (zh
Inventor
迈克尔·J·B·库特雷克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orbus Medical Technologies Inc
Original Assignee
Orbus Medical Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orbus Medical Technologies Inc filed Critical Orbus Medical Technologies Inc
Priority to CN202210661346.0A priority Critical patent/CN115137880B/zh
Publication of CN115137880A publication Critical patent/CN115137880A/zh
Application granted granted Critical
Publication of CN115137880B publication Critical patent/CN115137880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/44Medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/0097Coating or prosthesis-covering structure made of pharmaceutical products, e.g. antibiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/252Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
    • A61L2300/256Antibodies, e.g. immunoglobulins, vaccines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/06Coatings containing a mixture of two or more compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/20Materials or treatment for tissue regeneration for reconstruction of the heart, e.g. heart valves

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hematology (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Medicinal Preparation (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

本公开提供一种具有涂层的医疗设备,其中,所述涂层包括(i)聚多巴胺、(ii)聚醚衍生物、和(iii)抗体和/或抗体片段,其中,所述聚多巴胺共价连接至所述聚醚衍生物,并且其中,所述聚醚衍生物共价连接至所述抗体和/或抗体片段。

Description

一种具有涂层的医疗设备
本申请是申请日为2018年4月13日发明名称为“具有涂层的医疗设备以及治疗或预防血管病症的用途”的申请号为2018800247443(国际申请号为PCT/US2018/027597)的发明专利申请的分案申请。
技术领域
本发明涉及一种具有涂层的医疗设备,例如利用聚多巴胺和抗体涂覆的医疗设备,诸如血管内设备。
背景技术
生物分子的固定化受到生物和物理科学两者极大的关注。该领域的一活跃研究区域是开发血管内设备的生物活性涂层。这些设备(冠状动脉支架、血管移植物等)用于治疗已知会导致显著的死亡率和发病率1而的冠状动脉疾病(CAD)和外周动脉疾病(PAD)。虽然治疗方面的进展诸如风险因素修改和引入新颖药物疗法已显著降低了动脉粥样硬化性血管疾病的发病率并改善了结果,但是利用血管内支架术的手术血管旁路移植术和经皮腔内冠状动脉成形术(PTCA)仍然位于北美地区每年实施的最常见的手术之列2。这些血管重建手术是常规使用的,但不幸的是支架置入的长期成功受到治疗部位再狭窄和晚期支架血栓形成的限制;而用于治疗PAD的合成移植物的短期和中期成功受到其血栓形成性的限制。
动脉内支架是由范围广泛的材料(例如,316L不锈钢(SS)、钽、镍钛诺、钴-铬(CoCr)合金、铂-铱、聚合物等)制成的柱形网状物。再狭窄——在称为内膜增生的过程中支架植入后腔增加(luminal gain)的减少——仍然是介入医生面临的最重要的问题之一。药物洗脱支架——旨在通过将细胞毒性化合物局部释放到血管壁中来减少早期再狭窄——被发现导致并发症,诸如晚期血栓形成和晚期再狭窄。很快认识到,药物洗脱支架不仅抑制导致再狭窄的平滑肌细胞(SMC)的增殖,而且还抑制形成用以覆盖支架的汇合内皮细胞(EC)层,这是对愈合至关重要的一过程。
膨胀型聚四氟乙烯(ePTFE)已成为最常用的动脉重建管道。大直径血管移植物的高流速提供长期(>10年)的85%-95%的通畅率,仅需极少的辅助药物疗法3。然而,小直径人造血管假体(<5mm)的成功开发由于主要由ePTFE的血栓形成性引起的通畅缩短而仍然是一挑战。这由于缺乏在该界面对EC的接触抑制(这可能导致EC增生)而进一步延续4。合成移植物在人体内完全内皮化的失败导致移植物表面持续的血栓性炎症事件,最终导致肌内膜增生的发展,这是动脉重建失败的常见原因5-7。事实上,少于50%的小直径股腘移植物在植入后仍保持5年8
假体血管内材料的完全表面再内皮化失败在人中很常见,而汇合EC覆盖在其他哺乳动物物种中常见9。在假体移植物上建立的内皮细胞来源被认为是来自毛细血管浸润,或从邻近动脉边缘向内生长10。然而,这种范例最近受到质疑。已经表明,在植入人的高孔隙率的ePTFE移植物中,毛细血管向内生长很少延伸超过从移植物外部至腔的距离的一半11。相反,已经表明,人假体植入物的稀疏内皮细胞衬里的主要来源可以来自循环血液,通过被称为“沉积愈合(fallout healing:沉积愈合)”的过程12。Shi等人的后续研究进一步证明了,沉积EC是骨髓衍生的13、14,在血液中以循环内皮祖细胞(EPC)表示。
动脉内皮是动态器官,通过控制动态过程,诸如其松弛和收缩以及纤维蛋白溶解、血栓形成和血小板活化/抑制,来维持血管内稳态。该活性器官的形成可以在支架植入后在血管中和在介入假体移植物中提供有利的生物学特性。EC通过抑制细胞因子释放和钝化支架表面以及预防血栓形成的假体移植材料来中断SMC增殖15-17。认识到汇合内皮衬里对植入血管设备的重要性促使对血管支架和移植物接种EC进行研究,作为改善其长期通畅的手段。自从Herring于1978年首次引入EC接种以来,许多团体为这项技术的进化做出了贡献,但是所有这些取得的成功均有限18-60。普遍认为,自体EC会提供最好的组织来源,然而自体EC的有限可用性、以及接种和植入的繁琐过程再加上未能在假体表面上获得可预测的汇合单层细胞,一直是突出的问题。此外,静脉、动脉、微血管和大血管床的结构和生化环境均是独一无二的。因此,将EC从一个床放置到另一个床可能导致细胞功能障碍。材料再内皮化的最佳方法将是通过加速EPC对假体的吸引来促进沉积愈合的过程61。基于245um2的平均EC面积,以4100个细胞/mm2的密度捕获EPC可以提供材料表面的全覆盖,从而引起血管假体的有效内皮化62
我们设计、开发和测试了EPC捕获冠状动脉内支架63-65。该支架利用具有包埋的小鼠单克隆抗人CD34抗体的聚合物葡聚糖涂层来捕获EPC并增强天然内皮化过程。葡聚糖涂层技术已被证明对CD34+细胞捕获有效。像我们的葡聚糖涂层一样,捕获特定细胞类型的其他抗体固定化策略已取得了一些成功。不幸的是,它们也常常是特定于有限范围的基底,遭受生物活性损失,并且需要劳动密集型化学过程。在该工作中,我们的目标是开发一种可以有效地应用于范围广泛的基底的固定生物活性分子的通用方法。
瓣膜是心血管系统正常生理功能的组成部分。例如,天然心脏瓣膜确保从心脏的一个腔室到另一个腔室的单向血液流动。天然心脏或静脉瓣膜因各种病理原因而功能障碍。一些病理学可能需要利用瓣膜假体完全外科手术更换天然瓣膜。人造心脏瓣膜是植入患有瓣膜性心脏病的患者的心脏中的设备。
尽管过去几十年假体瓣膜设计和外科手术显著地改进,但瓣膜置换并没有为患者提供明确的治疗。相反,经历瓣膜置换的患者的结果受假体瓣膜血液动力学、耐久性和血栓形成性的影响。
多巴胺(DA,3,4-二羟基苯乙胺的简称)是儿茶酚胺和苯乙胺家族的有机化学物质,该有机化学物质在大脑和身体中起着重要作用。聚多巴胺(PDA)是一种多巴胺衍生的合成真黑素聚合物。聚多巴胺可以通过多巴胺的氧化自聚作用在微碱性pH下沉积在多种表面上。然而,对于形成机制的基本认识仍然不足。Lynge等人,Polydopamine—a nature-inspired polymer coating for biomedical science,Nanoscale,2011,3:4916.
理想的底涂层是可以普遍应用于任何基底的底涂层。对此,聚多巴胺作为底层的使用吸引了极大的关注,因为发现将基底简单浸入缓冲至碱性pH的稀释的多巴胺水溶液中导致聚多巴胺膜自发沉积在基底上。Messersmith等人(Science,2007,318,426-430)证明,聚多巴胺涂层能够在几乎任何类型的基底表面上形成,包括金属、金属氧化物、陶瓷、合成聚合物和范围广泛的其他亲水和疏水材料。聚多巴胺涂层已被用作将合成聚合物或生物分子缀合至表面的平台。例如,WO2011/005258公开了胺官能化聚乙二醇(PEG-NH2)附连至聚多巴胺涂层,以提供亲水外层。
考虑到耐久性,可以通过逐渐侵蚀涂层物质和/或通过从基底表面使涂层剥离来将涂层从基底除去。因此,提高涂层的耐久性的一种方法是加强涂层与基底表面之间的结合。这尤其可以通过用底涂物处理待涂覆的表面来实现,以实现涂层与表面之间的更好的粘附。
发明内容
本公开提供了具有涂层的医疗设备,其中,涂层包括(i)聚多巴胺、(ii)聚醚衍生物和(iii)抗体和/或抗体片段,其中,聚多巴胺共价连接至聚醚衍生物,并且其中,聚醚衍生物共价连接至抗体和/或抗体片段。
抗体和/或抗体片段可以特异性结合至内皮祖细胞或内皮细胞的细胞表面抗原。
本公开提供了具有涂层的医疗设备,其中,涂层包括(i)聚多巴胺、(ii)聚醚衍生物和(iii)抗体和/或抗体片段,其中,聚多巴胺共价连接至聚醚衍生物,其中,聚醚衍生物共价连接至抗体和/或抗体片段,并且其中,抗体和/或抗体片段特异性结合至内皮祖细胞或内皮细胞的细胞表面抗原。
本公开还包括具有涂层的人造瓣膜,其中,涂层包括:(i)聚多巴胺、(ii)聚醚衍生物和(iii)抗体和/或抗体片段,其中,聚多巴胺共价连接至聚醚衍生物,其中,聚醚衍生物共价连接至抗体和/或抗体片段,并且其中,人造瓣膜是人造心脏瓣膜或人造静脉瓣膜。
细胞表面抗原的非限制性示例包括CD34、CD133、CDw90、CD117、HLA-DR、VEGFR-1、VEGFR-2、VEGFR-3、Muc-18(CD146)、Thy-1、Thy-2、CD130、CD30、干细胞抗原(Sca-1)、干细胞因子1(SCF/c-Kit配体)、Tie-1、Tie-2、VE-钙粘蛋白、P1H12、TEK、CD31、Ang-1、Ang-2、HAD-DR、CD45、CD105、CD14、冯维勒布兰德因子(vWF)和E-选择素。
聚醚衍生物可以是聚乙二醇(PEG)、聚乙二醇(PEG)衍生物、聚丙二醇(PPG)、聚丙二醇(PPG)衍生物或其组合。
PEG的平均分子量的范围可以从约200道尔顿至约20,000道尔顿、从约200道尔顿至约5,000道尔顿、从约200道尔顿至约1,000道尔顿、从约200道尔顿至约350道尔顿。
医疗设备可以是支架、人造心脏瓣膜、血管假体过滤器、导管、起搏器、血管移植物、合成移植物、起搏器导线、除颤器、卵圆孔未闭(PFO)隔膜闭合设备、血管夹、血管动脉瘤封堵器、血液透析移植物、血液透析导管、房室分流器、主动脉动脉瘤移植设备或部件、人造静脉瓣膜、分流器、线、传感器、缝合线、血管吻合夹、留置静脉或动脉导管、血管鞘或药物递送端口。
医疗设备可以是人造心脏瓣膜或人造静脉瓣膜,诸如人造主动脉瓣膜、人造肺动脉瓣膜、人造二尖瓣膜或人造三尖瓣膜。
医疗设备可以包括金属(诸如不锈钢)、合金和/或聚合物。聚合物可以是生物相容性聚合物,诸如聚四氟乙烯(PTFE)、涤纶、聚氨酯、聚丙烯或其组合或衍生物。
涂层可以包括或可以不包括药物物质。在一个实施方式中,药物物质抑制平滑肌细胞迁移和/或增殖。在另一实施方式中,药物物质是血管扩张剂。
药物物质的非限制性示例包括紫杉醇、雷帕霉素、雷帕霉素衍生物、西罗莫司、依维莫司、他克莫司、百利莫司(biolimus)、百利莫司A-9或其组合。
抗体和/或抗体片段可以是单克隆或多克隆的。该抗体和/或抗体片段可以是人源化抗体或抗体片段,或嵌合抗体或抗体片段。抗体和/或抗体片段可以包括Fab、F(ab')2或单链Fv(scFv)。
在一个实施方式中,抗体和/或抗体片段特异性结合至不同的细胞表面抗原。
当医疗设备被植入受试者内时,医疗设备的抗体和/或抗体片段可以在体内捕获内皮祖细胞和/或内皮细胞。
本公开提供了用于治疗或预防血管疾病的方法,该方法包括将本医疗设备植入患者内的步骤。
血管疾病可以是动脉粥样硬化、再狭窄、血栓形成和/或血管闭塞。
附图说明
图1A至图1C示出了不同的抗体固定化技术。图1A:使用葡聚糖涂层的非定向固定化。图1B:使用胺偶联的非定向固定化。图1A和图1B都可以导致抗原结合区域埋藏。图1C:经由修饰的抗体Fc区域,抗体被定向固定化至PEG修饰的表面。抗原结合位点仍可用于免疫结合。
图2A至图2C示出了形成本涂层的方案。图2A:聚多巴胺沉积-涂层的基础。图2B:接头层聚乙二醇(PEG)沉积-定向抗体涂层的基础。图2C:定向抗体涂层。
图3示出了本涂层的实施方式的总结构。
图4A和图4B示出了可通过在碱性环境中用多巴胺涂覆基底/医疗设备(例如,316L不锈钢(316S)、钴-铬(CoCr)、ePTFE或心包膜)时发生的氧化自聚合形成的聚多巴胺的示例性结构和聚合物构造。
图5示出了用于抗体或抗体片段的氧化活化以随后偶联至亲核呈现表面的示例性反应方案。
图6示出了利用经由中间PEG-接头结合至聚多巴胺的抗体(例如,抗CD34抗体)涂覆基底/血管内材料/医疗设备(例如316L不锈钢(316L SS)、钴-铬(CoCr)、ePTFE或心包膜)的示例性反应方案(氧化方法)。作为示例,PEG被示出为通过迈克尔加成缀合至聚多巴胺。
图7示出了利用经由中间PEG-接头结合至聚多巴胺的抗体(例如,抗CD34抗体)涂覆基底/血管内材料/医疗设备(例如316L不锈钢(316L SS)、钴-铬(CoCr)、ePTFE或心包膜)的示例性反应方案。作为示例,PEG被示出为通过迈克尔加成或希夫碱反应缀合至聚多巴胺。
图8A至图8C示出了利用经由中间PEG-接头结合至聚多巴胺的抗体涂覆基底/血管内材料/医疗设备的示例性反应方案(酶方法)。图8A:被聚多巴胺涂覆的基底与氨基-PEG-二苯并环辛炔(DBCO)反应。图8B:抗体官能化以产生DBCO-反应性部分(例如,在抗体Fc区域)。步骤1示出了除去末端半乳糖残基;步骤2示出了掺入GalNAz。参见,Zeglis等人,Chem.2013,24 10(6),1057-1067。Qu等人,Adv.Healthc.Mater.2014,3(1),30-35。图8C:官能化抗体与PEG接头的反应。
图9示出了将叠氮化物官能化荧光探针(羧基罗丹明110-叠氮化物)结合在二苯并环辛炔(DBCO)官能化基底(例如盘)上的荧光强度。“裸”:未处理或未涂覆的CoCr的裸金属盘。“裸+DBCO”:一种仅利用DBCO但不利用聚多巴胺进行涂覆的裸金属盘。“PDOP”:利用聚多巴胺涂覆的裸金属盘。“PDOP+DBCO”:利用聚多巴胺然后利用DBCO涂覆的裸金属盘。
图10示出了在316L SS冠状支架上捕获表达CD34的Kg1a细胞(“阳性”),其中316LSS冠状支架涂覆有利用经由中间氨基-dPEG8-t-boc-酰肼接头结合到通过多巴胺氧化自聚合形成的聚多巴胺的抗CD34抗体(BioLegend,catalog#343602)。在细胞孵育之前用牛血清白蛋白(BSA)封闭涂层。在共焦显微镜下通过核染料Sytox Green染色使结合的细胞可视化。对照细胞是不表达CD34的CHO细胞(“阴性”)。
图11示出了在钴铬(CoCr)盘上捕获表达CD34的Kg1a细胞(“阳性”),其中,钴铬(CoCr)盘涂覆有利用经由中间氨基-dPEG8-t-boc-酰肼接头结合到通过多巴胺氧化自聚合形成的聚多巴胺的抗CD34抗体(BioLegend,#343602)。在细胞孵育之前用牛血清白蛋白(BSA)封闭涂层。在共焦显微镜下通过核染料Sytox Green染色使结合的细胞可视化。对照细胞是不表达CD34的CHO细胞(“阴性”)。
图12示出了在医疗级膨体聚四氟乙烯(ePTFE)内移植物上捕获表达CD34的Kg1a细胞(“阳性”),其中医疗级膨体聚四氟乙烯(ePTFE)内移植物涂覆有利用经由中间氨基-dPEG8-t-boc-酰肼接头结合到通过多巴胺氧化自聚合形成的聚多巴胺的抗CD34抗体(BioLegend,#343602)。在细胞孵育之前用牛血清白蛋白(BSA)封闭涂层。在共焦显微镜下通过核染料Sytox Green染色使结合的细胞可视化。对照细胞是不表达CD34的CHO细胞(“阴性”)。
图13示出了结合在被抗CD34抗体涂覆的ePTFE上的CD34+细胞或CD34-细胞的稳定性评估。将ePTFE基底置于PBS中12天,然后用于细胞结合。结合的细胞用荧光染料染色并在共焦显微镜下观察。
图14示出了在牛心包膜上捕获表达CD34的Kg1a细胞(“CD34+细胞”),其中牛心包膜涂覆有利用经由中间氨基-dPEG8-t-boc-酰肼接头结合到通过多巴胺氧化自聚合形成的聚多巴胺的抗CD34抗体(BioLegend,#343602)。在细胞孵育之前用牛血清白蛋白(BSA)封闭涂层。在共焦显微镜下通过核染料Sytox Green染色使结合的细胞可视化。对照细胞是不表达CD34的CHO细胞(“CD34-细胞”)。
图15示出了抗H-2Kk抗体涂覆的ePTFE移植物的细胞毒性测定。涂覆的移植物与CHO H-2Kk(+)细胞孵育1、2或3天。然后将它们固定并通过荧光显微镜成像。
具体实施方式
本公开提供了利用进一步连接到配体/生物分子诸如抗体和/或抗体片段的黑色素、类黑色素聚合物、合成形式的黑色素或芳香族儿茶酚聚合物(例如,聚多巴胺或多巴胺类似物的聚合物)进行涂覆的医疗设备或基底。聚多巴胺涂层和配体可以通过接头诸如有机聚合物/低聚物连接。本公开提供了利用(i)聚多巴胺、(ii)有机聚合物(例如聚醚衍生物,诸如聚乙二醇(PEG),以及本文描述的其他有机聚合物/低聚物)和(iii)抗体和/或抗体片段进行涂覆的医疗设备(例如支架、人造瓣膜等)。聚多巴胺可以共价连接至有机聚合物/低聚物,并且有机聚合物/低聚物可以共价连接至抗体和/或抗体片段。抗体和/或抗体片段可以特异性结合至内皮祖细胞(EPC)或内皮细胞的细胞表面抗原/分子,诸如抗CD34抗体。当医疗设备被植入受试者内时,抗体和/或抗体片段可以在体内捕获内皮祖细胞和/或内皮细胞。医疗设备还可以包括药物物质或治疗剂。
本公开提供了利用(i)黑色素、类黑色素聚合物、合成形式的黑色素或芳香族儿茶酚聚合物(例如聚多巴胺或多巴胺类似物的聚合物)、(ii)有机聚合物(例如聚醚衍生物,诸如聚乙二醇(PEG),以及本文所述的其他有机聚合物/低聚物)和(iii)配体/生物分子(例如抗体和/或抗体片段)进行涂覆的医疗设备。黑色素、类黑色素聚合物,合成形式的黑色素或芳族儿茶酚聚合物(例如聚多巴胺或多巴胺类似物的聚合物)可以共价连接至有机聚合物/低聚物,并且有机聚合物/低聚物可以共价连接至配体/生物分子(例如抗体和/或抗体片段)。配体/生物分子(例如抗体和/或抗体片段)可以特异性结合至内皮祖细胞或内皮细胞的细胞表面抗原/分子。
本涂层可以应用于范围广泛的基底/材料、是生物相容性的,并针对范围广泛的配体/生物分子提供容易的化学反应和宽的反应性。配体/生物分子可以以定向的方式结合至涂层。涂层还具有长期的化学稳定性。
在一个实施方式中,聚多巴胺涂层是通过在碱性条件(例如,微碱性条件)下多巴胺的氧化自聚合而形成在医疗设备或基底的表面上。随后,施加聚乙二醇(PEG)接头,该接头在一端与聚多巴胺涂层缀合,并在另一端与抗体或抗体片段的Fc片段缀合。
医疗设备的涂层可以还包括抗体、抗体片段或其组合,其中抗体、抗体片段或其组合特异性结合至内皮祖细胞或内皮细胞的细胞表面抗原。在某些实施方式中,细胞表面抗原是CD133、CD34、CDw90、CD117、HLA-DR、VEGFR-1、VEGFR-2、VEGFR-3、Muc-18(CD146)、Thy-1、Thy-2、CD130、CD30、干细胞抗原(Sca-1)、干细胞因子1(SCF/c-Kit配体)、Tie-1、Tie-2、VE-钙粘蛋白、P1H12、TEK、CD31、Ang-1、Ang-2、HAD-DR、CD45、CD14、CD105、E-选择素、冯维勒布兰德因子(vWF)或其组合。
医疗设备可以包括用于附着本涂层的血液接触表面(或腔表面)。配体(诸如抗体和/或抗体片段)可以与靶细胞诸如内皮祖细胞(EPC)上的抗原相互作用以使内皮祖细胞在设备的表面上固定化以形成内皮。
配体可以是在循环内皮细胞和/或内皮祖细胞上结合细胞膜结构(诸如受体分子)的分子。例如,配体可以是抗体、抗体片段、小分子诸如肽、细胞粘附分子、基膜组分或其组合。在使用抗体的实施方式中,抗体识别并结合特异的表位或结构,诸如细胞的细胞膜上的细胞表面受体。配体也可以来源于多种源,诸如细胞组分,包括脂肪酸、肽、蛋白、核酸、糖类等,并且可以,与例如内皮祖细胞的表面上的结构(诸如抗原)进行相互作用,结果或作用与抗体相同。
抗体在固-液界面处与靶蛋白结合的能力对于使用抗体进行体外诊断测定以及进行体内治疗是重要的。为了使固定化抗体的Fab结构域与抗原结合,Fab结构域(i)必须是可达的,即,具有从界面的向外定向,并且(ii)是生物活性的,即,具有对于靶分子具有低解离常数(Kd)的分子构象。固定化抗体的活性在不同的固定化学物质之间敏感地变化。具有更易接近Fab结构域的抗体显示出比随机固定化抗体更高的活性。可以使用几种技术来确定固定化抗体的活性、可达性和定向,包括但不限于原子力显微镜、中子反射、光谱椭偏仪和质谱。Saha等人.Analyst,2017,142,4247-4256。定量放射性标记的测定也可用于确定Fab结构域的可达性。
配体/生物分子可以以定向的方式固定在医疗设备上,以确保配体/生物分子的活性位点的可达性。这可以通过将配体/生物分子缀合在离开/不同于配体/生物分子的活性位点的特异位点处来实现。在一个实施方式中,配体/生物分子(例如抗体片段或抗体片段)可以经由其活性位点(例如Fab区域或结构域、抗原结合位点或结构域)之外的位点固定在医疗设备上。
例如,涂层的配体/生物分子(例如抗体或抗体片段)它们的活性位点(例如Fab区域或结构域、抗原结合位点或结构域)的可达性(例如Fab可达性)是涂层的配体/生物分子(例如抗体或抗体片段)的总活性位点的至少1%、至少3%、至少5%、至少8%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少60%、至少70%、至少80%或至少90%。
在一个实施方式中,涂层的配体/生物分子(例如抗体或抗体片段)它们的活性位点(例如Fab区域或结构域、抗原结合位点或结构域)的可达性大于以非定向方式附着至涂层(例如,聚多巴胺涂层)的配体/生物分子(例如,抗体或抗体片段)它们的活性位点(例如,Fab区域或结构域、抗原结合位点或结构域)的可达性的约5%、约8%、约10%、约15%、约20%、约25%、约30%、约35%、约40%、约45%、约50%、约60%、约70%、约80%、约90%、至少1%、至少3%、至少5%、至少8%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少60%、至少70%、至少80%或至少90%。
在另一个实施方式中,至少1%、至少3%、至少5%、至少8%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少60%、至少70%、至少80%或至少90%的配体/生物分子它们的活性位点(例如Fab区域或结构域、抗原结合位点或结构域)可达。换句话说,至少1%、至少3%、至少5%、至少8%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少60%、至少70%、至少80%或至少90%的配体/生物分子的活性位点(例如Fab区域或结构域、抗原结合位点或结构域)未被封闭或变性。这可以通过将配体/生物分子缀合在离开配体/生物分子的活性位点的特异位点处来实现。
在又一实施方式中,至少1%、至少3%、至少5%、至少8%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少60%、至少70%、至少80%或至少90%的抗体和/或抗体片段可用于结合至细胞表面抗原。
可以根据Saha等人Analyst 142:4247-4256(2017)分析固定化抗体的Fab和/或Fc结构域的可达性。Fab结构域可达性测定——已知量的被抗体涂覆的设备(例如,盘、ePTFE移植物、支架)可以与摩尔过量(相对于结合抗体的摩尔量)的能够结合至结合抗体的抗原进行孵育。使用摩尔过量将使可用的抗体结构域饱和。孵育后,洗涤涂覆的设备,并且可以以摩尔过量(相对于结合的抗体的量)加入结合与第一抗体的不同表位的第二放射性标记的(例如125I-标记的)抗体。溶液中放射性标记的第二抗体的不同已知浓度的原液可以作为对照。然后可以通过在结合第二放射性标记的单克隆抗体后从最终信号中减去被抗体涂覆的设备的信号来计算结合的第二放射性标记的抗体在Fab可达性测定中的量。Saha等人Analyst 142:4247-4256(2017)。其他用于确定固定化抗体的活性、可达性和定向的技术包括原子力显微镜、中子反射、椭偏光谱和质谱。
可以使用合适的方法评估细胞粘附,诸如细胞粘附测定。粘着细胞可以使用比色或荧光检测进行定量。
本公开提供了一种具有包括聚多巴胺的涂层的人造心脏瓣膜或人造静脉瓣膜。在某些实施方式中,瓣膜是人造主动脉瓣膜、人造肺动脉瓣膜、人造二尖瓣膜、人造三尖瓣膜。
抗体和/或抗体片段可以是单克隆的或多克隆的。在一个实施方式中,抗体和/或抗体片段包括Fab或F(ab')2片段。抗体和/或抗体片段可以特异性结合至不同的细胞表面抗原。
接头可以是异形双官能化的或同形-双官能化的。在与基质共价偶联后,接头分子为基质提供可以用于共价偶联一种或多种类型的抗体的许多官能化活性基团。接头可以直接(即通过邻苯二酚基团)或通过公知的偶联化学物质,诸如酯化、酰胺化和酰化偶联至聚多巴胺涂层。接头分子可以是二胺、三胺或四胺官能化合物,该化合物通过直接形成胺-碳饱和和不饱和键与聚多巴胺涂层偶联,并提供可用于与配体(例如抗体和/或抗体片段)进行反应的胺官能团。例如,接头分子可以是聚乙二醇(PEG)、聚胺官能化聚合物,诸如聚乙烯亚胺(PEI)、聚烯丙胺(PALLA)或PEG衍生物(例如,mPEG-琥珀酰亚胺基丙酸酯或mPEG-N-羟基琥珀酰亚胺)。参见Weiner等人,Influence of a poly-ethyleneglycol spacer onantigen capture by immobilized antibodies.J.Biochem.Biophys.Methods 45:211-219(2000),通过引用并入本文。也可以使用聚合物的混合物。这些分子包含多个可以用于表面固定化一个或多个配体(例如抗体和/或抗体片段)的侧胺官能团。
医疗设备的涂层可以还包括药物物质,诸如抑制平滑肌细胞迁移和/或增殖的药物物质。在某些实施方式中,药物物质是紫杉醇、雷帕霉素、雷帕霉素衍生物、西罗莫司、依维莫司、他克莫司、百利莫司、百利莫司A-9或其组合。药物物质可以是血管扩张剂。
涂覆的医疗设备可以提供靶向局部药物递送(例如,药物物质的)和/或全身性疗法。
医疗设备可以是暂时或永久引入哺乳动物以预防或治疗医疗病症的任何设备。这些设备包括通过皮下、经皮或手术引入以置于在器官、器官的腔或组织内的任何设备,诸如心脏的动脉、静脉、心室和/或心房。医疗设备可以包括支架、支架移植物;覆盖支架,诸如覆盖有聚四氟乙烯(PTFE)、膨胀型聚四氟乙烯(ePTFE)或合成血管移植物的那些、人造心脏瓣膜、人造心脏及将假体器官与血管循环的固定装置、静脉瓣膜、腹主动脉动脉瘤(AAA)移植物、下腔静脉过滤器、永久性药物输注导管、栓塞圈、用于血管栓塞的栓塞材料(如交联PVA水凝胶)、血管缝合线、血管吻合固定装置、心肌血管重建术支架和/或其他管道。
本公开提供了一种具有包括聚多巴胺的涂层的人造心脏瓣膜或人造静脉瓣膜。在某些实施方式中,瓣膜是人造主动脉瓣膜、人造肺动脉瓣膜、人造二尖瓣膜或人造三尖瓣膜。
人造瓣膜的涂层可以还包括药物物质,诸如抑制平滑肌细胞迁移和/或增殖的药物物质。在某些实施方式中,药物物质是紫杉醇、雷帕霉素、雷帕霉素衍生物、西罗莫司、依维莫司、他克莫司、百利莫司、百利莫司A-9或其组合。
在另一实施方式中,提供了一种治疗血管疾病诸如再狭窄和动脉粥样硬化的方法,包括将本医疗设备植入需要这种医疗设备的患者内。该方法包括将具有本涂层的医疗设备植入患者的血管或中空器官内。
术语“内皮祖细胞”包括具有分化成成熟功能化内皮细胞潜能的任何谱系的细胞。例如,内皮祖细胞是在任何发育阶段的内皮细胞,从祖细胞或干细胞到来自骨髓、血液或局部组织来源的成熟非功能化内皮细胞,该内皮细胞是非恶性的、是基因修饰的细胞。内皮祖细胞可以包括内皮集落形成细胞(ECFC)和髓系血管生成细胞(MAC)。内皮集落形成细胞可以是CD31+、CD105+、CD146+、CD45-和/或CD145-。内皮集落形成细胞可以具有体外和体内的固有的管形成能力。内皮集落形成细胞可以作为新血管形成或血管修复的构建块。髓系血管生成细胞可以是CD45+、CD14+、CD31+、CD146-和/或CD34-。髓系血管生成细胞条件培养基可以增强体外和体内内皮细胞网络形成。MAC衍生的旁分泌因子可以是血管生成的刺激物。Medina等人,Endothelial Progenitors:A Consensus Statement on Nomenclature,StemCell Translational Medicine,2017;6:1316-1320。
对于体外研究或使用涂覆的医疗设备,完全分化的内皮细胞可以从动脉或静脉诸如人脐静脉中分离出来,而内皮祖细胞可以从外周血或骨髓中分离出来。通过内皮细胞与具有本涂层的医疗设备孵育而使内皮细胞结合至医疗设备。在另一实施方式中,内皮细胞可以是被转化/转染的内皮细胞。
配体可以是包括合成或天然存在的分子或肽的小分子,该小分子可以用于替代抗体或抗体片段,或与抗体或抗体片段组合使用。例如,凝集素是天然存在的非免疫来源的糖结合肽。内皮细胞特异性凝集素抗原(Ulex Europaeus Uea 1)(Schatz等人,2000HumanEndometrial Endothelial Cells:Isolation,Characterization,and Inflammatory-Mediated Expression of Tissue Factor and Type 1Plasminogen ActivatorInhibitor.Biol Reprod 62:691-697)可以选择性结合祖内皮细胞的细胞表面。以产生合成小分子来靶向各种细胞表面受体。这些分子选择性地结合特定的受体并且可以靶向特定的细胞类型,诸如内皮祖细胞和/或内皮细胞。可以合成小分子以识别内皮细胞表面标志物,诸如VEGF。例如,SU11248(Sugen Inc.)(Mendel等人,2003In vivo antitumoractivity of SU11248,a novel tyrosine kinase inhibitor targeting vascularendothelial growth factor and platelet-derived growth factor receptors:determination of a pharmacokinetic/pharmacodynamic relationship.Clin CancerRes.January;9(1):327-37),PTK787/ZK222584(Drevs J.等人,2003Receptor tyrosinekinases:the main targets for new anticancer therapy.Curr.DrugTargets.February;4(2):113-21)以及SU6668(Laird,A D等人,2002SU6668 inhibitsFlk-1/KDR and PDGFRbeta in vivo,resulting in rapid apoptosis of tumorvasculature and tumor regression in mice,FASEB J.May;16(7):681-90)是与VEGFR-2结合的小分子。在另一实施方式中,靶向内皮细胞表面的合成小分子的另一子集是例如α(v)β(3)整联蛋白抑制剂,S5M256和SD983(Kerr J.S.等人,1999Novel small moleculealpha v integrin antagonists:comparative anti-cancer efficacy with knownangiogenesis inhibitors can be used.Anticancer Res March-April;19(2A)-959-68)。SM256和SD983都是靶向并结合至递呈在内皮细胞表面的α(v)β(3)的合成分子。
在一个实施方式中,利用聚多巴胺膜对基底/医疗设备(包括或由钴铬、不锈钢、ePTFE和/或聚苯乙烯等制成)进行涂覆,胺官能化聚乙二醇沉积在被聚多巴胺涂覆的基底/医疗设备上。官能化配体/生物分子被引入与官能化PEG反应。
在另一实施方式中,配体/生物分子(例如抗体或抗体片段)直接固定化在聚多巴胺膜上。例如,将新制备的被聚多巴胺涂覆的基底/医疗设备暴露于缓冲液(例如PBS)中未修饰的抗体(或抗体片段)溶液。然后用缓冲液(例如PBS)彻底漂洗被抗体(或抗体片段)涂覆的基底/医疗设备以除去吸附的抗体。
本被涂覆的医疗设备可以用于捕获/结合天然/正常细胞或基因修饰细胞。基因修饰细胞可以本质地分泌如本文所述的药物物质,或者在刺激时这样做。
在一个实施方式中,循环内皮祖细胞可以是靶细胞,所述靶细胞在设备的腔或血液接触表面上可以捕获和固定化,以在设备的植入的位点处恢复、增强或加速形成功能化内皮细胞。
在另一实施方式中,配体/生物分子(例如抗体或抗体片段)通过仅识别基因修饰细胞的细胞表面抗原/分子,仅特异性结合基因修饰细胞(例如哺乳动物细胞,诸如人细胞),该基因修饰细胞被基因修饰以表达细胞表面抗原/分子。靶细胞与配体/生物分子的结合可以将细胞固定化在设备的表面上。以这种方式,仅基因修饰细胞可以结合到医疗设备的表面上。
配体/生物分子(例如抗体或抗体片段)可以特异性结合于细胞表面抗原,诸如CD133、CD34、CD14、CDw90、CD117、HLA-DR、VEGFR-1、VEGFR-2、Muc-18(CD146)、CD130,干细胞抗原(Sca-1)、干细胞因子1(SCF/c-Kit配体)、Tie-2、MHC,诸如H-2Kk和HLA-DR或合成抗原。
在一个实施方式中,EPC被基因修饰以表达血管扩张剂,例如促进心外膜冠状动脉的流量依赖性正性重塑。
黑色素、类黑色素聚合物、合成形式的黑色素或芳香族儿茶酚聚合物包括但不限于聚多巴胺、多巴胺类似物的聚合物、真黑素、褐黑素和神经黑色素。
聚多巴胺
聚多巴胺是由单体多巴胺的聚合形成。在某些实施方式中,聚多巴胺(PDA)是经由在微碱性条件下多巴胺氧化自聚合而形成的合成真黑素聚合物。在一个实施方式中,PDA膜可以通过将基底/医疗设备浸入多巴胺水溶液内而形成。
聚多巴胺的确切结构尚未被充分地了解,并已提出了若干结构。
多巴胺的聚合可以在氧化条件下发生。暴露于空气(即氧气)可能足以引发聚合。在一个实施方式中,多巴胺的初始氧化发生在邻苯二酚部分上,该部分然后与多巴胺的另一分子反应,或者可以经历分子间环化(经由侧伯胺),以形成含氮双环。聚多巴胺的一个结构(结构A)(如W02010/006196中所述)指出聚多巴胺由在位置4和7交联的重复5,6-二羟基-3H-吲哚单元组成。另一结构(结构B,如Zhao等人在Polym.Chem.,2010,1,1430-1433中所述)指出了类似的聚合物,但是每个其他5,6-二羟基-3H-吲哚单元被5,6-二羟基二氢吲哚单元取代。结构C被提出作为聚多巴胺的另一可能的结构,它仍然与结构A类似,但是每个其他5,6-二羟基-3H-吲哚单元被未环化的多巴胺分子替代(美国专利号9,272,075)。聚多巴胺的该结构因此包括伯胺官能性。结构D(在Kang等人Langmuir,2009,25,9656-9659中描述)也被提出并指出在五元氮环处的多巴胺分子之间以及儿茶酚环之间的附连。该结构还指出醌环以及儿茶酚环存在于聚合物结构中。最后,结构E(由Dreyer等人Langmuir,2012,28,6428-6435描述)说明了完全不同的结构,在该结构中聚多巴胺不是共价聚合物,而是单体的超分子聚集体,主要由5,6-二羟基二氢吲哚及其二酮衍生物组成。
应注意,在本公开的上下文中,聚多巴胺的结构的描述对于本发明的方法和涂层的工作是非实质性的,并且上述讨论被包括,仅用于背景参考。
如本文所述,“聚多巴胺”适合通过多巴胺和/或多巴胺类似物的聚合形成。在一个实施方式中,聚多巴胺由多巴胺的聚合形成。多巴胺类似物包括在与多巴胺相同或类似的生物化学路径中所涉及的分子,以及与多巴胺结构类似的那些分子,包括酪氨酸的氧化衍生物。在一个实施方式中,多巴胺类似物是化学式(I)的化合物,其中R1-R9中的一个或多个不是H:
Figure BDA0003690557880000191
在另一实施方式中,多巴胺类似物是化学式(I)的化合物,其中,R1-R9独立地选自由:H、C1-C8烷基、C2-C8烯基、C2-C8炔基、-OH、-CO2H、-C(O)C1-C8烷基、-C(O)C2-C8烯基、-C(O)C2-C8炔基所组成的组。
天然存在的多巴胺类似物包括:
Figure BDA0003690557880000192
肾上腺素和去甲肾上腺素
其他示例性多巴胺类似物被示出如下:
Figure BDA0003690557880000193
N-(3,4-二羟基苯乙基)丙烯酰胺
Figure BDA0003690557880000194
N-(3,4-二羟基苯乙基)-2-巯基乙酰胺
Figure BDA0003690557880000201
N-(3,4-二羟基苯乙基)戊-4-炔酰胺。
用于制备聚多巴胺涂层的方法
在暴露于空气(即氧气)的碱性水溶液中多巴胺可以聚合形成聚多巴胺而无需其他反应物。然而,通过向溶液中加入化学氧化剂或者加入含有氧化电流的多巴胺,可以提高聚合速率。合适的化学氧化剂包括但不限于过硫酸铵和过硫酸钠。因此,在一个实施方式中,聚多巴胺的表面涂层通过使基底的表面接触包括氧化剂和多巴胺和/或多巴胺类似物的混合物而形成。
多巴胺的聚合还被观察为在碱性水溶液中更快,这可能是由于儿茶酚羟基基团的去质子化和活化以便氧化。使用氧化剂可以允许多巴胺的聚合以受控的方式在中性或甚至酸性pH下在合理的时间范围内进行。合适的氧化剂包括过硫酸铵和过硫酸钠。美国专利No.9,272,075。
在一个实施方式中,聚多巴胺的表面涂层通过在pH4-10,例如pH>7或pH7下使基底的表面接触包括氧化剂和多巴胺和/或多巴胺类似物的混合物而形成。在另一实施方式中,聚多巴胺的表面涂层在pH<7,例如pH 4-7下形成。在另外的实施方式中,聚多巴胺的表面涂层在pH 5-6.9,例如pH5.5-6.5下形成。多巴胺和/或多巴胺类似物溶液的pH可以使用任何合适的酸或碱来调节,分别诸如HCl或NaOH。可用合适的缓冲液,例如MES、ACES、PIPES、MOPSO、Bis-Tris丙烷、BES、MOPS、TES和HEPES缓冲液来控制溶液的pH。
氧化剂的量影响聚合速率。在一个实施方式中,溶液中多巴胺的量在1g/L至5g/L之间,并且溶液中过硫酸铵(APS)的量在0.6g/L至3g/L之间。在另一实施方式中,使用1g/L的多巴胺和0.6g/L的APS进行聚合。可以通过提高多巴胺和/或APS浓度来提高聚合速率。在某些实施方式中,多巴胺或类似物的浓度可以为0.5-10g/L,并且APS的浓度可以为0.1-5g/L。
多巴胺的聚合可以在水溶液或水/有机混合物诸如水与甲醇、乙醇、丙醇和/或异丙醇的混合物中进行。
形成聚多巴胺涂层所需的时间可以根据所使用的特定反应条件而变化。例如,添加氧化剂可以加速聚合,或允许使用中性或甚至酸性pH。聚多巴胺涂层可以在有效制备可行的时间段内形成。例如,可以在24小时、12小时、6小时、5小时、4小时、3小时、2小时、1小时、30分钟、10分钟、5分钟或2分钟内形成期望的聚多巴胺覆盖。Zangmeister等人,Langmuir2013,29(27),8619-8628。作为一般原则,聚合时间越长,形成的聚多巴胺涂层越厚。因此,多巴胺聚合的最佳时间足够长以获得足够的聚多巴胺覆盖,但不会长到允许在溶液中形成不受控制的微粒聚多巴胺。在某些实施方式中,聚合时间不超过24小时,例如最高达12小时、6小时、5小时、4小时、3小时、2小时、1小时、30分钟、10分钟、5分钟、或2分钟。在一个实施方式中,可以使用后处理技术诸如超声处理除去聚多巴胺聚集体和微粒。
聚多巴胺涂层可以在室温下形成,尽管聚合可以在更高/更低的温度下进行。
聚多巴胺涂层的厚度的范围可以为从约0.1nm至约10nm、约1nm至约50nm、约1nm至约40nm、约1nm至约30nm、约1nm至约20nm、约1nm至约15nm、约1nm至约10nm、约1nm至约100nm、约5纳米至约80nm、约6nm至约60nm、约10nm至约50nm、约10nm至约30nm、约0.1μm至约150μm或从约1μm至约100μm。Zangmeister等人,Langmuir 2013,29(27),8619-8628。
Kang等人Angewandte Chemie,2012,vol.124,pp 1-5描述了使用电荷(电压)形成聚多巴胺的可能的替代方法。
在涂层之前,可以清洁或预处理基底的表面以提高与聚多巴胺的附接。在先清洁或预处理表面还可以提高涂层的均匀性。
合适的清洁剂或预处理剂包括溶剂,诸如乙醇或异丙醇(IPA),具有高pH的溶液,诸如包括醇和氢氧化物(例如氢氧化钠)的水溶液的混合物的溶液、氢氧化钠溶液本身、包含四甲基氢氧化铵(TMAH)的溶液、碱性食人鱼(Piranha)(氨和过氧化氢)、酸性食人鱼(硫酸和过氧化氢的混合物)和其他氧化剂,包括硫酸和高锰酸钾,或不同类型的过氧硫酸或过氧二硫酸溶液(也作为铵盐、钠盐和钾盐,例如过硫酸铵)或其组合。
描述了两种特定的预处理方法——方法A和方法B。方法A涉及利用异丙醇处理基底,而在方法B中,基底利用异丙醇处理,然后用APS(过硫酸铵)的溶液处理。在一个实施方式中,在形成聚多巴胺的表面涂层之前,基底的表面利用氧化剂预处理。在另一实施方式中,在形成聚多巴胺的表面涂层之前,利用异丙醇和氧化剂处理基底的表面。在另外的实施方式中,在形成聚多巴胺的表面涂层之前,将待涂覆的表面用异丙醇和过硫酸铵预处理。
聚多巴胺层可以例如用烯烃和/或炔烃基团或硫醇基团官能化。这种聚多巴胺表面可以通过多巴胺和多巴胺类似物的聚合来制备,所述多巴胺和多巴胺类似物包括至少一比例的烯烃和/或炔烃或硫醇基团官能化多巴胺(或类似物)。合成多巴胺类似物可以通过官能化多巴胺的伯胺而形成。
在聚多巴胺膜形成之后,基底/医疗设备可以还利用含有其是生物分子(例如蛋白)中常见的部分的胺和/或硫醇基团进行官能化。生物分子可以在非常温和的条件下固定化(例如,在接近中性的pH或中性pH和室温下)。
有机聚合物/低聚物
聚多巴胺和配体(例如抗体和/或抗体片段)可以通过接头诸如有机聚合物/低聚物连接。
有机聚合物的非限制性示例包括聚醚衍生物(例如聚乙二醇(PEG)、聚乙二醇(PEG)衍生物、聚丙二醇(PPG)或聚丙二醇(PPG)衍生物)、多晶硅、聚二甲基硅氧烷、硅氧烷衍生物、聚氨酯、蛋白、肽、多肽、透明质酸、透明质酸衍生物、聚-N-乙烯基吡咯烷酮、聚-N-乙烯基吡咯烷酮衍生物、聚环氧乙烷、聚环氧乙烷衍生物、聚亚烷基二醇、聚缩水甘油、聚乙烯醇、聚乙烯醇衍生物、聚丙烯酸、聚丙烯酸衍生物、硅酮、硅酮衍生物、多糖、多糖衍生物、聚磺基甜菜碱、聚磺基甜菜碱衍生物、聚羧基甜菜碱、聚羧基甜菜碱衍生物、多元醇,诸如聚HEMA、多元酸,诸如,藻酸盐、葡聚糖、琼脂糖、聚赖氨酸、聚甲基丙烯酸、聚甲基丙烯酸衍生物、聚甲基丙烯酰胺、聚甲基丙烯酰胺衍生物、聚丙烯酰胺、聚丙烯酰胺生物、聚砜、聚砜衍生物、磺化聚苯乙烯、磺化聚苯乙烯衍生物、聚烯丙胺、聚烯丙胺衍生物、聚乙烯亚胺、聚乙烯亚胺衍生物、聚恶唑啉、聚恶唑啉衍生物、多胺、多胺衍生物及其组合物。上述聚合物的嵌段聚合物也是有用的;例如,聚(乙烯醇-共-乙烯)、聚(乙二醇-共-丙二醇)、聚(乙酸乙烯酯-共-乙烯醇)、聚(四氟乙烯-共-乙烯醇)、聚(丙烯腈-共-丙烯酰胺)、聚(丙烯腈-共-丙烯酸-共-丙烯脒)。
在某些实施方式中,有机聚合物是透明质酸、透明质酸衍生物、聚-N-乙烯基吡咯烷酮、聚-N-乙烯基吡咯烷酮衍生物、聚醚衍生物(例如聚乙二醇(PEG)、聚乙二醇(PEG)衍生物、聚丙二醇(PPG)或聚丙二醇(PPG)衍生物)、聚乙烯醇、聚乙烯醇衍生物或其组合。在某些实施方式中,有机聚合物是聚乙二醇(PEG)、聚乙二醇(PEG)衍生物、聚丙二醇(PPG),聚丙二醇(PPG)衍生物或其组合。还考虑了其共聚物(例如乙二醇和丙二醇的共聚物)、其三聚物及其混合物。
可以用于本公开的有机聚合物包括PEG、聚乳酸酯、聚乳酸、糖、脂质、聚谷氨酸(PGA)、聚乙醇酸、聚(乳酸-共-乙醇酸)(PLGA)、聚乙酸乙烯酯(PVA)及其组合。有机聚合物至聚多巴胺或医疗设备的附连可以通过共价键或非共价键,诸如通过离子键、氢键、疏水键、配位、粘附和物理吸附来实现。
聚醚聚合物可以以羟基团或其他端基团,包括但不限于氨基和硫醇,封端。
接头(例如有机聚合物)可以通过任何合适的链接/键连接至聚多巴胺。例如在非常温和的条件下(诸如在中性pH和/或室温下),通过迈克尔加成或希夫碱形成,聚多巴胺可以利用含有硫醇或伯胺的分子进行官能化。
可以利用胺和硫醇官能团,联合酰肼、叠氮化物、环辛炔和/或生物素,产生异双官能化有机聚合物(例如PEG)链。在一个实施方式中,可以通过物理吸附或共价键合将PEG接枝到医疗设备的表面上81。在另一实施方式中,胺-PEG-炔固定化在被PDA涂覆的医疗设备上,接着是含有叠氮化官能团的配体(例如抗体和/或抗体片段)。在再一实施方式中,聚多巴胺可以连接至硫醇化接头(例如硫醇化有机聚合物,诸如硫醇化PEG)、胺化接头(例如胺化有机聚合物,诸如氨化PEG)等。用以形成PEG与黑色素、类黑色素聚合物、合成形式的黑色素或芳香族儿茶酚聚合物(例如聚多巴胺或多巴胺类似物的聚合物),或与配体/生物分子(例如抗体和/或抗体片段)的链接的其他官能团包括马来酰亚胺和烯烃。
有机聚合物(例如聚醚衍生物,诸如PEG)可以具有多个官能团以附连至聚多巴胺,并且以附连至配体(例如抗体和/或抗体片段)。医疗设备可以具有不同类型的官能化有机聚合物(例如,聚醚衍生物,诸如PEG),这些不同类型的官能化有机聚合物携带可以附连至多个配体(例如抗体和/或抗体片段)的不同官能团。有机聚合物可以共价或非共价附连至聚多巴胺。
在一个实施方式中,使用官能化-PEG-胺(酰肼或二苯并环辛炔(DBCO)官能化)或胺化PEG连接聚多巴胺。例如,通过将基底或医疗设备浸入氨基-PEG-DBCO溶液中,在被PDA涂覆的基底或医疗设备上形成二苯并环辛炔表面。
在一个实施方式中,有机聚合物利用胺和/或巯基双官能化。
聚乙二醇(PEG)
PEG是聚醚化合物,其线性形式具有通式H[O-CH2-CH2]n-OH。支链PEG,包括超支化和树枝状PEG,也被考虑并且在本领域中通常是已知的。典型地,分支聚合物具有中心分支核心部分和连接到中心分支核心的多个线性聚合物链。PEG通常以分支形式使用,可以通过将环氧乙烷加成到各种多元醇,诸如甘油、甘油低聚物、季戊四醇和山梨醇中来制备。中心分支部分也可以来自几种氨基酸,诸如赖氨酸。分支聚(乙二醇)可以以通式表示为R(-PEG-OH)m,其中R来自核心部分,诸如甘油、甘油低聚物或季戊四醇,并且m表示臂的数目。还可以使用多臂PEG分子,诸如在美国专利No.5,932,462;美国专利No.5,643,575;美国专利No.5,229,490;美国专利No.4,289,872;US 2003/0143596;WO 96/21469;和WO 93/21259中描述的那些。
PEG可以具有范围从约100道尔顿到约20,000道尔顿、从约200道尔顿至约10,000道尔顿、从约200道尔顿至约5,000道尔顿、从约250道尔顿至约8,000道尔顿、从约200道尔顿至约6,000道尔顿、从约300道尔顿至约5,000道尔顿、从约200道尔顿至约400道尔顿、从约200道尔顿至约300道尔顿或约500道尔顿至约1,000道尔顿的平均分子量。
涂层可以包括具有不同平均分子量的两个或多个PEG分子。
PEG,当固定化在基底上时,可以有效地防止蛋白与基底的非特异性结合。
PEG可以利用可以对聚多巴胺涂层起反应的胺和/或硫醇官能团进行官能化。另外,PEG链还可以被修饰以包括酰肼、叠氮化物、环辛炔和/或生物素等,使得PEG与生物分子缀合。官能化PEG的示例如下所示。
Figure BDA0003690557880000261
酰肼-PEG
Figure BDA0003690557880000262
氨基氧基PEG
Figure BDA0003690557880000263
结合聚多巴胺官能化,PEG可以在温和的条件下通过简单的浸涂进行沉积。
已显示PEG在体内在延长时间段内保持稳定,降解最小。这种稳定性限制了由微观粒子形成引起的炎症,并有助于材料的整体生物相容性。
抗体
配体(例如抗体和/或抗体片段)可以通过任何合适的链接/键连接至接头(例如有机聚合物)或聚多巴胺。在一个实施方式中,配体(例如抗体和/或抗体片段)具有暴露的糖,因此它们可被氧化以结合接头(例如有机聚合物)或聚多巴胺。
医疗设备的涂层可以还包括抗体、抗体片段或其组合。抗体、抗体片段或其组合可以特异性结合至内皮祖细胞或内皮细胞的细胞表面抗原。在某些实施方式中,细胞表面抗原是CD133、CD34、CD45、CD31、CD14、CDw90、CD117、HLA-DR、VEGFR-1、VEGFR-2、VEGFR-3、Muc-18(CD146)、Thy-1、Thy-2、CD130、CD30、干细胞抗原(Sca-1)、干细胞因子1(SCF/c-Kit配体)、Tie-1、Tie-2、VE-钙粘蛋白、P1H12、TEK、CD31、Ang-1、Ang-2、HAD-DR、CD45、CD14、CD105、E-选择素或其组合。细胞表面抗原可以是MHC,诸如H-2Kk和HLA-DR。
在一个实施方式中,使用特异性结合至CD34和/或CD133的抗体和/或抗体片段。产生针对CD34的单克隆抗体的杂交瘤可以从American Type Tissue Collection(Rockville,Md)获得。在另一实施方式中,使用特异性结合至VEGFR-1和VEGFR-2、CD133或Tie-2的抗体和/或抗体片段。
抗体、抗体片段或其组合可以是单克隆的。抗体、抗体片段或其组合可以是多克隆的。抗体或其抗原结合部分包括但不限于人源化抗体、人抗体、单克隆抗体、嵌合抗体、多克隆抗体、重组表达的抗体,以及前述的抗原结合部分。
抗体的抗原结合部分可以包括特异性结合内皮祖细胞或内皮细胞的细胞表面抗原的抗体的部分。抗体、抗体片段或其组合可以包括Fab或F(ab')2片段,由Fab或F(ab')2片段组成或基本上由Fab或F(ab')2片段组成。抗体、抗体片段或其组合可以特异性结合相同的细胞表面抗原,或可以结合至不同的细胞表面抗原。在某些实施方式中,抗体、抗体片段或其组合在医疗设备植入受试者内时,在体内捕获内皮祖细胞和/或内皮细胞。
在某些实施方式中,抗体、抗体片段或其组合包括暴露的糖,该暴露的糖可以被氧化以结合中间接头,诸如如本文所述的有机聚合物。
同样在本公开的范围内,还有其中特定氨基酸被取代、缺失或添加的抗体或抗原结合部分。这些改变对肽的生物学特性诸如结合活性没有实质性影响。
本发明的肽可以是其本文公开的抗原结合部分的抗体的官能化活性变体,例如具有小于约30%、约25%、约20%、约15%、约10%、约5%或约1%氨基酸残基被取代或缺失,但保留了基本相同的免疫学特性,包括但不限于结合至细胞表面抗原。
抗体或其抗原结合部分还可以包括表现出生物学活性(例如结合抗原诸如细胞表面抗原)的肽的变体、类似物,直系同源物、同源物和衍生物。肽可以包含一种或多种氨基酸类似物(包括例如非天然存在的氨基酸、仅在无关生物系统中天然存在的氨基酸、来自哺乳动物系统的修饰氨基酸等),具有取代链接的肽以及本领域已知的其他修饰。
抗体或其抗原结合部分可被衍生或连接至另一官能化分子。例如,抗体可以(通过化学偶联、基因融合、非共价相互作用等)官能化连接至一种或多种其他分子实体,诸如另一抗体、可检测剂、免疫抑制剂、细胞毒性剂、药物剂,可以介导缔合另一分子(诸如链霉抗生物素蛋白核心区域或多组氨酸标签)的蛋白或肽、氨基酸接头、信号序列、免疫原性载体或在蛋白纯化中有用的配体,诸如谷胱甘肽-S-转移酶、组氨酸标签和葡萄球菌蛋白A。细胞毒性剂可以包括放射性同位素、化学治疗剂和毒素,诸如细菌、真菌、植物或动物来源的酶活性毒素及其片段。这样的细胞毒性剂可以使用标准程序与本公开的抗体偶联,并且用于例如治疗被指示为利用抗体疗法的患者。
一种类型的衍生蛋白通过交联两种或多种蛋白(相同类型或不同类型)而产生。合适的交联剂包括异双官能化的交联剂(具有被合适的间隔物(例如间马来酰亚胺苯甲酰-N-羟基琥珀酰亚胺酯)隔开的两个不同反应性基团)或同双官能化(例如二琥珀酰亚胺基辛二酸酯)的交联剂。蛋白可以利用进行衍生(或标记)的有用可检测剂包括荧光剂、各种酶、假体基团、发光材料、生物发光材料和放射性材料。非限制性的示例性荧光可检测剂包括荧光素、异硫氰酸荧光素、罗丹明和藻红蛋白。
本抗体或抗体片段可以是单克隆的、多克隆的、人源化或嵌合抗体或其组合。
本抗体或抗体片段可以调节循环内皮祖细胞和/或内皮细胞至医疗设备的粘附。本抗体或抗体片段可以识别并特异性结合循环血液中的内皮祖细胞和/或内皮细胞表面抗原,使得细胞在设备表面固定化。细胞表面抗原可以是血管内皮生长因子受体1、2和3(VEGFR-1、VEGFR-2和VEGFR-3和VEGFR受体家族同种型)、Tie-1、Tie2、CD34、Thy-1、Thy-2、Muc-18(CD146)、CD30、干细胞抗原1(Sca-1)、干细胞因子(SCF或c-Kit配体)、CD133抗原、VE-钙粘着蛋白、P1H12、TEK、CD31、Ang-1、Ang-2或在内皮祖细胞和/或内皮细胞表面上表达的抗原。在一个实施方式中,可以使用与一种抗原反应的单个类型的抗体和/或抗体片段。可替代地,可以使用针对不同细胞表面抗原的多种不同类型的抗体和/或抗体片段。在一个实施方式中,可以组合使用抗CD34和抗CD133抗体和/或抗体片段。
如本文所用,“抗体或抗体片段的治疗有效量”是指促进内皮祖细胞和/或内皮细胞粘附至医疗设备的抗体的量。
抗体和/或抗体片段可以以定向的方式固定化在医疗设备上,以确保抗体和/或抗体片段至对抗原的可达性。例如,至少1%、至少3%、至少5%、至少8%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少60%、至少70%、至少80%或至少90%的抗体和/或抗体片段可用于结合至细胞表面抗原。换句话说,至少1%、至少3%、至少5%、至少8%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少60%、至少70%、至少80%或至少90%的抗体和/或抗体片段的抗原结合位点不被封闭或变性。例如,至少1%、至少3%、至少5%、至少8%、至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少60%、至少70%、至少80%或至少90%的抗体和/或抗体片段的Fab区域完全暴露且可用于抗原结合。
例如,抗体和/或抗体片段可以以定向的方式固定化在医疗设备上,其中Fc结构域固定并且抗原结合Fab结构域完全暴露。在某些实施方式中,由于大多数抗体在重链的Fc区域中具有至少一个N-连接的碳水化合物,所以固定化策略涉及修饰在Fc结构域中发现的寡糖以将新颖反应性部分引入至抗体结构。例如,存在可以用于抗体修饰的两种类型的寡糖修饰。第一种涉及对在Fc区域发现的寡糖进行氧化以产生反应性醛基团103,104。氧化后,新形成的醛部分可以共价缀合到胺封端表面105,106。另一技术使用突变的β-1,4半乳糖基转移酶,利用修饰糖替代天然乙酰葡糖胺残基。修饰的糖具有掺入分子结构中的独特的化学柄(handle),通常是酮或叠氮化物。修饰糖的掺入引入了可以用于使抗体固定化的Fc特异性靶点。在叠氮化物部分的情况下,抗体可以经由无催化剂的“点击”环加成反应以定向方式共价缀合到环辛炔表面上。通过特异性修饰抗体的Fc区域,这两种技术都提供了Fab区域暴露的抗体的共价固定化(图1)。
在一个实施方式中,使用氧化方法来使抗体或抗体片段固定化。t-Boc-酰肼-PEG-胺(Quanta Biodesign)固定化在基底或医疗设备的被PDA涂覆的表面上。例如,新鲜制备的聚多巴胺涂覆的基底/医疗设备暴露于PBS/DMSO中的t-Boc-酰肼-PEG-胺。然后用丙酮漂洗基底/医疗设备,在甲醇中超声处理15分钟,用丙酮漂洗,并在氮气流下干燥。成功固定化PEG链后,使修饰表面经受二氯甲烷中的三氟乙酸(TFA),接着在氢氧化铵中漂洗以除去叔丁氧基羰基(t-Boc)保护基团并形成富含酰肼表面,以进行额外的固定化。抗体或抗体片段被氧化以产生必需的醛部分(例如在抗体的Fc区域中)。将抗体或抗体片段溶于缓冲液(例如PBS)中。将m-高碘酸钠加入到抗体溶液中,并使反应进行。在氧化之后,使用脱盐柱(例如Sephadex G-25)除去残留的m-高碘酸钠。然后PEG官能化材料被浸入氧化的抗体溶液中并允许反应。加入氰基硼氢化钠以稳定在抗体和富含酰肼的涂层之间形成的希夫碱。
抗体或抗体片段的氧化可以在合适的pH下进行,例如范围从约pH3至约pH7、约pH3.5至约pH6.8、约pH4至约pH6.5、约pH4.5至约pH6、约pH 5至约pH 6、约pH4至约pH 6、约pH 5、约pH 5.5、约pH 5.6、约pH 5.8或约pH 6。
在另一实施方式中,酶法用于使抗体或抗体片段固定化。使氨基-PEG4-DBCO在基底或医疗设备的被PDA涂覆的表面上固定化。例如,新鲜制备的聚多巴胺涂覆的基底/医疗设备暴露于PBS中的氨基-PEG-二苯并环辛炔。然后用丙酮漂洗基底/医疗设备,在甲醇中超声处理15分钟,用丙酮漂洗,并在氮气流下干燥。
为了使抗体或抗体片段官能化,可以在例如抗体的Fc区域产生DBCO反应性部分。生物分子(例如抗体)可以使用酶法修饰以掺入DBCO反应性部分,而远离生物分子的活性位点(例如在抗体的Fc区域)。步骤1可以包括从生物分子(例如抗体或抗体片段)(例如,使用β-1,4-半乳糖苷酶、37℃、16小时)除去末端半乳糖残基。β-1,4-半乳糖苷酶是高度特异性的外切糖苷酶,催化β1-4连接的D-吡喃半乳糖基残基从低聚糖水解。该特定的残基可以存在于若干抗体的Fc区域中。除去末端半乳糖后,生物分子(例如抗体或抗体片段)可以与UDP-GalNAz组合以引入叠氮化部分。例如,步骤2可以包括掺入GalNAz(例如,Gal-T(Y289L)、UDP-GalNAz、37℃、16小时)。在一个实施方式中,抗体或抗体片段可以使用
Figure BDA0003690557880000311
酶标记系统(Life Technologies Inc)按照制造商的说明进行修饰。简言之,使用用P30树脂(Bio-Rad,1.5mL床体积)制备的微型离心柱(micro-spin column),将抗体或抗体片段缓冲液交换到预处理缓冲液中。然后将抗体或抗体片段加入预处理的柱中并离心。得到的抗体溶液补充β-1,4-半乳糖苷酶并在37℃下置于培养箱。使用用P30树脂制备的微型离心柱进行样品到Tris缓冲盐水(TBS)中的缓冲液交换。缓冲液交换后,将抗体溶液与UDP-GalNAz、MnCl2和Gal-T(Y289L)组合,并在30℃下孵育。修饰后,将抗体或抗体片段缓冲液交换到PBS中。最后,将DBCO涂覆的基底或医疗设备浸入抗体溶液中,然后用PBS洗涤以除去物理上附连的抗体。
在再一实施方式中,UV固定化技术用于使抗体或抗体片段固定化。它可以经由几乎所有抗体上发现的保守核苷酸结合位点而不论是哪种同型,利用吲哚-3-丁酸-PEG结合抗体或抗体或抗体片段183
抗体片段
抗体可以是全长的或可以包括具有抗原结合部分的抗体的片段(或多个片段),包括但不限于Fab、F(ab')2、Fab’、F(ab)’、Fv、单链Fv(scFv)、二价scFv(bi-scFv)、三价scFv(tri-scFv)、Fd、dAb片段(例如Ward等人,Nature,341:544-546(1989))、分离的CDR、双抗体、三抗体、四抗体、线性抗体、单链抗体分子和由抗体片段形成的多特异性抗体。通过使用重组方法连接抗体片段产生的单链抗体或合成接头也包括在本公开中。Bird等人,Science,1988,242:423-426。Huston等人,Proc.Natl.Acad.Sci.USA,1988,85:5879-5883。
木瓜蛋白酶消化抗体产生两个相同的抗原结合片段,称为“Fab”片段,每个片段具有单个抗原结合位点和残余的“Fc”片段,其名称反映了其容易结晶的能力。胃蛋白酶处理产生具有两个抗原结合位点并仍能交联抗原的F(ab’)2片段。
Fv是包含完整抗原结合位点的最小抗体片段。在一个实施方式中,双链Fv物种由紧密非共价缔合的一个重链可变结构域和一个轻链可变结构域的二聚体组成。在单链Fv(scFv)物种中,一个重链可变结构域和一个轻链可变结构域可以通过柔性肽接头共价连接,使得轻链和重链可以在“二聚体”结构中缔合,类似于在双链Fv物种中。正是在这种构造中,每个可变结构域的三个CDR相互作用以在VH-VL二聚体的表面上限定抗原结合位点。共同地,六个CDR赋予至抗体的抗原结合特异性。然而,即便单个可变结构域(或Fv的一半包含仅三个抗原特异性CDR)也具有识别和结合抗原的能力,尽管亲和力低于整个结合位点。
Fab片段含有重链可变结构域和轻链可变结构域,并且还含有轻链的恒定结构域和重链的第一恒定结构域(CH1)。Fab’片段与Fab片段的不同之处在于在重链CH1结构域的羧基末端添加了几个残基,包括来自抗体的一个或多个半胱氨酸铰链区。Fab’-SH是其中恒定结构域的半胱氨酸残基带有游离硫醇基团的Fab'的名称。F(ab’)2抗体片段最初产生作为在它们之间具有铰链半胱氨酸的Fab'片段对。抗体片段的其他化学偶联也是已知的。
单链Fv或scFv抗体片段包括抗体的VH和VL结构域,其中这些结构域存在于单个多肽链中。通常,scFv多肽还包括VH和VL结构域之间的多肽接头,该多肽接头使得scFv能够形成抗原结合所需的结构。关于scFv的综述,参见例如Pluckthun,in The Pharmacology ofMonoclonal Antibodies,vol.113,Rosenburg and Moore eds.,(Springer-Verlag,NewYork,1994),pp.269-315。
双抗体是具有两个抗原结合位点的抗体片段,该片段包括在同一多肽链(VH-VL)中连接至轻链可变结构域(VL)的重链可变结构域(VH)。通过使用太短而不能在同一链上的两个结构域之间配对的接头,结构域被迫与另一链的互补结构域配对,并产生两个抗原结合位点。双抗体可以是二价或双特异性的。例如,双抗体在下述文献中得到更加充分的描述:欧洲专利No.404,097;PCT公开WO 1993/01161;Hudson等人,Nat.Med.9:129-34,2003;以及Hollinger等人,Proc.Natl.Acad.Sci.USA 90:6444-8,1993。Hudson等人,Nat.Med.9:129-34,2003中描述了三体和四体。
抗体片段可以通过传统方法产生,如酶消化或通过重组技术产生。在某些情况下,使用抗体片段而不是整个抗体有优势。尺寸小的片段允许快速清除,并且可以引起对实体肿瘤更好接近。有关某些抗体片段的综述,参见Hudson等人,Nat.Med.9:129-134,2003。
已经开发了各种技术来生产抗体片段。传统上,这些片段是经由完整抗体的蛋白水解消化而得来(参见例如Morimoto等人,J.Biochem.Biophys.Methods 24:107-17,1992;和Brennan等人,Science 229:81-3,1985)。然而,这些片段现在可以通过重组宿主细胞直接产生。Fab、Fv和ScFv抗体片段都可以在大肠杆菌中表达和从大肠杆菌分泌,从而使得容易产生大量这些片段。可以从抗体噬菌体文库中分离抗体片段。可替代地,Fab’-SH片段可以直接从大肠杆菌中回收并且化学偶联以形成F(ab’)2片段(Carter等人,Bio/Technology10:163-7,1992)。在另一方法中,直接从重组宿主细胞培养物中分离F(ab’)2片段。美国专利No.5,869,046中描述了具有增加的体内半衰期包括补救受体结合表位残基的Fab和F(ab’)2片段。用于生产抗体片段的其他技术对于熟练的从业者是明显的。
本抗体或抗体片段可以包括至少一个恒定结构域,诸如(a)IgG恒定结构域;(b)IgA恒定结构域等。
本公开包括所有抗体同型,包括IgG(例如IgG1、IgG2、IgG3、IgG4)、IgM、IgA(IgA1、IgA2)、IgD或IgE。抗体或抗体片段可以是哺乳动物(例如小鼠、人)抗体或抗体片段。抗体的轻链可以是κ或λ型。可替代的抗体可以包括来自多于一种免疫球蛋白类别或同型的序列,并且本领域普通技术人员能够选择特定的恒定结构域来优化所需的效应子官能化。
本公开的抗体或抗体片段可以是单特异性的、双特异性的或多特异性的。多特异性或双特异性抗体或其片段可以对一种靶多肽(例如,细胞表面抗原)的不同表位特异,或可以含有对多于一种靶多肽特异的抗原结合结构域(例如对细胞表面抗原或其他抗原特异的抗原结合结构域,或对多于一个细胞表面抗原特异的抗原结合结构域)。在一个实施方式中,多特异性抗体或抗体片段包括至少两个不同的可变结构域,其中每个可变结构域能够特异性结合至单独的抗原或至同一抗原上的不同表位。Tutt等人,1991,J.Immunol。147:60-69。Kufer等人,2004,Trends Biotechnol.22:238-244。本抗体可以连接至或与另一官能化分子共表达,例如另一肽或蛋白。例如,抗体或抗体片段可以官能化连接(例如通过化学偶联、基因融合、非共价缔合或其他方式)至一个或多个其他分子实体诸如另一抗体或抗体片段,以产生具有第二结合特异性的双特异性或多特异性抗体。例如,本公开包括双特异性抗体,其中免疫球蛋白的一个臂特异于细胞表面抗原是,而免疫球蛋白的另一臂特异于第二治疗靶点(例如,不同的细胞表面抗原或另一抗原)或缀合至治疗部分。
抗体的产生
在一个实施方式中,抗体是单克隆抗体并且可以根据Kohler和Milstein的标准技术(Continuous cultures of fused cells secreting antibody of predefinedspecificity.Nature 265:495-497,1975,通过引用并入本文)产生,或者可以从商业来源获得。内皮细胞可以用作免疫原来产生针对内皮细胞表面抗原的单克隆抗体。
例如,可以通过将HUVEC或纯化的内皮祖细胞注入小鼠或大鼠来制备针对内皮细胞的单克隆抗体。经过足够的时间后,将小鼠处死并获得脾细胞。脾细胞通过将其通常在非离子型洗涤剂例如聚乙二醇存在下与骨髓瘤细胞或淋巴瘤细胞融合而永生化。使包括融合杂交瘤的所得到的细胞在选择性培养基诸如HAT培养基中生长,并使用有限稀释条件使存活细胞在这种培养基中生长。将细胞在合适的容器例如微量滴定孔中生长,筛选上清液中具有所需特异性(即与内皮细胞抗原的反应性)的单克隆抗体。
官能团
涂层或基底、和/或聚多巴胺、接头和/或配体(抗体或抗体片段)可以通过使用已知的交联剂来修饰,以引入表面官能团。交联剂包括但不限于二乙烯基苯、乙二醇二甲基丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、N,N'-亚甲基双丙烯酰胺、烷基醚、糖、肽、DNA片段或其他已知的官能化等价剂。通过使用碳二亚胺、羧酸酯、酯、醇、碳酰二胺、醛、胺、硫氧化物、氮氧化物、卤化物或美国专利No.6,268,222中已知的任何其他合适的化合物的偶联反应,配体可以缀合至涂层或基底。
涂层或基底、和/或聚多巴胺、接头和/或配体(抗体或抗体片段)的表面可以修饰以掺入至少一个官能团。有机聚合物(例如PEG)可以被修饰以掺入至少一个官能团。例如,官能团可以是马来酰亚胺或N-羟基琥珀酰亚胺(NHS)酯。该官能团的掺入使得可以附连各种配体,和/或药物物质/治疗剂。
点击化学
为了使本涂层或基底容易地适应大范围的配体,涂层或基底的表面可以修饰以掺入官能团。涂层或基底也可以利用可以掺入官能团的有机聚合物(例如PEG)修饰。同时,配体或治疗剂被修饰,以在合适的条件下掺入能够与在涂层或基底上或在与涂层或基底附连的PEG上的官能团反应的官能团。因此,具有反应性官能团的任何配体或治疗剂能够容易地缀合至涂层或基底。该一般化的方法在本文被称为“点击化学”,这将允许很多的通用性(versatility)。任何合适的反应机制都可以适用于“点击化学”,只要可以实现配体与涂层或基底的容易和可控的附连即可。在一个实施方式中,将自由三键引入至PEG上,该PEG已经共价地与涂层或基底缀合。同时,将叠氮化物键引入到所需的配体上。当PEG化涂层或基底与配体在铜催化剂存在下混合时,叠氮化物与三键的环加成将发生,导致配体与涂层或基底缀合。在第二实施方式中,马来酰亚胺官能团和硫醇基团可以被引入到涂层或基底和所需的配体上,其中涂层或基底具有马来酰亚胺官能团,配体具有硫醇基团,或反之亦然。马来酰亚胺的双键容易与硫醇基团反应形成稳定的碳-硫键。在第三实施方式中,可以将活化的酯官能团例如琥珀酰亚胺基酯基团和胺基团引入到涂层或基底和所需的配体上。活化的酯基团容易与胺基团反应形成稳定的碳-氮酰胺键。
医疗设备
医疗设备可以是暂时或永久引入哺乳动物用于预防或治疗医学病症的设备。这些设备包括通过皮下、经皮或手术引入置于在器官、器官的管腔或组织内的任何设备,诸如心脏的动脉、静脉、心室或心房。医疗设备可以包括支架、支架移植物、覆盖支架,诸如覆盖有聚四氟乙烯(PTFE)、膨胀型聚四氟乙烯(ePTFE)的那些、无涂层支架、合成血管移植物、导管、人造心脏瓣膜、人造心脏和将假体器官连接到血管循环的固定装置、人造静脉瓣膜、腹主动脉动脉瘤(AAA)移植物、下腔静脉滤器、永久性药物输注导管、栓塞圈、用于血管栓塞的栓塞材料(例如交联PVA水凝胶)、血管置换物、血管缝合线、血管吻合固定装置、心肌血管重建术支架和/或其他管道。
医疗设备可以是植入患者内的任何设备。例如,在一个实施方式中,设备用于插入血管的腔或中空器官中,诸如支架、支架移植物、心脏瓣膜、导管、血管假体过滤器、人造心脏、外部和内部左心室辅助设备(LVADs)和合成血管移植物。
医疗设备可以是用于植入包括腔的器官或身体部位内的任何设备。医疗设备可以植入器官或血管的腔内。医疗设备可以是但不限于支架、支架移植物、合成血管移植物、心脏瓣膜、导管、血管假体过滤器、起搏器、起搏器导线、除颤器、卵圆孔未闭(PFO)隔膜闭合设备、血管夹、血管动脉瘤封堵器、血液透析移植物、血液透析导管、房室分流器、主动脉动脉瘤移植设备或部件、静脉瓣膜、传感器、缝合线、血管吻合夹、留置静脉或动脉导管、血管鞘和药物递送端口。
医疗设备可以是卵圆孔未闭(PFO)闭合设备、循环支持设备(例如,左心室辅助设备(LVAD)、体外膜氧合(ECMO)设备、神经血管夹、假体关节、腔静脉过滤器、人造心脏的组件等。
支架可以是在插入或植入血管的腔内时可以扩大血管的横截面腔的任何医疗设备。支架可以是不锈钢支架、可生物降解支架、覆盖支架,诸如利用PTFE或ePTFE覆盖的那些。在一个实施方式中,支架通过经皮递送来治疗冠状动脉闭塞或密封脾脏、颈动脉、髂和腘血管的夹层(dissection)或动脉瘤。在另一实施方式中,支架被递送到静脉血管内。支架可以包括聚合物和/或金属结构元件。支架可以包括不锈钢、聚合物、镍钛、钽、金、铂铱、或Elgiloy和MP35N和其他铁材料。支架可以通过体腔递送到治疗位点的导管上,在治疗位点支架从导管释放,允许支架扩展到与血管的腔壁直接接触。支架包括但不限于金属冠状动脉支架、金属外周动脉支架、生物可吸收外周支架和生物可吸收冠状动脉支架。
合成移植物可以是具有生物相容性特性的任何人造假体。在一个实施方式中,合成移植物可以由聚乙烯或聚四氟乙烯制成。在另一实施方式中,合成移植物包括聚氨酯、交联PVA水凝胶和/或水凝胶的生物相容性泡沫。在又一第三实施方式中,合成移植物包括网状聚碳酸酯聚氨酯的内层和网状聚对苯二甲酸乙二醇酯的外层。合成移植物可以用于端到端、端到侧、侧到端、侧到侧或腔内的血管吻合术或用于病变血管段的旁路术,例如,作为腹主动脉动脉瘤设备。
人造瓣膜可以是人造心脏瓣膜或人造静脉瓣膜。人造瓣膜可以是人造主动脉瓣膜、人造肺动脉瓣膜、人造二尖瓣膜、人造三尖瓣膜等。假体心脏瓣膜(人造心脏瓣膜)可以包括但不限于:经导管主动脉瓣膜(TAVR)、经导管二尖瓣膜、经导管三尖瓣膜、手术植入的生物假体主动脉瓣膜、手术植入的生物假体二尖瓣膜、手术植入的金属二尖瓣膜和手术植入的金属主动脉瓣瓣膜。
血管置换包括但不限于血管内动脉瘤修复术(或血管内主动脉修复术)(EVAR)和ePTFE旁路移植物材料。
医疗设备可以是冠状动脉医疗设备,包括但不限于二尖瓣夹、三尖瓣夹、心房附件闭合设备、起搏器导线、自动植入式心脏复律除颤器(AICD)导线、起搏器盒和自动植入式心脏复律除颤器(AICD)盒。
医疗设备可以具有腔表面(或血液接触表面)和外表面(或腔外表面或组织接触表面)。本涂层可以在腔表面(或血液接触表面)上,和/或外表面(或腔外表面或组织接触表面)。
医疗设备的本涂层可以刺激医疗设备表面上的内皮细胞单层(汇合或亚汇合)的发展,和/或调节由植入医疗设备期间血管损伤引起的局部慢性炎症反应和其他血栓栓塞并发症。
医疗设备可以由许多材料制成。医疗设备可以包括不锈钢、镍钛诺、MP35N、金、钽、铂或铂铱或其他生物相容性金属和/或合金,诸如碳或碳纤维、醋酸纤维素、硝酸纤维素、硅酮、交联聚醋酸乙烯(PVA)水凝胶、交联PVA水凝胶泡沫、聚氨酯、聚酰胺、苯乙烯异丁烯-苯乙烯嵌段共聚物(Kraton)、聚对苯二甲酸乙二醇酯、聚氨酯、聚酰胺、聚酯、聚原酸酯、聚酐、聚醚砜、聚碳酸酯、聚丙烯、高分子量聚乙烯、聚四氟乙烯或其它生物相容性聚合材料或其共聚物的混合物、聚酯,诸如聚乳酸、聚乙醇酸或其共聚物、聚酐、聚己酸内酯、聚羟基丁酸戊酸酯或其他生物可降解聚合物、或混合物或共聚物、细胞外基质组分、蛋白、胶原蛋白、纤维蛋白或其他生物活性剂或其混合物。
例如,支架可由不锈钢、镍钛诺(NiTi)或铬合金和可生物降解材料制成。在一个实施方式中,支架可以由可生物降解的材料制成。合成血管移植物可以由交联PVA水凝胶、聚四氟乙烯(PTFE)、膨胀型聚四氟乙烯(ePTFE)、多孔高密度聚乙烯(HDPE)、聚氨酯和聚对苯二甲酸乙二醇酯或可生物降解材料,诸如聚丙交酯聚合物和聚乙交酯聚合物或其共聚物制成。
在一个实施方式中,医疗设备可以是被剥去或剥离细胞的保存血管,并且可以来自人、猪或牛来源。保存的血管形成适合于例如血管移植物段的支架。
本方法可以用于治疗患有血管疾病的哺乳动物,该方法包括将涂覆的医疗设备植入患者的器官或血管内。一旦在体内,内皮祖细胞和/或内皮细胞通过经在涂层上存在的抗体或抗体片段识别和结合内皮祖细胞和/或内皮细胞的细胞表面抗原而在涂覆的医疗设备的表面上被捕获。一旦内皮祖细胞和/或内皮细胞粘着至医疗设备,它们就可以在医疗设备的血液接触表面上生长和分化并形成汇合或亚汇合和功能性内皮。可替代地或额外地,在植入医疗设备之前,利用内皮祖细胞和/或内皮细胞对医疗设备进行体外涂覆。内皮祖细胞和/或内皮细胞可以来源于从患者的血液、骨髓或血管中分离的祖细胞、干细胞和/或成熟内皮细胞。医疗设备的血液接触表面上内皮细胞的存在可以抑制或减少过度内膜增生和/或血栓形成。
人脐静脉内皮细胞(HUVEC)可根据Jaffe等人,J.Clin.Invest,52:2745-2757,1973的方法从脐带获得,该方法通过引用并入本文。简言之,通过用胶原酶处理,从血管壁剥离细胞,并在含有低内毒素胎牛血清、无防腐剂猪肝素、内皮细胞生长补充物(ECGS)和谷氨酰胺的M199培养基中在被明胶涂覆的组织培养瓶中培养。
内皮祖细胞(EPC)可以根据Asahara等人的方法(Isolation of putativeprogenitor endothelial cells for angiogenesis.Science 275:964-967,1997,通过引用并入本文)从人外周血中分离出来。简言之,利用分级的人外周血孵育被抗CD34抗体涂覆的磁珠。在孵育后,结合的细胞被洗脱并可在EBM-2培养基中培养。可替代地,可以使用富集的培养基分离来分离这些细胞。简言之,从健康雄性志愿者中获得外周静脉血并通过密度梯度离心分离单核细胞部分,并将细胞铺板在补充有胎牛血清、人VEGF-A、人成纤维细胞生长因子-2、人表皮生长因子、胰岛素样生长因子-1和抗坏血酸的EC基础培养基-2(EBM-2)中的被纤连蛋白涂覆的培养载玻片上。EPC生长7天,其中培养基每48小时更换。细胞可以通过抗CD133、CD45、CD34、CD31、VEGFR-2、Tie-2和E-选择素的荧光抗体来表征。
待被治疗/预防的病症
本公开提供使用本医疗设备治疗、预防(或预防性治疗)或根除或改善与多种疾病/病症相关的一种或多种症状的方法。待被治疗或预防的病症包括但不限于血管疾病,诸如再狭窄、动脉粥样硬化、血栓形成、血管阻塞(例如血栓形成导致的)、动脉瘤和冠状动脉疾病、癌症;血管重塑等。在一个实施方式中,提供了一种方法,所述方法用于将医疗设备保持或密封到血管壁,所述医疗设备诸如支架或合成血管移植物、心脏瓣膜、腹主动脉动脉瘤设备及其部件,以及用于建立血管内稳态,从而预防过度内膜增生,如在再狭窄中。
本医疗设备可以通过降低或抑制平滑肌细胞迁移、平滑肌细胞分化和/或沿着在医疗设备植入位点处的内腔表面胶原沉积来降低或抑制基于组织的过度内膜增生和再狭窄。
本医疗设备和方法可以用于任何血管,诸如任何动脉或静脉。本公开范围内包括任何动脉,包括冠状动脉、腹股沟动脉、主动脉、锁骨下动脉、肠系膜动脉和肾动脉。本医疗设备和方法可以用于外周动脉,诸如股动脉。本公开还包括其他类型的血管阻塞,诸如夹层动脉瘤导致的那些。本医疗设备和方法可以用于哺乳动物的任何管道或腔室。可以使用本发明的支架和设备进行治疗的受试者是哺乳动物,包括人、马、狗、猫、猪、啮齿动物、猴等。
本公开提供了一种治疗哺乳动物血管疾病的方法,包括将医疗设备植入哺乳动物的血管或管状器官的腔内,其中,医疗设备如本文所述那样进行涂覆。
本公开提供了一种将细胞体内募集到医疗设备的血液接触表面的方法。在一个实施方式中,该方法包括将医疗设备植入受试者的血管内。医疗设备具有被配置为结合受试者血液中循环的靶细胞的血液接触表面。附连至血液接触表面的靶细胞原位增殖并形成功能性内皮或在血管损伤位点对设备的表面进行自内皮化,恢复正常内皮。在一个实施方式中,医疗设备可以是可生物降解的或可以用可生物降解的、生物相容性材料涂覆。在这方面,当植入血管时,可生物降解的医疗设备可以经历原位降解并且在设备的腔表面上形成的新内皮恢复通过损伤位点的血管连续性,以形成功能性新血管。
内膜增生可能是血管壁中平滑肌细胞增殖和/或基质沉积方面的不希望的增加。如本文所用,“再狭窄”是指血管腔的复发变窄。由于再狭窄,血管可能会被阻塞。PTCA或PTA后,平滑肌细胞来自中膜和外膜中通常不存在于内膜中的平滑肌细胞增殖并迁移到内膜并分泌蛋白,在内膜内形成平滑肌细胞和基质蛋白的积聚。该积聚导致动脉腔变窄,减少至狭窄处远端的血流。如本文所用,“再狭窄的抑制或减少”是指通过预防蛋白分泌而实现的抑制或减少平滑肌细胞的迁移和/或增殖,从而预防再狭窄及由此引起的并发症。
可以将本医疗设备施用给受试者(例如植入受试者内)以获得治疗益处(“治疗”)或预防性地获得预防益处(“预防”)。治疗益处是指根除或改善正在治疗的病症,和/或根除或改善与病症相关的一种或多种症状。预防性益处是指预防或延缓病症的发作、和/或预防或延缓与病症相关的一种或多种症状的发作。在某些实施方式中,本医疗设备的施用(例如植入)预防病症发展或恶化成更严重的病症。
对状态、疾患或病症的“治疗(treating)”或“治疗(treatment)”包括:(1)预防或延缓在受试者身上发展的状态、疾患或病症的临床症状出现,所述受试者可能患有或倾向于患有状态、疾患或病症,但尚未经历或显示状态、疾患或病症的临床症状;或(2)抑制状态、疾患或病症,即阻止、减少或延缓疾病的发展或其复发(在维持治疗的情况下)或其至少一种临床症状、体征或测试;或(3)缓解疾病,即导致状态、疾患或病症的消退或其临床或亚临床症状或体征中至少一种的消退。
药物物质
本设备的涂层可以包括一种或多种药物物质。药物物质可以在植入医疗设备后抑制平滑肌细胞迁移和/或增殖,抑制或减少血栓形成,促进内皮细胞的生长和分化,和/或可以抑制或减少再狭窄。药物物质可以在设备的下游工作以影响血管特性或靶向实体器官。医疗设备可以发挥局部作用和/或全身作用(例如,设备的远端)。
药物物质可以是血管扩张剂(诸如前列环素(PGI2)、降钙素基因相关肽(α-CGRP)等)。
药物物质可以有效治疗血管疾病,诸如动脉粥样硬化和再狭窄。例如,药物物质包括但不限于细胞毒性或细胞抑制剂、抗增殖剂、抗肿瘤药、抗生素/抗微生物剂、抗氧化剂、内皮细胞生长因子、凝血酶抑制剂、免疫抑制剂、抗血小板聚集剂、胶原合成抑制剂、治疗性抗体、一氧化氮供体、反义寡核苷酸、伤口愈合剂、治疗性基因转移构建体、肽、蛋白、细胞外基质组分、血管扩张剂、血栓溶解剂、抗代谢物、生长因子激动剂、抗有丝分裂剂、他汀类、类固醇、甾体和非甾体抗炎剂、血管紧张素转化酶(ACE)抑制剂、自由基清除剂、PPAR-γ激动剂、抗癌化疗剂,诸如芳香酶抑制剂。一些上述药物物质包括例如,环孢菌素A(CSA)、雷帕霉素、雷帕霉素衍生物、麦考酚酸(MPA)、视黄酸、正丁酸、丁酸衍生物、维生素E、普罗布考、L-精氨酸-L-谷氨酸、依维莫司、西罗莫司、百利莫司、百利莫司A-9、紫杉醇、葛根素、血小板因子4、碱性成纤维细胞生长因子(bFGF)、纤连蛋白、辛伐他汀、氟伐他汀、二氢表雄酮(DHEA)和17β-雌二醇。
可以掺入涂层中的药物物质的示例还包括但不限于前列环素、前列环素类似物、α-CGRP、α-CGRP类似物或α-CGRP受体激动剂;哌唑嗪;单核细胞趋化蛋白-1(MCP-1);免疫抑制药物诸如雷帕霉素、抑制平滑肌细胞迁移和/或增殖的药物、抗血栓药物诸如凝血酶抑制剂、免疫调节剂诸如血小板因子4和CXC趋化因子;CX3CR1受体家族的抑制剂;抗炎药物、类固醇,诸如二氢表雄酮(DHEA)、睾酮、雌激素诸如17β-雌二醇;他汀类诸如辛伐他汀和氟伐他汀;PPAR-α配体诸如非诺贝特和其他降脂药,PPAR-δ和PPAR-γ激动剂诸如罗格列酮;核因子诸如NF-κB、胶原合成抑制剂、血管扩张剂诸如乙酰胆碱、腺苷、5-羟色胺或血清素、物质P、肾上腺髓质素、诱导内皮细胞生长和分化的生长因子,诸如碱性成纤维细胞生长因子(bFGF)、血小板源生长因子(PDGF)、内皮细胞生长因子(EGF)、血管内皮细胞生长因子(VEGF);蛋白酪氨酸激酶抑制剂,诸如米哚妥林(Midostaurin)和伊马替尼或任何抗血管生成抑制剂化合物;抑制成熟白细胞粘附的肽或抗体、抗生素/抗微生物剂,以及其他物质,诸如速激肽(tachykinins)、神经激肽(neurokinins)或唾液腺激肽(sialokinins)、速激肽NK受体激动剂;PDGF受体抑制剂诸如MLN-518及其衍生物,丁酸和丁酸衍生物,葛根素、纤连蛋白、促红细胞生成素、达贝泊汀(darbepotin),丝氨酸蛋白酶-1(SERP-1)等。上述药物物质可以单独或以组合和/或其混合物的形式施加到设备上的涂层上。
前列环素(PGI2)是结合至特异G蛋白偶联受体、IP受体和/或至核受体、过氧化物酶体增殖物活化受体(PPAR)δ的自分泌和旁分泌介质。在其合成和释放后,前列环素发挥局部抗凝剂和血管扩张剂特性、不被储存、通过非酶过程快速转化为无活性代谢物6-酮前列腺素F1α(PGF1α)。前列环素主要经由腺苷酸环化酶/环腺苷酸转导系统导致血管平滑肌松弛,并导致所研究的所有血管床的血管舒张。稳定的前列环素类似物可以用于本涂层和方法。
降钙素基因相关肽(α-CGRP)可以在不存在内皮衍生的NO的情况下刺激血管舒张。血管舒张可以经由CGRP1受体介导。
药物物质可以以缓慢或受控释放的方式局部释放到邻近或周围组织中。药物物质可以在局部和/或全身具有治疗作用。
组合疗法
本医疗设备可以单独施用/植入或与一种或多种其他疗法诸如手术,另一医疗设备,和/或另一治疗剂(例如第二治疗剂))组合施用/植入。
这样的组合疗法可以对病症参数(例如,症状的严重性、症状数目或复发频率)具有累加或协同效应。
本医疗设备可以与第二疗法同时施用/植入。在另一具体实施方式中,第二疗法在本医疗设备的施用/植入之前或之后施用。
在一些实施方式中,第二治疗剂是细胞毒性剂,可以是常规的化学治疗剂,诸如多柔比星、紫杉醇、美法仑、长春花生物碱、甲氨蝶呤、丝裂霉素C或依托泊苷。此外,还可以使用强效剂,诸如CC-1065类似物、加利车霉素(calicheamicin)、美登素(maytansine)、根霉素、水螅毒素(palytoxin)和多拉司他汀(dolastatin)的类似物。
可以使用本发明的医疗设备、方法和组合物治疗的受试者是哺乳动物,并且包括人、马、狗、猫、猪、啮齿动物、猴等。
以下是本公开的实施例,并且不应被解释为限制。
实施例1原位假体主动脉瓣膜植入的临床前评估
动物模型
机构审查委员会批准后,将对约6只成年约克夏猪(~60kg)进行实验评价。麻醉诱导前,动物将禁食~12小时。对猪用含有氯胺酮、赛拉嗪和阿托品的麻醉混合剂经IM注射预先用药。猪将被运送到Vivarium的手术前房间,在那里麻醉将通过经由使用5%异氟醚和70%一氧化二氮/氧气的面罩进行诱导。一旦麻醉,IV导管将被放置在耳静脉中。一旦已实现IV到位,猪将被插管并放置在呼吸机上,进行手术的剩余部分。然后将猪转移至Vivarium的手术套间,其中猪将被维持在具有~2-3%异氟醚和70%一氧化二氮/氧气的麻醉的手术平面并在整个手术中被监测(EKG、脉搏血氧测定、下颌紧张(jaw tone)等)。一旦动物处于麻醉的手术平面(通过下颌紧张反射缺乏和EKG上稳定的参数来证实),将执行手术。
外科手术
瓣膜植入将在完全麻醉、手术和血管造影设备的无菌环境中进行。装备将包括单平面荧光血管造影系统(西门子,德国慕尼黑)和经胸超声心动图控制台(GE E95s)。手术期间的主动脉根部的荧光透视、血管造影和超声心动图成像将在植入前进行,以获得植入位点的最佳垂直视图。将确定左右冠状动脉口与主动脉瓣环相对于THV框架高度的距离。另外,将猪尾导管置于右冠状窦深处,以通过为主动脉瓣膜假体的正确对准提供可靠标记来进一步促进定位,并将起搏器导线置于右心室中。
设备
将使用23mm Edwards SAPIEN瓣膜,3个由制造商提供,3个已利用本文所述的内皮祖细胞捕获涂层(例如,包括聚多巴胺或聚多巴胺加抗体或聚多巴胺、PEG加抗体的涂层)进行涂覆。Edwards SAPIEN 3经导管心脏瓣膜(THV)由气囊扩张型不透射线的钴铬框架、三叶牛心包组织瓣膜和聚对苯二甲酸乙二醇酯(PET)织物裙组成。Edwards Commander递送系统由Flex导管组成,用于帮助瓣膜对准气囊、跟踪和定位THV。手柄(handle)包含Flex轮以控制Flex导管的弯曲,以及气囊锁和微调轮,以促进瓣膜对准和瓣膜在天然瓣环内的定位。气囊导管具有不透射线的瓣膜对准标记,限定气囊的工作长度。提供气囊中不透射线的中心标记以帮助定位瓣膜。靠近气囊的不透射线的三重标记指示部署期间的Flex导管位置。
将14F可扩张引导鞘手术插入股总动脉进行经股入路(approach),并插入锁骨下动脉进行经锁骨下入路。递送导管将通过Amplatz超硬0.035英寸导丝(Cook,Inc.,Bloomington,Indiana)进入左心室。THV的精确定位将通过带猪尾导管的主动脉根部血管造影以及经胸超声心动图(TTE)指导来确定。主动脉根部血管造影和TTE记录最终部署位置。然后开始快速起搏,并且一旦收缩压降低到50mmHg或低于50mmHg,气囊将充气。一旦充气设备的桶是空的,气囊就会放气。当气囊导管完全放气时,起搏器将关闭。
随访
在7和14天,在全身麻醉诱导后,通过经胸超声心动图进行瓣膜评估。在14天的超声心动图评估后,通过致死注射处死动物,并将假体TAVR瓣膜外植以用于对瓣膜小叶的大体检查和组织学扫描电子显微镜评估。待评估的重要参数包括总体和微观的血栓存在以及内皮覆盖瓣膜小叶的程度。
手术考虑
临床前研究中的主动脉瓣膜的尺寸调整需要与人临床病例中通常使用的策略不同的策略。临床中,被更换的瓣膜是病变的,并且通常具有刚性/钙化瓣环;而在动物模型中,它们是健康的。健康的瓣环是可延展的,在麻醉苏醒后往往会扩张;因此动物模型中的瓣膜需要适当的尺寸增加以避免迁移和稳定性问题。然而,过大的尺寸增加可能导致其他并发症的增加,诸如致命性心律失常,这已经在临床前出现并在人临床研究中报道。除了初始的瓣环尺寸外,重要的是要记住在研究期间动物(和瓣环)的生长。如果瓣环的生长超过假体瓣膜的维度,则可能发生大量的瓣膜旁渗漏,在研究的后期阶段导致并发症。
-缓解策略-成年猪(60kg)将用于这些研究,最小化瓣环生长。
-研究将是亚急性的(最高达14天)。由于在随访期间适度的体重和尺寸增加,因此羊模型更为常见地被选择用于慢性瓣膜评价,限制了由于错配导致的瓣膜旁渗漏的风险。
假体瓣膜的经导管递送在动物模型中引入了新的挑战。不仅需要考虑瓣环的尺寸和适当的瓣膜尺寸增加,而且用于血管通路和递送的外周血管的直径必须具有合适的尺寸。如果动物的瓣环在目标尺寸范围内但导管轮廓太大而不能穿过外周血管,则可能导致血管并发症或者不能递送瓣膜。
-缓解策略-成年猪(60kg)将用于这些研究,最小化瓣环生长。
除了瓣环尺寸和外周动脉直径之外,升主动脉的尺寸和其他血管结构的位置也影响TAVR植入和研究的成功。在动物模型中,升主动脉的长度直接影响轮廓更大植入物的成功。
-缓解策略-与倾向于头臂动脉的起源远离升主动脉的羊相反,猪的头臂动脉起源在主动脉弓处,产生了更长的升主动脉,这允许植入物正确地安置在瓣环中。
左主干冠状动脉闭塞,最终心脏阻塞可能是猪模型中TAVR临床前研究的常见并发症。猪的冠状动脉口的起源于主动脉瓣膜附近。这与冠状动脉的起源远离主动脉瓣环的人类不同。动物模型中主动脉瓣环与冠状动脉口之间的距离较短,闭塞冠状动脉口的倾向更高。
实施例2开发在可植入材料的表面上定向抗体固定化的通用涂覆方法
目的:植入血管内设备的表面内皮化引起愈合迅速和血栓形成性减少。我们开发了Genous技术——在支架上的葡聚糖介导的抗人CD34抗体涂层,其可以捕获循环内皮祖细胞以增强内皮化。然而,该方法未能涂覆其他材料诸如ePTFE。该研究的目的是开发一种可用于在各种材料的表面上固定化抗CD34抗体的通用涂覆方法。
方法:聚多巴胺膜在微碱性条件下在多种材料即金属支架、ePTFE移植物和猪心包膜的表面经多巴胺的氧化自聚合形成。随后,施加聚乙二醇(PEG)交联剂,该交联剂在一端与聚多巴胺涂层缀合,并在另一端结合抗体的Fc片段。使用轮廓仪、X射线光电子能谱和扫描电子显微镜分析涂层。通过细胞结合测定评估被CD34抗体涂覆的表面的官能性。
结果:涂覆油CD34抗体的不同材料的表面结合CD34+细胞,但不结合CD34-细胞。没有抗体、但利用聚多巴胺和PEG官能化的表面不结合CD34+细胞。涂层厚度在微米范围内,并且表面均匀且光滑。
结论:开发了定向抗体固定化的通用涂覆方法,该方法可应用于生物假体和机械瓣膜,以及ePTFE移植物的血栓形成性减少的目的。
实施例3用于新型治疗应用的可植入材料的表面修饰
目的
·开发固定化生物分子的方法,该方法可以应用于范围广泛的固体表面,并通过开发新型抗体官能化血管假体来测试涂层的有效性。
·证明抗体官能化材料作为本地药物递送的新型平台的潜力。
研究1
我们推测聚合巴胺(PDA)表面修饰结合适当的官能化聚乙二醇层将产生使生物活性分子在范围广泛的生物医学材料上固定化的通用平台。
背景——生物分子固定化:
目前固定化技术
大多数标准生物材料都是由缺乏用于化学缀合的官能化部分的惰性物质制成;因此,非共价物理吸附是生物分子固定化常用的方法。然而,该技术导致随机分布的分子、生物活性丧失,以及可以容易地从材料表面除去的涂层。提供更可靠结果的可替代方法涉及通过化学、等离子或γ射线处理引入用于共价固定化的新型化学部分。这些技术已被用于使生物分子,诸如纤连蛋白、胶原蛋白、明胶和RGD固定化66,但不幸的是,它们仍常常导致随机分布和无活性的分子。此外,这些技术的穿透深度有限,可能负面地影响材料的机械特性67,并且不能普遍用于所有基底上。因此,需要开发一种表面官能化方法,该方法有效覆盖表面、维持基底的机械特性,并可应用于范围广泛的材料。
聚多巴胺膜
聚合物涂层已被用于若干应用中以有效控制表面特性68-70。最近,通过相互作用的聚合物的顺序沉积组装的被称为逐层(LbL)沉积的薄聚合物膜已经表明有望作为提供期望的特质诸如用于药物加载的能力和用生物分子修饰的潜力的表面修饰剂。不幸的是,大多数LbL沉积技术遭受上述相同的问题,涉及多个步骤并且需要复杂的初始表面修饰。
最近吸引了很大关注的一种新形式的LbL沉积通过利用自发形成的PDA膜对材料官能化,来克服这些问题。PDA膜是经由微碱性条件下多巴胺(DA)的氧化自聚合而形成的合成真黑素聚合物。这些膜能够在几乎任何固体表面上形成。该独特的特性使得通过简单地将基底浸入DA水溶液就能在范围广泛的材料上形成薄的官能化膜。Lee等人的工作证实了在简单的浸涂之后,PDA膜在多种不同材料上存在。这些材料的示例包括金属、玻璃和合成聚合物(PTFE和PDMS)71。浸3小时后25种材料的X射线光电子能谱(XPS)揭示完全没有基底特异性信号,暗示了至少10nm的粘结涂层厚度。
除了沉积过程的通用性和容易性之外,PDA涂层还被发现是用于二次反应的极其通用的平台。在非常温和的条件下(在中性pH和室温下),膜可以利用含有硫醇或伯胺的分子经由迈克尔加成或希夫碱形成进行官能化。先前的工作利用了PDA涂覆的基底的反应性来使硫醇化聚乙二醇(PEG)、胺化PEG、胰蛋白酶、牛血清白蛋白(BSA)、伴刀豆球蛋白A、核糖核酸酶B和几种抗体固定化。在生物分子直接固定化的大多数情况下,维持了生物活性72
聚乙二醇交联剂
影响材料生物相容性的主要因素是其抗污(非特异性蛋白和细胞粘附)的能力。PEG是亲水性聚醚化合物,该亲水性聚醚化合物因其卓越的生物相容性和防污特性而被发现在医学和工业领域都有范围广泛的应用73。已经显示用亲水聚合物链修饰表面降低了蛋白吸附并大幅度减少非特异性细胞粘附74-77。目前使用若干技术用PEG修饰表面,包括物理吸附、自组装单层、化学偶联和接枝聚合。研究PEG的防污特性的调查研究表明,它可以有效地防止若干基底上的非特异性结合。Chen等人证明PEG膜可以在聚苯胺表面上形成,并显示出蛋白吸附和血小板粘附两者的显著减少78。Zhang等人表明在SS上形成的PEG涂层在防止牛血清白蛋白和γ球蛋白吸附方面非常有效79。Wang等人使用PEG链修饰PTFE表面并证明PEG修饰的PTFE表现出亲水性增加,并且在防止血清白蛋白吸附方面非常有效80
除了其卓越的防污特性之外,PEG还被用作肽修饰的交联分子。越来越多的官能性允许PEG与几乎任何生物分子形成缀合物。用胺和硫醇官能基团结合酰肼、叠氮化物、环辛炔和生物素产生了异双官能化PEG链。PEG链用于生物分子修饰的通用性和广泛使用使其成为扩大PDA涂覆的材料的官能性的有吸引力的工具。Zeng等人证明了在PDA中间涂层的情况下,PEG可以被移植到表面上,其中易于物理吸附,并且共价结合稳定81。Proks等人表明PEG既可以用于防污也可以作为交联剂82。他们在PDA涂覆的硅晶片上固定化胺-PEG-炔,接着是含有叠氮化官能团的合成肽。肽固定化后,表面表现出改善的靶细胞结合并维持对非特异性蛋白的排斥特性82。结合生物活性分子,PEG修饰具有提供新型生物活性材料的令人兴奋的潜力。
目前的抗体固定化技术
将抗体有效地固定化到表面上具有改进生物传感器、生物分析技术和生物医疗设备的发展的潜力83,84。非共价固定技术是抗体固定化到惰性表面的常用方法,通过物理吸附85-91或通过将抗体包埋在涂层基质中。尽管这些技术成功地将抗体固定在表面上,但它们导致随机定向抗体分子,其中由于抗原结合位点的封闭,最高达90%的抗体保持无活性92-94。使用包埋方法,我们表明,使用葡聚糖涂层在猪模型中固定化生物活性抗体。该方法产生了葡聚糖和所需抗体的掺合物;然后使用等离子体反应器技术将葡聚糖-抗体混合物施加于基底,从而产生具有暴露的抗原结合位点部分的涂层。该方法已经证明了CD34阳性细胞的成功捕获63。然而,当该涂层用于使可替代的抗体(H-2Kk)固定化时,表面的免疫结合活性非常差。尽管在被葡聚糖/抗体涂覆的SS盘上可以证明嵌入抗体的存在,但表面不能捕获表达H-2Kk的EPC。缺乏有效的细胞捕获可能是由于非定向抗体固定化(其中许多抗H-2Kk抗体Fab结构域埋藏在葡聚糖中)加之抗体变性。类似地,当施加至ePTFE移植物材料时,葡聚糖/抗CD34涂层在两种不同的猪AV分流模型中结合循环的EPC方面无效95,96。这些结果表明,葡聚糖涂层虽然在特定情况下有效,但不能提供抗体固定化的通用方法。
可替代的固定化方法涉及非特异性靶向化学固定化(图1)。该方法利用与抗体的暴露的氨基酸侧链起反应的官能化表面。该方法的一个局限是不可能控制抗体是经由Fab区域侧链结合还是经由Fc区域的那些进行结合。虽然特定的官能团是靶向的,但抗体定向仍然是随机的。与物理方法一样,这导致抗体的变性和免疫结合活性的丧失97-100。这些非特异性技术已经显示一些希望,但是与上述物理方法一样,它们仅在特定情况下才有效,并且没有一种方法适用于所有表面。因此,需要开发一种新的固定化方法,该方法可以以定向的方式应用于许多不同的表面和粘附抗体,其中Fab区域完全暴露并可用于抗原结合。
定向抗体固定化
如上所述,固定化过程可能常常封闭结合位点或使抗体变性,导致部分或完全丧失免疫结合能力101。克服这个问题的技术涉及以定向方式使抗体固定化,其中Fc结构域固定并且抗原结合Fab结构域完全暴露102。已经充分确立大多数抗体在重链的Fc区域中具有至少一个N连接的碳水化合物。因此,越来越受欢迎的固定化策略涉及修饰在Fc结构域中发现的寡糖以将新的反应性部分引入至抗体结构。存在已经越来越多地用于抗体修饰的两种类型的寡糖修饰。第一种涉及在Fc区域发现的寡糖的氧化以产生反应性醛基团103,104。氧化后,新形成的醛部分可以共价缀合至胺封端表面105,106。最近描述的另一技术使用突变的β-1,4半乳糖基转移酶用修饰的糖替代天然乙酰葡糖胺残基。修饰的糖具有并入分子结构中的独特的化学柄,通常是酮或叠氮化物。修饰的糖的掺入引入了可以用于使抗体固定化的Fc特异性靶点。在叠氮化物部分的情况下,抗体可以经由无催化剂的“点击”环加成反应以定向方式共价缀合到环辛炔表面上。通过特异性修饰抗体的Fc区域,这两种技术都提供了抗体的共价固定化,其中Fab区域暴露(图1)。
Yuan等人的工作107通过成功地使抗CD34抗体在SS载玻片上固定化证明了寡糖氧化的有效性。他们用3-氨基丙基三乙氧基硅烷作为交联分子制备了富含胺的表面,将官能化SS浸入氧化的抗体溶液中。与常规固定化策略(戊二醛)相比,定向抗体保留了它们的免疫结合能力,并且显示出细胞捕获效率增加了3倍107。Kang等人108还通过使抗鼠IgG抗体在磁性微观粒子上固定化而探索了该固定化方法。再次产生了富含胺的表面,并在磁性颗粒上形成酰肼涂层。酰肼具有在较低pH下与醛反应的益处,从而防止抗体上的胺残基与新形成的醛之间的非特异性交联。定向抗体表现出比胺偶联(N-羟基琥珀酰亚胺)在免疫结合功效方面提高2倍108
虽然它仍然是一种相对新的技术,但酶促引入独特的化学部分至Fc区域也产生了令人印象深刻的结果。Boeggeman等人利用该技术用生物素或荧光分子官能化几种单克隆抗体(mAb)。他们首先使用来自肺炎链球菌(Streptococcus pneumonia)的β-1,4半乳糖苷酶除去抗体重链区域中发现的糖,暴露末端N-乙酰葡糖胺残基。然后他们使用突变的β-1,4半乳糖基转移酶(β-1,4-Gal-T1-Y289L)引入了带有酮化学柄的修饰糖。修饰的抗体然后与氨氧基官能化Alexa 488或生物素反应。他们的结果表明,不仅期望的分子(Alexa 488和生物素)成功地掺入抗体结构中,而且所期望的分子与经由N连接的碳水化合物与mAb的连接没有改变抗体对抗原的亲和力109。Zeglis等人利用类似的技术对前列腺抗原靶向抗体(J591)进行放射性标记。再次,他们首先使用β-1,4半乳糖苷酶除去抗体重链区域中发现的糖,暴露末端N-乙酰葡糖胺残基。然后他们利用相同的突变酶(β-1,4-Gal-T1-Y289L)将叠氮化物修饰的糖掺入抗体的Fc区域中。叠氮化物官能化的抗体然后经由无催化剂“点击”缀合与去铁胺修饰二苯并环辛炔反应。最后,螯合剂修饰的抗体用89Zr放射性标记。他们的结果表明89Zr成功地结合至抗体的Fc区域,并且其掺入到抗体结构中没有影响抗体对其抗原的亲和力110
研究设计:
聚多巴胺膜
PDA锚将用于所有材料的初始官能化。将在10mM Tris-HCl(pH8.5)中制备多巴胺盐酸盐(盐酸多巴胺,Sigma-Aldrich)溶液(2mg/ml)。将基底(SS、CoCr、电纺聚氨酯和ePTFE移植物材料)在黑暗环境下浸入溶液中24小时。反应后,材料被除出、彻底漂洗、然后在纯氮气流中干燥111,112。我们已经成功地将PDA膜沉积到316L SS和CoCr盘、ePTFE移植物材料以及冠状支架上。这些结果与Lee等人71描述的那些结果一起表明,该官能化方法是可行的并且可以应用于常见的心血管平台。通过使生物分子(BSA和亲和素)在被PDA涂覆的材料上固定化产生各种初步生物活性表面来证明PDA膜的反应性。涂覆的SS基底简单浸入在2%BSA溶液产生了有效抑制细胞粘附的防污表面。暴露于亲和素溶液的PDA涂覆的SS和COCR基底表现了对生物素化的荧光分子的捕获。
聚乙二醇官能化
为了形成聚乙二醇交联层,将在磷酸盐缓冲盐水(PBS,pH7.4)中制备官能化-PEG-胺(或者酰肼或者二苯并环辛炔(DBCO)官能化)溶液(25mg/ml)。溶液的pH将调整到8.6,并且PDA涂覆的材料将在50℃下浸30小时。然后将材料彻底漂洗并在纯氮气流中干燥113。我们已经能够使胺化的PEG链在PDA官能化材料上固定化。通过将基底浸入氨基-PEG4-DBCO溶液,在PDA涂覆的SS和CoCr上形成二苯并环辛炔表面。DBCO表面表现了对叠氮化物官能化荧光分子的有效捕获(图9)。
生物相容性评估
生物相容性测试将根据国际标准ISO 10993生物医疗设备的临床前评价指南进行114-117;将使用60只新西兰白兔。肌肉注射氯胺酮(40mg/kg)和甲苯噻嗪(5mg/kg)使兔镇静。剪除沿着脊柱的皮毛以暴露大约10cm2的面积。使用异丙醇对皮肤进行消毒并涂上必妥碘(Betadine)溶液。将沿着背部的中线制作约8厘米长的单个切口,以暴露椎旁肌肉。平行于纤维轴线的肌肉切开~1cm,并且将产生一小囊(pocket)。止血将通过施加直接压力来实现。四片(5×5mm)涂覆的测试材料(SS、CoCr、电纺聚氨酯、ePTFE)和4个未涂覆的对照将以随机方式植入左右椎旁肌肉,间隔至少1厘米(4个每侧)。肌肉切口、皮下组织和筋膜将用可吸收的缝合线封闭,并且皮肤切口将用不可吸收的缝合线或皮肤缝钉封闭。在第1、7、14和28天以及12周后,通过致死性静脉内注射戊巴比妥处死动物。植入位点将被暴露,并检查出血、坏死、积液、变色、感染或包囊迹象。来自植入位点的组织被获取并固定在10%中性缓冲福尔马林中。最终的组织分析将基于总体和组织学数据。我们在该模型方面有着丰富的经验,并已用它来评价各种支架平台和涂层以及ePTFE和生物可吸收支架材料。
表面涂层的验证
美国食品和药物管理局(FDA)最近为血管内设备行业提供指导,以评价涂覆的设备的安全性和功效118。需要评估特性,诸如粘附性、阻隔有效性和涂层稳定性。
表面涂层厚度:已经充分确立,血管支架撑物的厚度与随访时所发现的新生内膜增生程度直接相关119。因此,重要的是,确定涂层厚度。涂覆的基底(316L SS、CoCr、电纺聚氨酯、ePTFE)将使用接触轮廓仪(KLA Tencor P16+,Surface Interface(SI),Ontario,University of Toronto)分析。各种材料将被涂覆,使得仅表面的一半被覆盖。然后使用轮廓仪分析样品,并比较涂覆的那半部分和未涂覆的那半部分之间的高度差。SI Ontario工作人员将使用他们的标准程序操作轮廓仪。所有数据分析将在SI Ontario工作人员的指导下现场进行。该技术还将提供关于表面形貌(粗糙度)的信息。表面涂层均匀性、汇合和阻隔有效性:
扫描电子显微镜(SEM):涂覆的表面的表面形貌、完整性和汇合将通过SEM评估。对于SEM研究,将使用标准脱水和20nm金溅射涂覆技术制备样品(316L SS、CoCr、电纺聚氨酯、ePTFE)。将使用扫描电子显微镜(Philips XL-30series,Netherlands)。
X射线光电子能谱(XPS):XPS是一种定量光谱测试,可以计算材料表面上元素的经验化学式、化学状态和电子状态。通过利用X射线照射测量从表面的顶部1-10nm逃逸的电子的动能和数量来获得光谱。XPS将在装备有单色Al KαX射线源(SI Ontario)的K-Alpha XPS仪器(Thermo Scientific)上利用316L SS,CoCr,电纺聚氨酯和ePTFE的涂覆样品进行XPS。X射线源将由SI Ontario工作人员使用其标准程序(检测角度45°,在300W下运行的标准铝质X射线源的Kα线)进行操作。可以通过XPS评估表面涂层的厚度、均匀性、汇合和完整性。在不汇合的情况下,会出现来自基底的金属化合物的信号。已经表明评估涂层完整性和一致性XPS比SEM更敏感120
变形后的表面涂层粘附性和粘结性:取决于支架设计和材料,在支架的关键部分发生塑性变形121-126。根据有限元素模型,该塑性变形可能最高达25%126
SEM:PDA涂覆的表面(316L SS支架、CoCr支架、覆盖有电纺聚氨酯的支架(PK-Papyrus支架,Biotronik,德国)、覆盖有ePTFE的支架(Jostent GraftmasterTM,AbbottVascular,Illinois)的粘着和变形将在气囊扩张之前和之后通过扫描电子显微镜进行评估。每个设备中的三个将被安装在标准血管成形术气囊上进行扩张。使用SEM检查扩张的支架是否有裂纹、剥落或脱落的迹象。Luo等人最近报道了使用类似的技术PDA膜可以抵抗血管支架的压缩和扩张变形127。为了评估PDA膜的稳定性,在37℃下在PBS中浸7、15和30天之前和之后,将使用SEM检查涂层的表面微观结构,以找出任何膨胀或脱落迹象。
XPS:使用安装在SATEC 3340测试系统上的冲压测试设备(Instron,Norwood,MA-on loan from OrbusNeich Medical Technologies,FL),直径1cm、厚度0.5mm的涂覆的316L SS和CoCr盘将塑性变形最高达25%。所有变形将在室温下以0.05mm/s的位移速率和2200N的最大载荷进行,以获得如Lewis等人所述128,129的25%变形。表面涂层的粘附性和粘结性将通过如上所述的光谱分析来确定。
表面亲水性和表面能:将通过使用Krüss DSA机和Drop Shape Analysis软件(EasyDrop DSA20E,Kruss,Hamburg,Germany)通过座滴分析来测量水接触角。在10s的分配内,小滴体积和分配速率将分别保持在5.0μL和195μL/min。将通过Owens和Wendt描述的方法,利用来自水接触角(极性溶剂)和二碘甲烷(非极性溶剂)的数据计算表面能130
抗体涂层:
该建议的最终目标是使用血管内设备例如,冠状支架、血管移植物等作为平台而进行局部药物递送。作为原理的证据,我们的目标是捕获基因工程化EPC以生产血管扩张剂(4.1.2节),以达到潜在的治疗目的。基因工程技术使得产生EPC成为可能,这不仅有助于设备的内皮化,而且还能产生治疗性化合物。使用这些基因工程EPC的关键问题是确保设备专门结合修饰的EPC。靶向CD34引起稀有修饰细胞与无处不在的内源性原初EPC之间的竞争。为了解决该问题,可以进一步修饰细胞以产生在人细胞中未自然发现的独特表面标志物,以提供专门捕获产生化合物的细胞的靶点。仅在一些稀有的鼠类菌株(例如AKR/JA或CBA/J)中发现H-2Kk,它是一种主要组织相容性复合物I类分子。在其他哺乳动物细胞中不存在H-2Kk使其和针对H-2Kk表面蛋白的单克隆抗体成为确保专门捕获修饰的EPC的具有吸引力的选择。pMACSKk.tag(C)质粒载体(Miltenyi Biotec)是含有H-2Kk基因和多克隆位点(MCS)的双顺反子载体,其中可以克隆感兴趣的基因。使用pMACSKk.tag(C)质粒载体,我们构建了将表达H-2Kk和血管舒张剂降钙素基因相关肽(α-CGRP)的载体(pMACS-H-2Kk-hCGRP;也参见第4.2.1节)。我们认为H-2Kk抗体涂覆的血管设备将选择性捕获基因修饰的H-2Kk表达细胞。临床上可用的药物“洗脱”支架仅将小量的细胞生长抑制药物递送至血管壁,仅递送至紧邻支架支撑物的组织,而不具有治疗上相关的远端递送。所描述的技术的目标是在植入设备的远端递送治疗量的生物活性化合物。
氧化法:如前所述(3.2.2节),将t-Boc-酰肼-PEG-胺(Quanta Biodesign)在PDA涂覆的材料上固定化。PEG链成功固定化后,修饰表面将经受25%三氟乙酸(TFA)的二氯甲烷溶液中,然后在10%氢氧化铵中漂洗3分钟以除去t-Boc保护基团,并形成富含酰肼的表面,以进行额外固定化131,132。抗H-2Kk抗体(IgG2a;Miltenyi Biotec,CA)将被氧化以产生必需的醛部分107,108。抗体将溶解于PBS(0.05mg/ml)中。然后将m-高碘酸钠(Sigma-Aldrich)加入到抗体溶液(每ml抗体2mg m-高碘酸钠)中,并使反应在黑暗下进行30分钟。氧化后,用脱盐柱(Sephadex G-25)除去剩余的m-高碘酸钠。然后PEG官能化材料浸入氧化的抗体溶液并允许反应1小时。将加入氰基硼氢化钠(每ml抗体10μL的5.0M氰基硼氢化钠)以稳定抗体与富含酰肼的涂层之间形成的希夫碱。该反应将在4℃下过夜进行。最后将材料用PBS洗涤以除去物理吸附的抗体。
酶法:氨基-PEG4-DBCO(点击化学工具)将在PDA涂覆的材料上固定化到。将使用
Figure BDA0003690557880000591
酶标记系统(Life Technologies Inc)按照制造商的说明修饰抗H-2Kk抗体。简言之,使用用P30树脂(Bio-Rad,1.5mL床体积)制备的微型离心柱将抗体(0.5mg/ml,在PBS中)缓冲液交换到预处理缓冲液(50mM磷酸钠,pH6.0)。然后将200μL抗H-2Kk抗体加入预处理的柱中,并以850×g离心5分钟。得到的抗体溶液将补充4μL的β-1,4-半乳糖苷酶(来自肺炎链球菌,2mU/μL)并在37℃下置于培养箱过夜。使用用P30树脂制备的微型离心柱进行样品到Tris缓冲盐水(TBS,20mM Tris HCl,0.9%NaCl,pH7.4)中的缓冲液交换。缓冲液交换后,将30μL抗体溶液(2mg/ml)与4μLUDP-GalNAz(40mM)、15μLMnCl 2(0.1M)和100μLGal-T(Y289L)(0.29mg/ml)组合并在30℃下孵育过夜。修饰后,抗体将缓冲液交换到PBS中。最后,DBCO涂覆的材料浸入抗体溶液(100μg/ml)120分钟,然后用PBS洗涤以除去物理上附连的抗体。
分离猪内皮祖细胞:在含有VEGF的培养基中培养外周血单核细胞后4-7天获得EPC。它们代表造血起源的细胞,并通过释放旁分泌因子发挥其血管生成作用。晚期EPC(也称为内皮细胞集落形成细胞或晚期外生内皮细胞)在培养2-4周后出现。晚期EPC与早期EPC不同,被认为可以作为内皮细胞发挥作用,并可以结合到血管中。Muscari等人比较了不同的细胞来源和培养条件,并发现培养3-4周的骨髓来源的EPC致力于内皮细胞表型133。我们已经采用该方法来取得待用于所提出的研究的猪EPC。猪骨髓单核细胞将通过Ficoll梯度离心来分离,以0.75x106/cm2的密度铺板在纤连蛋白涂覆的T75烧瓶中并在EGM-2培养基(Lonza)中培养。我们的研究结果表明,猪骨髓来源的EPC表达VEGFR2和eNOS,这是2种重要的内皮标志物。我们将在分离后的第3周使用从骨髓扩增的EPC,因为这些证明了与从人外周血单核细胞分离的晚期EPC类似的特性133
细胞培养和基因工程:COS-1细胞和CHO细胞(均来自ATCC)维持在补充有10%FBS(Life Technologies)的Dulbecco’s Modified Eagle’s Medium(DMEM,LifeTechnologies)中。根据制造商的说明书,将分别使用针对COS-1的Superfect Reagent(Qiagen)和用于CHO细胞的Lipofectamine Reagent(Life Technologies)进行转染。根据制造商的说明书(Amaxa Nucleofector),将使用核穿孔方法转染EPC。我们已经表明所有修饰细胞表达H-2Kk表面蛋白。
评价免疫结合效率和细胞生长:将评价H-2Kk抗体涂覆的材料(316L SS、CoCr、电纺聚氨酯和ePTFE)它们选择性结合表达H-2Kk的细胞的能力。在一个实施方式中,抗体在不存在任何接头的情况下直接在聚多巴胺涂覆的材料上固定化。例如,新鲜制备的聚多巴胺涂覆的材料暴露于PBS中的抗H-2Kk抗体溶液。然后用PBS彻底漂洗涂覆的材料以除去吸附的抗体。
将转染CHO细胞分离,用PBS洗涤并以106细胞/ml的密度重悬在PBS中。抗体涂覆的盘、非涂覆的盘以及仅利用中间物(intermediate)涂覆的盘用含2%BSA的PBS封闭并与100μl细胞孵育,然后用PBS彻底洗涤以除去未结合的细胞。将结合的细胞用2%多聚甲醛固定,并用Sytox Green(Invitrogen)核染色后用荧光显微镜观察。此外,盘的荧光强度将使用SpectraMax M5e板读取器(分子设备)进行测量。未转染细胞将被用作对照。我们的初步数据已表明,固定化的H-2Kk抗体能够在若干不同材料上捕获表达H-2Kk的CHO细胞。为了评估涂层是否影响细胞生长,表达H-2Kk的EPC将被分离,用PBS洗涤并重悬在培养基中,并加入到放置在24孔细胞培养板(每个设备一式三份)的抗体涂覆的材料(316L SS、COCR、电纺聚氨酯和ePTFE)。在培养后的不同时间点(第1、3和5天),将样品取出,用PBS洗涤并且用0.25%胰蛋白酶-EDTA(Life Technologies)提离附着的细胞。将确定细胞数目并与来自未涂覆的那些进行比较。
使用体外流动模型的细胞捕获:为了在流动条件下测试细胞捕获,我们的实验室已经开发了体外动脉血流模型。该模型具有用于支架部署的合成动脉空间,其中通过Harvard Apparatus注射泵控制流动,以提供通过血管设备的交替流动。涂覆的支架、未涂覆支架和仅涂覆中间物的支架将部署在合成动脉内。将10ml转染细胞(105细胞/ml)以3.1mL/min的流速下循环1小时134。然后回收支架,并用PBS洗涤以除去未结合的细胞。然后按照3.2.5.5节的描述固定和可视化结合的细胞。荧光强度也将按3.2.5.5节所述那样进行测量。未转染细胞将用于对照目的。
我们的结果表明,抗H-2Kk抗体涂覆的血管材料在体内捕获表达H-2Kk的猪EPC。
进行了针对抗H-2Kk抗体涂覆的ePTFE移植物的细胞毒性测定。涂覆的移植物用CHO H-2Kk(+)细胞培养1、2或3天。然后将它们固定并通过荧光显微镜成像。每天准备三套。对每个移植物上的额外多个点进行计数。每天还固定一个移植物,并用于SEM。
通过多个焦平面的成像并将所有图像合并在一起来测定细胞计数。椭球体或球形形状被认为是拟合成以下参数(尺寸:大于12um×12um和z:>40um)的细胞。这确保了我们对细胞进行成像和计数,而不是任何假阳性。在第1天,平均细胞计数为960土250细胞/mm2。在第2天,平均细胞计数为2595土779细胞/mm2。在第3天,平均细胞计数为10002±1745个细胞/mm2(图15)。
移植物与CHOH-2Kk(+)细胞孵育1、2和3天。然后将它们固定(用多种固定剂)、临界点干燥、金溅射,然后通过SEM成像。分析每个移植物上的额外多个点。每天只有一个移植物被成像。细胞数量增加;细胞形态也从球形变为平坦和多边形。这是随着细胞的生长和粘附至移植物而发生的。
研究2
我们推测可以使用一种新的基于细胞的递送机制用抗体官能化支架来实现治疗物质的延长的冠状动脉内给药(局部药物递送)。
背景——基于细胞的药物递送系统的开发:
血管重塑
动脉壁不是刚性管,而是能够响应血液动力学、机械和生化刺激而重塑的器官。一个多世纪以来,已知血管会扩大以适应流向下游器官的流量增加135。该过程的明显示例是自然生长或心肌肥大期间冠状血管的扩大。下述组织学观察激发了对此现象的兴趣:血管的径向扩大(外向或正重塑)可以补偿动脉粥样硬化斑块的进行性生长,从而推迟限流狭窄的发展136,137。这些病理学发现随后得到体内血管内超声(IVUS)研究的支持,该研究揭示了动脉粥样硬化存在时外向重塑的发生以及这种外向重塑如何能从血管造影检测中隐藏相当大(sizable)的斑块138,139。虽然大多数动脉粥样硬化段表现出一些代偿性增大,但通常不足以完全保存腔尺寸,并且某些血管可能在病灶位点反常地收缩(内向或负重塑),加剧而不是补偿腔损失140。据报道,该类型的缩窄性重塑在24%至42%的冠状动脉罪犯病变中出现141,142。下述观察强调了负重塑的临床重要性:腔狭窄与重塑的方向和程度更密切相关,而非斑块尺寸140,143
在正常的动脉中,重塑是对流量和周向拉伸的变化的稳态响应,以分别恢复正常的剪切应力和壁张力144。显示出响应于来自动脉粥样硬化猴的冠状动脉的血流量增加而出现的向外重塑145,大体上取决于一氧化氮和基质金属蛋白酶(MMP)的剪切响应内皮产生146,147。大多数剪切敏感重塑介质也是拉伸响应的,并且拉伸和剪切信号之间的似乎存在显著的相互作用148。血管弹性是静置血管尺寸的主要决定因素,并且最近的数据表明,改变弹性蛋白的生产也可能在重塑中很重要149
心脏风险因素的存在也影响重塑过程。不足的正重塑和负重塑较之非胰岛素使用糖尿病患者在使用胰岛素的糖尿病患者中更常见,并且相较于非吸烟者在吸烟者中更为常见150,151。矛盾的是,高胆固醇血症患者的负重塑不太常见152。移植血管病变——心脏移植后移植物失败和死亡的最常见原因——以弥漫性血管造影变窄为特点。最近明显的是,除了进行性的内膜增厚之外,负重塑或不足的正重塑在移植的心脏中常见152
血管扩张剂
前列环素:前列环素(前列腺素I2,PGI2)——前列腺素类脂质介质的一员——具有强效血管扩张剂活性和抗血栓形成活性153,154。前列环素是结合至特异的G蛋白偶联受体、IP受体和/或至核受体、过氧化物酶体增殖物活化受体(PPAR)δ的自分泌和旁分泌介质155-158。前列环素运用局部抗凝剂和血管扩张剂特性,不被储存,并且通过非酶促过程迅速转化成无活性代谢物,6酮前列腺素F1α(PGF1α)。前列环素主要经由腺苷酸环化酶/环腺苷酸转导系统导致血管平滑肌松弛,并导致所研究的所有血管床的血管扩张159
稳定的前列环素类似物在临床上用于治疗患有外周和肺血管疾患的患者,然而由于物质不稳定并且需要连续给药这一事实而妨碍了它们的使用154,160。这种限制已导致了用以提供前列环素的连续递送的基因转移技术的临床前研究。已显示人前列环素合酶(PGIS)基因的转移为血管疾病诸如原发性肺动脉高压161-163和血管损伤再狭窄164-166提供了有效的基因疗法。
降钙素基因相关肽(α-CGRP):α-CGRP分布于整个中枢和外周神经系统(血管丛),并表现出生物效应,包括对心血管系统的效应。α-CGRP是迄今为止确定的最强效动脉和静脉血管扩张剂之一,其中效力大约为前列腺素10倍高,为其他典型血管扩张剂(例如乙酰胆碱、腺苷、5-羟色胺和物质P)100-1000倍高,并且为相关的肽肾上腺髓质素3-30倍的效力。
存在α-CGRP产生血管松弛、经CGRP1受体介导的几种机制167-169。当前证据指明存在NO内皮不依赖性和内皮依赖性途径二者。在迄今为止研究过的大多数组织中观察到内皮不依赖性机制,包括猪冠状动脉170。α-CGRP在不存在内皮的情况下使这些组织松弛的能力暗示了其直接作用于SMC以刺激腺苷酸环化酶和胞内细胞内cAMP产生,已经在体外包括中证明172,173。已显示在1小时内α-CGRP刺激电压门控钙在平滑肌细胞中释放350%,在更长时间(24-48小时)使肌膜二氢吡啶受体的密度增加30%171。内皮依赖性途径也存在,其中依赖于NO的分泌,cAMP和cGMP均显著增加174。CGRP在不存在内皮衍生NO的情况下刺激血管舒张的能力使其成为用于患有内皮功能障碍的患者的有吸引力的剂,以eNOS活性减少为特点。
在许多物种和人中,冠状动脉接受来自高密度的含有α-CGRP的神经纤维的神经支配(renervation)175,176。认为α-CGRP可以通过在动脉粥样硬化狭窄部位扩张冠状动脉而具有保护性影响,延缓患有慢性心绞痛的患者心肌缺血发作177。全身给药α-CGRP以抵消CAD和局部缺血的不良作用的治疗潜力受到全身给药的作用的限制。导致不良反应的α-CGRP活性的最重要方面是其作为外周血管舒张剂的效力。在心血管系统中需要局部给药α-CGRP以产生治疗益处意味着靶向基因递送可以是相关的治疗方法。
研究设计:
质粒构建
人α-CGRP完全cDNA(Open Biosystems,Huntsville AL)用于PCR扩增编码生物学活性成熟CGRP的DNA序列,然后通过将成熟CGRP cDNA插入载体pFLAG-CMV3(Sigma)的HindIII/EocRV位点将其与FLAG表位融合。我们已经创建了表达具有FLAG标签的成熟CGRP的克隆,这有助于通过使用抗FLAG抗体鉴定成熟α-CGRP表达。然后将FLAG-α-CGRP盒插入pMACSKk.tag(C)载体的EcoRV/EcoRI位点,产生双(H-2Kk和α-CGRP)表达载体pMACS-H-2Kk-hCGRP。前列环素合酶cDNA也将被克隆到pMACSKk.tag(C)载体中。
重组慢病毒载体
除用质粒载体转染外(3.2.5.4节),为了证明原理,慢病毒载体将用于转导EPC以提供长期基因表达。重组慢病毒将由细胞生物实验室公司(Cell Biolabs Inc.,SanDiego,USA)定制生产。我们的实验室在以前的项目中成功使用了慢病毒表达系统,并且我们在EPC和永生化的细胞系的慢病毒转导方面拥有丰富的经验178
血管舒张剂表达的测量
α-CGRP表达和活性的测量:α-CGRP表达将通过使用抗FLAG抗体(Sigma)的Western印迹分析来确定。我们已经表明来自用载体pMACS-H-2Kk-hCGRP转染的COS-1细胞的条件培养基(CM)含有CGRP。CGRP的生物活性通过其在人角质形成细胞中诱导神经生长因子(NGF)产生的能力而进行评估179
前列环素合酶表达和活性的测量:转染细胞中存在的前列环素合酶将通过使用针对人前列环素合酶(R&D Systems)的抗体进行Western印迹来确定。前列环素合酶活性将通过放射免疫测定(Amersham Corp)根据制造商的说明测量CM中的代谢物6-酮-PGF1α来评估。
转基因表达时间表:我们已经显示转染了pMACS-H-2Kk-hCGRP的CHO细胞产生H-2Kk蛋白最多达5天,而细胞形态和活力不受影响(数据未显示)。我们将在工程后的第1、3、5和7天测定质粒转染和慢病毒转染的EPC两者中的基因表达(H-2Kk和血管扩张剂两者)的稳定性。
体内细胞捕获
所有的实验将在雄性幼年约克夏猪(>30kg)中进行。动脉通路将通过左颈动脉切开术获得。在设备植入之前,通过施用200μg冠状动脉内硝酸甘油在3个主要冠状动脉中诱导充血。将获得冠状动脉造影图,并进行在线定量冠状动脉造影(QCA)。将通过血管内超声(IVUS)和光学相干断层扫描(OCT)测定远离设备植入位点的血管段的冠状动脉横截面积(CSA)。多普勒导出的血液流动速度将使用0.014"可操纵的多普勒导丝(ComboWire XT,Volcano Corp.,San Diego,CA)进行测量、在Combomap系统(Volcano Corp.)上分析并报告为平均冠状动脉峰值流动速度(APV)。体积冠状动脉血流量(CBF)将根据以前验证的关系CBF=CSA×APV计算180。为了评价支架平台上的细胞捕获能,用PDA/PEG/抗H-2Kk涂覆8mm长的COCR冠状动脉支架,以1.1:1支架与血管的比例随机部署到三个主要心外膜冠状动脉的近端段。为了评价ePTFE上的细胞捕获,将使用PDA/PEG/抗H-2Kk涂覆的Jostent GraftmastCoronbary Stent Graft(夹在两个SS支架之间的ePTFE,Abbott Vascular)。然后使用原型串联式气囊导管(Cordis Corporation友情提供)完成细胞给药。导管由两个远端高度顺应的气囊组成,这些气囊通过单个充气口充气。一旦充气,在气囊之间产生长度为1.0cm的局部输注室。中心腔提供远端血液流动,并且溶液可以经由两个分开的端口输注至或吸入至室。在串联气囊充气至25psi(1.7atm)时,盐水将通过滴注端口递送以清洗血液室。有支架的动脉段将被随机分配以接受被基因操纵以过表达H-2Kk和前列环素或α-CGRP或空载体(仅表达H-2Kk)的3×106个EPC。在递送之前,H-2Kk+EPC将根据制造商的说明使用MACSelectKk系统(Miltenyi Biotec)进行富集。2ml细胞悬液将在10分钟内以200μl/min的输注速率给药,然后停留时间为10分钟。然后关闭动脉切开位点,并允许动物恢复。对于转染和转导的EPC两者,将治疗总共64只动物,其中每个动物2个支架(16个前列环素合酶(8个COCR、8个ePTFE)和16个α-CGRP(8个COCR、8个ePTFE)和它们各自的对照)。支架植入后5天将处死来自每个组的两只动物。将进行冠状动脉造影和QCA,并外植支架段。外植的动脉段将被纵向平分,并且一半通过标准组织化学分析进行分析以及处理另一半用于SEM成像。用于组织化学分析的段将置于10%福尔马林/PBS溶液中,切开5个切口并用苏木精和曙红(HE)以及弹性蛋白三色染色。将测定新生内膜增生的程度和炎症(Kornowski评分(0-3))评分以评估递送的细胞的排斥迹象181。将通过在10%缓冲的福尔马林/PBS中固定30秒并且进一步用0.1M二甲胂酸钠缓冲液(Sigma)中的2.5%戊二醛(BDH Inc.)在2%PFA中过夜固定以制备用于SEM的段。用0.1M二甲胂酸盐缓冲液中的1%四氧化锇(Sigma)完成后固定,然后用乙醇连续脱水并随后进行临界点干燥。然后按照既定协议在多伦多大学的SEM设施进行金溅射和显微术。将进行SEM以评估表面内皮化。初始手术后28天,剩下的动物(每组6只)将被麻醉,并进行QCA分析的冠状动脉造影。然后使用IVUS和OCT对血管进行检查。将测量冠状动脉多普勒流量并计算CBF。我们希望接受表达血管扩张剂的EPC的动物中,血管口径显著增加,超出支架段。
预期结果:
抗体官能化材料
我们预计显示PDA/PEG表面修饰将为抗体固定化提供有效平台,并可用于在一系列生物医用材料上,产生生物活性涂层。该技术具有下述应用:开发促进愈合设备,并且作为治疗性化合物体内靶向组织局部递送的平台。
潜在的干扰因素是抗体修饰的不可预测性,并且可能会发生抗体固定化不足和变性。虽然所描述的氧化和酶促技术有效地使相同同种型的几种抗体在基底上固定化,但是抗体上的糖部分的糖基化程度和可达性是可变的182。如果所描述的固定化技术未能为体内应用提供足够的结合,则将探索可替代的固定化策略。特别感兴趣的是一种新的UV固定化技术。它利用吲哚-3-丁酸-PEG经由在几乎所有抗体上发现的保守核苷酸结合位点结合抗体,而不管该抗体是否是同种型183
基于细胞的药物递送系统
我们期望表明,这种独特的基于细胞的冠状动脉内给药强效血管扩张剂将促进猪冠状动脉的正重塑。这将为一技术提供原理证明,该技术可以转换为针对“无法选择”传统再血管化策略的患者的可行的临床疗法。可能的临床益处不仅源于管道冠状动脉的正重塑,而且还源于流动介导的动脉生成至未被供血冠状动脉供应的缺血区域。该技术还有潜力被用于将大量治疗性化合物递送至身体中的各种靶组织。
尽管H-2Kk表面蛋白的抗原负荷非常小,并且不太可能引起细胞免疫应答,但如果在支架植入后的早期时间点有证据显示细胞损伤或血管壁炎症,我们将改变表面标志物/抗体系统,从H-2Kk/抗H-2Kk至ΔLNGFR/抗LNGFR(Miltenyi Biotec,CA)。有越来越多的证据表明ΔLNGFR表面标志物的免疫原性较弱184,并且已有文献证据表明在猪心肌梗塞模型中表达ΔLNGFR的自体间充质干细胞长期存活185
实施例4聚多巴胺-PEG-抗体支架涂层
聚多巴胺(PDA)涂层
支架(不锈钢和CoCr)在以下液体中超声处理5分钟:去离子水、丙酮、乙醇和水。然后支架在空气中干燥。牛心包膜移植物未经超声处理以避免蛋白变性;然而,为了除去过量的游离醛,移植物用PBS(pH7.2)预先洗涤24小时,然后用0.5MTRIS-HCl(pH 6)洗涤1小时,然后用去离子水漂洗。另外,心包膜和ePTFE移植物未经空气干燥,而是经历从水到10mMTris-HCl缓冲液(pH8.6)的溶剂交换。然后通过在轨道混合(orbital mixing)的情况下,在室温下在10mM Tris-HCl缓冲液(pH8.6)中的多巴胺盐酸盐溶液(2mg/ml)中浸涂来用聚多巴胺浸渍涂覆支架(图4A至图4B)。当涂覆ePTFE和牛心包膜移植物时使用5-10mg/ml多巴胺盐酸盐的溶液。
PEG涂层
在与Tris-HCl缓冲液(pH8.6)中的25mg/ml t-Boc-酰肼-PEG-胺MW:555.66g/mol(Quanta Biodesign)反应之前,用去离子水漂洗PDA涂覆的支架。反应在50摄氏度下进行24小时(图6和图7)。然后将支架在室温下洗涤并干燥。注意,ePTFE和牛心包膜未干燥,而是经历了从水到丙酮到二氯甲烷(DCM)的溶剂交换。然后在恒定的空气流量和CO2副产物释放的排放的情况下,在室温下通过用在DCM中的2mg/ml的碘(I2)除去t-boc官能团5小时,将聚乙二醇化的支架脱保护。一旦反应完成,然后将支架用DCM洗涤并在氮气/氩气下干燥。对于牛心包膜和ePTFE移植物,材料在进一步处理之前通过从DCM溶剂交换到乙醇再到去离子水而保持湿润。
抗体氧化
将选择的抗体溶解在含有20mM乙酸钠和15mM氯化钠、pH范围为4-6.5的缓冲溶液中。然后用高碘酸钠氧化抗体(图5)。将反应烧瓶用铝箔覆盖以防止曝光。用CPD Mini TrapG-25柱(GE Life Sciences)通过柱色谱法纯化氧化的抗体。通过UV光谱确认氧化剂的除去和纯化的抗体的存在。
抗体缀合至PDA-PEG
将PDA-PEG涂覆的支架浸入纯化的抗体溶液中。反应后,移出支架,洗涤并留在PBSpH7.2中直至进一步测试(图6和图7)。
实施例5涂层生物相容性:细胞毒性试验
评估抗CD34抗体涂覆的ePTFE表面的细胞毒性。将HUVEC(大约30%的CD34阳性))接种在涂覆的表面上。接种后24小时和48小时,在表面上生长的细胞用荧光染料染色并在荧光显微镜下观察。
实施例6
该研究的目的是开发一种新方法,使用局部捕获基因修饰的EPC的技术,促进冠状动脉正重塑,以改善远端血流的新颖方法。我们推测,慢性冠状动脉内给药强效血管扩张剂将通过血管的正重塑而增加冠状动脉血流并导致血管口径增加。我们打算靶向递送表达强效血管扩张剂的基因修饰的EPC,以促进心外膜冠状动脉的流量依赖性正重塑。
PDA/PEG/抗H-2Kk抗体涂覆的支架(例如,钴铬支架,9mm长)被植入体外或受试者内(例如,实验动物或患者)靶向血管位点上游。
将基因修饰细胞(例如,用编码PGIS或α-CGRP的双顺反子载体转染)给药于体外系统或至受试者,例如通过标准气囊导管的线端口(wire port)递送,并释放入分离的血管的腔。基因修饰细胞增殖并且表达蛋白,诸如PGIS或α-CGRP(预期表达CGRP>16天的细胞(Nagaya等人2003))。α-CGRP蛋白向下游移动并附连至CGRP1受体。血管响应释放的GGRP蛋白而扩张。长期作用包括血管的正重塑。
方法
EPC的基因修饰
根据先前在我们实验室中建立的方案分离和培养猪骨髓衍生的EPC。双基因(H-2Kk和人α-CGRP)表达载体被构建并使用电穿孔引入EPC。例如,构建了表达截短的小鼠MHCI类分子H-2Kk的质粒pMACS Kk.II(Miltyneyi Biotec)。通过流式细胞术和Western印迹分别测定基因修饰EPC的H-2Kk和α-CGRP的产生。测定了α-CGRP的生物学活性。
体外细胞结合测定
用含有2%BSA的PBS封闭抗H-2Kk抗体涂覆的基底。将表达H-2Kk的EPC与BSA封闭的被H-2Kk抗体涂覆的基底混合,并在室温下孵育1小时。用PBS洗掉未结合的细胞,并将结合的细胞固定并用荧光核染料Sytox Green染色,并在荧光显微镜下观察。还使用荧光读数器测量荧光强度。
结果
基因修饰的猪EPC的双重表达(H-2Kk和α-CGRP)
67%的猪EPC在基因修饰后24小时表达H-2Kk。双表达载体修饰的猪EPC还表达了α-CGRP。
α-CGRP生物活性测定
CGRP生物学活性通过其在角质形成细胞中上调神经生长因子(NGF)表达的能力来测定,例如在ELISA测定中。
结论
新涂覆技术可以应用于各种材料(不锈钢、钴铬、ePTFE、心包膜等)。
抗体,诸如抗CD34和抗H-2Kk抗体,可以利用新涂覆技术在各种血管设备上固定化。
可以将猪EPC基因工程化以表达强效血管扩张剂α-CGRP和/或可以用于细胞捕获的外来抗原,例如H-2Kk(或截短的H-2Kk)。
抗H-2Kk抗体涂覆的血管材料可以捕获体外和体内表达H-2Kk(或截短的H-2Kk)的EPC。
实施例7
将根据Saha等人Analyst142:4247-4256(2017)分析固定化抗体的Fab和Fc结构域的原位可达性。Fab结构域可达性测定——已知量单克隆抗体例如抗CD34涂覆的设备(例如,盘、ePTFE移植物、支架)将与摩尔过量(相对于结合抗体的摩尔量)的抗原,例如可溶性CD34孵育,该抗原能够与结合单克隆抗体结合。使用摩尔过量会使可用的抗体结构域饱和。在孵育后,洗涤涂覆的设备将并且以摩尔过量(相对于结合单克隆抗体的量)加入结合来自第一单克隆抗体的不同表位的第二125I放射性标记的单克隆抗体。将被孵育设备从约1小时至约3小时范围的时间段,洗涤,例如用磷酸盐缓冲盐水(PBS)并在伽马计数器中测量放射性(cps)。将溶液中不同已知浓度的125I放射性标记的第二单克隆抗体的原液作为对照。然后,通过从在结合第二放射性标记的单克隆抗体后的最终信号减去单克隆抗体涂覆的设备的信号,来计算Fab可达性测定中结合的第二放射性标记的单克隆抗体的量。Saha等人Analyst 142:4247-4256(2017)。其他用于确定固定化抗体的活性、可达性和定向的技术包括原子力显微镜、中子反射、椭圆偏振光谱测量和质谱。
聚多巴胺-PEG-抗体涂覆的基底,诸如移植物、支架、盘、纳米颗粒等(例如,金属或聚合物)将按照实施例4中所阐述的那样进行制备。抗体,例如单克隆抗CD34抗体将按照上文所阐述的那样偶联至聚多巴胺-PEG部分。将第二抗CD34单克隆抗体进行放射性标记(碘化试剂(或“Iodo-gen”:1,3,4,6-四氯-3a,6α-二苯基甘脲)来自Thermo FisherScientific(Cat.No.28601)),其中第二单克隆抗体针对与偶联至聚多巴胺-PEG的单克隆抗CD34抗体不同的CD34分子上的表位。在某些实施方式中,如果抗原具有相同的多个表位位点,则第二单克隆抗体可以针对同样的位点。如下测量放射性标记的抗CD34单克隆抗体与结合至抗CD34-聚多巴胺-PEG的CD34的结合。
将被抗CD34-聚多巴胺-PEG涂覆的盘与PBS中摩尔过量的可溶性CD34孵育1小时(10mM磷酸盐缓冲盐水,pH7.4)。摩尔过量的CD34将被用来使可用的抗体结构域饱和。在孵育后,用PBS缓冲液洗涤抗CD34-聚多巴胺-PEG涂覆的盘两次,并且将加入125I放射性标记的第二抗CD34单克隆抗体用于夹心式测定结合。将使用摩尔过量的第二单克隆抗体。在孵育1小时后,用PBS洗涤抗CD34-聚多巴胺-PEG涂覆的盘三次,并重悬于最终的100μlPBS缓冲液中以在伽马计数器中测量最终放射性(cps)。结合的放射性标记的抗CD34单克隆抗体的量将由放射性标记的抗CD34单克隆抗体结合后的信号决定。
放射性标记的抗CD34抗体与聚多巴胺-PEG-抗体涂覆的盘的结合将大于缺乏PEG或聚多巴胺的放射性标记的抗CD34涂覆的盘的结合。Fab可达性标度将以质量比和数量比表示。
细胞粘附可以使用合适的方法进行评估,诸如细胞粘附试验。粘附细胞可以使用比色或荧光检测进行定量。
参考文献
1.Ross R.Atherosclerosis is an inflammatory disease.Am Heart J.1999;138(5Pt 2):S419-20.
2.American Heart Association.2002Heart and Stroke StatisticalUpdate.Dallas,Texas:American Heart Association.
3.Antiplatelet Trialists’Collaboration.Collective overview ofrandomized trials of antiplatelet therapy-II:Maintenance of vascular graft orarterial patency by antiplatelet therapy.Antiplatelet Trialists’Collaboration.Brit.Med.J.1994;308:159-68.
4.Bearn PE,Seddon AM,McCollum CN,Marston A.Mesothelial seeding ofknitted Dacron.Br.J.Surg.1993;80:587-91.
5.Wilcox J.Thrombin and other potential mechanisms underlyingrestenosis.Circulation.1991;84:432-35.
6.Schwartz SM.Serum derived growth factor is thrombin?J.Clin.Invest.1993;91:4.
7.Hedin U,Frebelis S,Snachez J,Dryjski M,Swedenberg J.AntithrombinIII inhibits thrombin-induced proliferation in human arterial smooth musclecells.Arterioscler.Thromb.Vasc.Biol.1994;14:254-60.
8.Pevec WC,Darling RC,L’Italien GJ,Abbott WM.Femoropoplitealreconstruction with knitted,nonvelour Dacron versusexpanded polytetrafluoroethylene.J.Vasc.Surg.1992;16:60-5.
9.Tassiopoulos A,Greisler HP.Angiogenic mechanisms ofendothelialization of cardiovascular implants:a review of recentinvestigative strategies.J.Biomat.Sci.Polymer.Edn.2000;11:1275-84.
10.Clowes AW,Kirkman TR,Reidy MA.Mechanisms of arterial grafthealing.Rapid transmural capillary ingrowth provides a source of intimalendothelium and smooth muscle in porous PTFE prostheses.Am.J.Pathol.1986;123:220-30.
11.Kohler TR,Stratton JR,Kirkman TR,Johansen KH,Zierler BK,ClowesAW.Conventional versus high-porosity polytetrafluorethylene grafts:clinicalevaluation.Surgery 1992;112:901-7.
12.Shi Q,Wu MH-D,Hayashida N,et al.Proof of falloutendothelialization of impervious Dacron grafts in the aorta and inferior venacava of the dog.J.Vasc.Surg.1994;20:546-56.
13.Shi Q,Wu MH-D,Fujita Y,et al.Genetic tracing of arterial graftflow surface endothelialization in allogenic marrow transplanteddogs.Cardiovasc Surg.1999;7:98-105.
14.Shi Q,Rafii S,Wu MH,et al.Evidence for circulating bone marrowderived endothelial cells.Blood.1998;92:362-7.
15.Kearney M,Pieczek A,Haley L,et al.Histopathology of In-StentRestenosis in Patients With Peripheral Artery Disease.Circulation.1997;95:1998-2002.
16.Kidane AG,Salacinski H,Tiwari A,Bruckdorfer KR,SeifalianAM.Anticoagulant and Antiplatelet Agents:Their Clinical and DeviceApplication(s)Together with Usages to EngineerSurfaces.Biomacromolecules.2004;5:798-813.
17.Luscher TF,Barton M.Biology of the endothelium.Clin.Cardiol.1997;20(11 Suppl 2):3-10.
18.Herring M,Gardner A,Glover J.A single-staged technique for seedingvascular grafts with autogenous endothelium.Surgery.1978;84:498-504.
19.Zilla P,Fasol R,Dudeck U,et al.In situ cannulation,microgridfollow-up and low-density plating provide first passage endothelial cellmasscultures for in vitro lining.J.Vasc.Surg.1990;12:180-9.
20.Mansfield PB,Wechezak AR,Sauvage LR.Preventing thrombus onartifical vascular surfaces:true endothelial cell linings.Trans.Am.Soc.Artif.Intern.Organs.1975;21:264-72.
21.Herring M,Gardner A,Glover J.Seeding endothelium onto caninearterial prostheses.The effects of graft design.Arch.Surg.1979;114:679-82.
22.Allen BT,Long JA,Clark RE,et al.Influence of endothelial cellseeding on platelet deposition and patency in small-diameter Dacron arterialgrafts.J.Vasc.Surg.1984;1:224-33.
23.Belden TA,Schmidt SP,Falkow LJ,Sharp WV.Endothelial cell seedingof small-diameter vascular grafts.Trans.Am.Soc.Artif.Intern.Organs.1982;28:173-7.
24.Burkel WE,Vinter DW,Ford JW,et al.Sequential studies of healing inendothelial seeded vascular prostheses:histologic and ultrastructurecharacteristics of graft incorporation.J.Surg.Res.1981;30:305-24.
25.Graham LM,Burkel WE,Ford JW,et al.Immediate seeding ofenzymatically derived endothelium in Dacron vascular grafts.Earlyexperimental studies with autologous canine cells.Arch.Surg.1980;115:1289-94.
26.Herring M,Baughman S,Glover J,et al.Endothelial seeding of Dacronand polytetrafluoroethylene grafts:the cellular events ofhealing.Surgery.1984;96:745-55.
27.Kempczinski RF,Rosenman JE,Pearce WH,et al.Endothelial cellseeding of a new PTFE vascular prosthesis.J.Vasc.Surg.1985;2:424-9.
28.Schmidt SP,Hunter TJ,Falkow LJ,Evancho MM,Sharp WV.Effects ofantiplatelet agents in combination with endothelial cell seeding on small-diameter Dacron vascular graft performance in the canine carotid arterymodel.J.Vasc.Surg.1985;2:898-906.
29.Schmidt SP,Hunter TJ,Hirko M,et al.Small-diameter vascularprostheses:two designs of PTFE and endothelial cell-seeded and nonseededDacron.J.Vasc.Surg.1985;2:292-7.
30.Stanley JC,Burkel WE,Ford JW,et al.Enhanced patency of small-diameter,externally supported Dacron iliofemoral grafts seeded withendothelial cells.Surgery.1982;92:994-1005.
31.Herring M,Baughman S,Glover J.Endothelium develops on seeded humanarterial prosthesis:a brief clinical note.J.Vasc.Surg.1985;2:727-30.
32.Herring M,Gardner A,Glover J.Seeding human arterial prostheseswith mechanically derived endothelium.The detrimental effect ofsmoking.J.Vasc.Surg.1984;1:279-89.
33.Herring M,Smith J,Dalsing M,et al.Endothelial seeding ofpolytetrafluoroethylene femoral popliteal bypasses:the failure of low-densityseeding to improve patency.J.Vasc.Surg.1994;20:650-5.
34.Herring MB,Compton RS,LeGrand DR,et al.Endothelial seeding ofpolytetrafluoroethylene popliteal bypasses.A preliminaryreport.J.Vasc.Surg.1987;6:114-8.
35.Jensen N,Lindblad B,Bergqvist D.Endothelial cell seeded dacronaortobifurcated grafts:platelet deposition and long-term follow-up.J.Cardiovasc.Surg.1994;35:425-9.
36.Ortenwall P,Wadenvik H,Kutti J,Risberg B.Reduction in depositionof indium 111-labeled platelets after autologous endothelial cell seeding ofDacron aortic bifurcation grafts in humans:a preliminaryreport.J.Vasc.Surg.1987;6:17-25.
37.Ortenwall P,Wadenvik H,Risberg B.Reduced platelet deposition onseeded versus unseeded segments of expanded polytetrafluoroethylene grafts:clinical observations after a 6-month follow-up.J.Vasc.Surg.1989;10:374-80.
38.Ortenwall P,Wadenvik H,Kutti J,Risberg B.Endothelial cell seedingreduces thrombogenicity of Dacron grafts in humans.J.Vasc.Surg.1990;11:403-10.
39.Smyth JV,Welch M,Carr HM,et al.Fibrinolysis profiles and plateletactivation after endothelial cell seeding of prosthetic vasculargrafts.Ann.Vasc.Surg.1995;9:542-6.
40.Zilla P,Fasol R,Deutsch M,et al.Endothelial cell seeding ofpolytetrafluoroethylene vascular grafts in humans:a preliminaryreport.J.Vasc.Surg.1987;6:535-41.
41.Hess F,Steeghs S,Jerusalem R,et al.Patency and morphology offibrous polyurethane vascular prostheses implanted in the femoral artery ofdogs after seeding with subcultivated endothelial cells.Eur.J.Vasc.Surg.1993;7:402-8.
42.Koveker GB,Graham LM,Burkel WE,et al.Extracellular matrixpreparation of expanded polytetrafluoroethylene grafts seeded withendothelial cells:influence on early platelet deposition,cellular growth,andluminal prostacyclin release.Surgery.1991;109:313-9.
43.Seeger JM,Klingman N.Improved endothelial cell seeding withcultured cells and fibronectin-coated grafts.J.Surg.Res.1985;38:641-7.
44.Seeger JM,Klingman N.Improved in vivo endothelialization ofprosthetic grafts by surface modification with fibronectin.J.Vasc.Surg.1988;8:476-82.
45.Zilla P,Preiss P,Groscurth P,et al.In vitro-lined endothelium:initial integrity and ultrastructural events.Surgery 1994;116:524-34.
46.Zilla P,Deutsch M,Meinhart J,et al.Clinical in vitroendothelialization of femoropopliteal bypass grafts:an actuarial follow-upover three years.J.Vasc.Surg.1994;19:540-8.
47.Deutsch M,Meinhart J,Vesely M,.In vitro endothelialization ofexpanded polytetrafluoroethylene grafts:a clinical case report after 41months of implantation.J.Vasc.Surg.1997;25:757-63.
48.Deutsch M,Meinhart J,Fischlein T,Preiss P,Zilla P.Clinicalautologous in vitro endothelialization of infrainguinal ePTFE grafts in 100patients:a 9-year experience.Surgery.1999;126:847-55.
49.Hsu S,Tseng H,Wu M.Comparative In vitro evaluation of twodifferent preparations of small diameter polyurethane vasculargrafts.Artif.Organs.2000;24:119-28.
50.Laube HR,Duwe J,Rutsch W,Konertz W.Clinical experience withautologous endothelial cell-seeded polytetrafluoroethylene coronary arterybypass grafts.J.Thorac.Cardiovasc.Surg.2000;120:134-41.
51.Magometschnigg H,Kadletz M,Vodrazka M,et al.Prospective clinicalstudy with in vitro endothelial cell lining of expandedpolytetrafluoroethylene grafts in crural repeatreconstruction.J.Vasc.Surg.1992;15:527-35.
52.Meinhart JG,Deutsch M,Fischlein T,et al.Clinical autologous invitro endothelialization of 153 infrainguinal ePTFEgrafts.Ann.Thorac.Surg.2001;71:S327-S331.
53.Swedenborg J,Bengtsson L,Clyne N,et al.In vitro endothelialisationof arteriovenous loop grafts for haemodialysis.Eur.J.Vasc.Endovasc.Surg.1997;13:272-7.
54.Williams SK,Kleinert LB,Rose D,McKenney S.Origin of endothelialcells that line expanded polytetrafluorethylene vascular grafts sodded withcells from microvascularized fat.J.Vasc.Surg.1994;19:594-604.
55.Williams SK,Rose DG,Jarrell BE.Microvascular endothelial cellsodding of ePTFE vascular grafts:improved patency and stability of thecellular lining.J.Biomed.Mater.Res.1994;28:203-12.
56.Ahlswede KM,Williams SK.Microvascular endothelial cell sodding of1-mm expanded polytetrafluoroethylene vasculargrafts.Arterioscler.Thromb.1994:14:25-31.
57.Wang ZG,Li G,Wu J,et al.Enhanced patency of venous Dacron graftsby endothelial cell sodding.Ann.Vasc.Surg.1993;7:429-36.
58.Williams SK,Carter T,Park PK,et al.Formation of a multilayercellular lining on a polyurethane vascular graft following endothelial cellsodding.J.Biomed.Mater.Res.1992;26:103-17.
59.Williams SK,Schneider T,Kapelan B,Jarrell BE.Formation of afunctional endothelium on vascular grafts.J.Electron.Microsc.Tech.1991;19:439-51.
60.Park PK,Jarrell BE,Williams SK,et al.Thrombus-free,humanendothelial surface in the midregion of a Dacron vascular graft in thesplanchnic venous circuit—observationsafter nine months ofimplantation.J.Vasc.Surg.1990;11:468-75.
61.Motwani MS,Rafiei Y,Tzifa A,Seifalian AM.In situendothelialization of intravascular stents from progenitor stem cells coatedwith nanocomposite and functionalized biomolecules.Biotechnol.Appl.Biochem.2011;58:2-13.
62.Garipcan1 B,Maenz S,Pham T.Image Analysis of EndothelialMicrostructure and Endothelial Cell Dimensions of Human Arteries-APreliminary Study.Adv.Eng.Mater.2011;13:B54-B57.
63.Yazdani SK,Kolodgie FD,Virmani R.Ex vivo and preclinicalassessment of an endothelial progenitor cell capturing bioengineeredstent.Minerva Cardioangiol.2012;60:11-21.
64.Silber S,Damman P,Klomp M,et al.Clinical results after coronarystenting with the GenousTMBio-engineered R stentTM:12-month outcomes of the e-HEALING(Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth)worldwide registry.EuroIntervention.2011;6:819-25.
65.Barbato E,Wijns W.Autologous cell therapy for enhancedendovascular repair after coronary stent implantation.EuroIntervention.2011;6:794-797.
66.Lee YB,Shin YM,Lee J,et al.Polydopamine-mediated immobilization ofmultiple bioactive molecules for the development of functional vascular graftmaterials.Biomaterials.2012.
67.Nystrom D,Malmstrom E,Hult A,et al.Biomimetic surface modificationof honeycomb films via a"grafting from"approach.Langmuir.2010;26:12748-54.
68.von der Mark K,Park J,Bauer S,Schmuki P.Nanoscale engineering ofbiomimetic surfaces:cues from the extracellular matrix.Cell.Tissue Res.2010;339:131-53.
69.Wessely R.New drug-eluting stent concepts.Nat.Rev.Cardiol.2010;7:194-203.
70.Zelikin AN.Drug releasing polymer thin films:New era of surface-mediated drug delivery.ACS Nano.2010;4:2494-2509.
71.Lee H,Dellatore SM,Miller WM,Messersmith PB.Mussel-inspiredsurface chemistry for multifunctional coatings.Science.2007;318:426-30.
72.Lynge ME,van der Westen R,Postma A,Stadler B.Polydopamine-anature-inspired polymer coating for biomedical science.Nanoscale.2011;3:4916-28.
73.Lee JH,Lee HB,Andrade JD.Blood compatibility of polyethylene oxidesurfaces.Prog.Polym.Sci.1995;20:1043-79.
74.Han DK,Park KD,Ryu GH,et al.Plasma protein adsorption tosulfonated poly(ethylene oxide)-grafted polyurethanesurface.J.Biomed.Mater.Res.1996;30:23-30.
75.Han DK,Jeong SY,Kim YH,Min BG,Cho HI.Negative cilia concept forthromboresistance:Synergistic effect of PEO and sulfonate groups grafted ontopolyurethanes.J.Biomed.Mater.Res.1991;25:561-75.
76.Zhang F,Kang ET,Neoh KG,Huang W.Modification of gold surface bygrafting of poly(ethylene glycol)for reduction in protein adsorption andplatelet adhesion.J.Biomater.Sci.Polym.Edn.2001;12:515-31.
77.Han DK,Hubbell JA.Synthesis of polymer network scaffolds from l-lactide and poly(ethylene glycol)and their interaction withcells.Macromolecules.1997;30:6077-83.
78.Chen YJ,Kang ET,Neoh KG,Wang P,Tan KL.Surface modification ofpolyaniline film by grafting of poly(ethylene glycol)for reduction in proteinadsorption and platelet adhesion.Synth.Met.2000;110:47-55.
79.Zhang F,Kang ET,Neoh KG,Wang P,Tan KL.Surface modification ofstainless steel by grafting of poly(ethylene glycol)for reduction in proteinadsorption.Biomaterials.2001;22:1541-8.
80.Wang P,Tan KL,Kang ET.Surface modification of poly(tetrafluoroethylene)films via grafting of poly(ethylene glycol)for reductionin protein adsorption.J.Biomater.Sc.i Polym.Ed.2000;11:169-86.
81.Zeng R,Luo Z,Zhou D,Cao F,Wang Y.A novel PEG coating immobilizedonto capillary through polydopamine coating for separation of proteins inCE.Electrophoresis.2010;31:3334-41.
82.Proks V,Jaros J,Pop-Georgievski O,et al.“Click&Seed”approach tothe biomimetic modification of material surfaces.Macromol.Biosci.2012;12:1232-42.
83.Wilson DS,Nock S.Functional protein microarrays.Curr.Opin.Chem.Biol.2001;6:81-5.
84.Butler JE,Ni L,Nessler R,et al.The physical and functionalbehavior of capture antibodies adsorbed on polystyrene.J.Immunol.Methods.1992;150:77-90.
85.Ghani R,Iqbal A,Akhtar N,et al.Identification of different stagesof hepatitis B infection with enzyme linked immunosorbant assay(ELISA)andpolymerase chain reaction(PCR)assay.J.Med.Plants Res.2011;5:2572-76.
86.Li X,Conklin L,Alex P.New serological biomarkers of inflammatorybowel disease.World J.Gastroenterol.2008;14:5115-24.
87.Moelans CB,de Weger RA,Van der Wall E,van Diest PJ.Currenttechnologies for HER2 testing in breast cancer.Crit.Rev.Oncol.Hematol.2011;80:380-92.
88.Niitsu T.Associations of serum brain-derived neurotrophic factorwith cognitive impairments and negative symptoms in schizophrenia.Prog.Neuropsychopharmacol.Biol.Psychiatry.2011;35:1836-40.
89.Shephard GS.Determination of mycotoxins in humanfoods.Chem.Soc.Rev.2008;37:2468-77.
90.Xiong Q,Ge F.Identification and evaluation of a panel of serumbiomarkers for predicting response to thalidomide in multiple myelomapatients.Expert Rev.Proteomics.2011;8:439-42.
91.Yotsumoto H.Specific immune-based diagnosis of tuberculosisinfection.Rinsho Byori.2008;56:1026-33.
92.Kausaite-Minkstimiene A,Ramanaviciene A,Kirlyte J,RamanaviciusA.Comparative study of random and oriented antibody immobilization techniqueson the binding capacity of immunosensor.Anal.Chem.2010;82:6401-08.
93.Butler JE,Ni L,Brown WR,et al.The immunochemistry of sandwichELISAs:VI.Greater than 90%of monoclonal and 75%of polyclonal anti-fluorescyl capture antibodies(CAbs)are denatured by passiveadsorption.Mol.Immunol.1993;30:1165-75.
94.Butler JE,Ni L,Nessler R,et al.The physical and functional-behavior of capture antibodies adsorbed on polystyrene.J.Immunol.Methods.1992;150:77-90.
95.Rotmans JI,Heyligers JM,Verhagen HJ,et al.In vivo cell seedingwith anti-CD34 antibodies successfully accelerates endothelialization butstimulates intimal hyperplasia in porcine arteriovenous expandedpolytetrafluoroethylene grafts.Circulation.2005;112:12-8.
96.Mrowczynski W,Rungatscher A,Buchegger F,Tille J-C,Namy S,Ratib O,Kutryk M,Walpoth BH.Biological effects of anti-CD34-coated ePTFE vasculargraft.Early in vivo experimental results.Kardiochirurgia i TorakochirurgiaPolska 2014;11:182-90.
97.Patel N,Davies M,Hartshorne M,et al.Immobilization of proteinmolecules onto homogeneous and mixed carboxylate-terminated self-assembledmonolayers.Langmuir.1997;13:6485-90.
98.MacBeath G,Schreiber S.Printing proteins as microarrays for high-throughput function determination.Science.2000;289:1760-63.
99.Faye C,Chamieh J,Moreau T,et al.In situ characterization ofantibody grafting on porous monolithic supports.Anal.Biochem.2012;420:147-54.
100.Lin Q,Ding X,Qiu F,et al.In situ endothelialization ofintravascular stents coated with an anti-CD34antibody functionalized heparin-collagen multilayer.Biomaterials.2010;31:4017-25.
101.Johnsson B,Lofas S,Lindquist G,et al.Comparison of methods forimmobilization to carboxymethyl dextran sensor surfaces by analysis of thespecific activity of monoclonal antibodies.J.Mol.Recognit.1995;8:125-31.
102.Lin JN,Chang IN,Andrade JD,Herron JN,Christensen DA.Comparison ofsite-specific coupling chemistry for antibody immobilization on differentsolid supports.J.Chromatogr.1991;542:41-54.
103.O’Shannessy DJ,Hoffman WL.Site-directed immobilization ofglycoproteins on hydrazide-containing solid supports.Biotechnol.Appl.Biochem.1987;9:488-96.
104.Hoffman WL,O’Shannessy DJ.Site-specific immobilization ofantibodies by their oligosaccharide moieties to new hydrazide derivatizedsolid supports.J.Immunol.Methods.1988;112:113-20.
105.Turkova J.Oriented immobilization of biologically active proteinsas a tool for revealing protein interactions andfunction.J.Chromatogr.B.1999;722:11-31.
106.Wimalasena RL,Wilson GS.Factors affecting the specific activityof immobilized antibodies and their biologically activefragments.J.Chromatogr.1991;572:85-102.
107.Yuan Y,Yin M,Qian J,Liu C.Site-directed immobilization ofantibodies onto blood contacting grafts for enhanced endothelial celladhesion and proliferation.Soft Matter.2011;7:7207-16.
108.Kang JH,Choi HJ,Hwang SY.Improving immunobinding using orientedimmobilization of an oxidized antibody.J.Chromatogr.A.2007;1161:9-14.
109.Boeggeman E,Ramakrishnan B,Pasek M,et al.Site specificconjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonalantibodies using mutant glycosyltransferases:application for cell surfaceantigen detection.Bioconjug.Chem.2009;20:1228-36.
110.Zeglis BM,Davis CB,Aggeler R,et al.Enzyme-Mediated Methodologyfor the Site-Specific Radiolabeling of Antibodies Based on Catalyst-FreeClick Chemistry.Bioconjug.Chem.2013;24:1057-67.
111.Yang WJ,Cai T,Neoh KG,et al.Biomimetic anchors for antifoulingand antibacterial polymer brushes on stainless steel.Langmuir.2011;27:7065-76.
112.Wei Q,Li B,Yi N,et al.Improving the blood compatibility ofmaterial surfaces via biomolecule-immobilized mussel-inspired coatings.J.Biomed.Mater.Res.A.2011;96:38-45.
113.Zeng R,Luo Z,Zhou D,Cao F,Wang Y.A novel PEG coating immobilizedonto capillary through polydopamine coating for separation of proteins inCE.Electrophoresis.2010;31:3334-41.
114."Biological Evaluation of Medical Devices,"ISO 10993,parts 1-12.(Geneva:International Organization for Standardization,various dates).
115."Use of International Standard ISO 10993,Biological Evaluation ofMedical Devices—Part 1:Evaluation and Testing"G95-1(Rockville,MD:Departmentof Health and Human Services,FDA,1995).
116."Testing Methods to Evaluate Biological Safety of MedicalDevices,Notice from the Office Medical Devices Evaluation Number 36"(Pharamaceutical and Food Safety Bureau,Ministry of Health,Labour andWelfare,March 19,2003).
117."A Practical Guide to ISO 10993,"parts 1-12,Medical Device&Diagnostic Industry 20,no.1,2,4-12,and 21,no.1(January 1998-January 1999).
118.Food and Drug Administration 2005.Guidelines for industry and FDAstaff,non-clinical tests and recommended labeling for intravasular stents andassociated delivery systems.http://www.fda.gov/cdrh/ode/guidance/1545.pdf
119.Pache J,Kastrati A,Mehilli J.Intracoronary stenting andangiographic results:strut thickness effect on restenosis outcome(ISAR-STEREO-2)trial.J.Am.Coll.Cardiol.2003;41:1283-8.
120.Horny P,Turgeon S,Hale P,Lewis F,Mantovi D.PEEM/NEXAFS analysisof ultrathin fluorcarbon films for coated stents.Canadian Light Source 2007Annual Report.
http://www.lightsource.ca/about/pdf/activity report 2007/all inclusive web.pdf
121.Savage P,O’Donnell BP,McHugh PE,Murphy BP,Quinn DF.Coronary stentstrut size dependent stress-strain response investigated usingmicromechanical finite element models.Ann.Biomed.Eng.2004;32:202-11.
122.Chua SND,MacDonald BJ,Hashmi MSJ.Finite element simulation ofstent and balloon interaction.J.Mater.Process.Technol.2003;143-144:591-7.
123.Dumoulin C,Cochelin B.Mechanical behaviour modelling of balloon-expandable stents.J.Biomech.2000;33:1461-70.
124.Etave F,Finet G,Boivin M,Boyer J-C,Rioufol G,Thollet G.Mechanicalproperties of coronary stents determined by using finite elementanalysis.J.Biomech.2001;34:1065-75.
125.Migliavacca F,Petrini L,Colombo M,Auricchio F,PietrabissaR.Mechanical behavior of coronary stents investigated through the finiteelement method.J.Biomech.2002;35:803-11.
126.Migliavacca F,Petrini L,Montanari V,Quagliana I,Auricchio F andDubini G.A predictive study of the mechanical behaviour of coronary stents bycomputer modelling.Med.Eng.Phys.2005;27:13-8.
127.Luo R,Tang L,Zhong S,Yang Z,Wang J,Weng Y,Tu Q,Jiang C,Huang N.Invitro investigation of enhanced hemocompatibility and endothelial cellproliferation associated with quinone-rich polydopamine coating.ACSAppl.Mater.Interfaces.2013;5:1704-14.
128.Lewis F,Maheux-Lacroix B,Turgeon S,Mantovani D.Adhesionassessment of ultra-thin plasma-polymerized coatings on stainless-steelstents using the small-punch test.In:Mittal KL,ed.Adhesion aspects of thinfilms Boston:VSP,2007.p.71-83.
129.Lewis F,Horny P,Hale1 P,Turgeon S,Tatoulian M,Mantovani D.Studyof the adhesion of thin plasma fluorocarbon coatings resisting plasticdeformation for stent applications.J.Phys.D:Appl.Phys.41 045310,doi:10.1088/0022-3727/41/4/045310.
130.Owens DK,Wendt RC.Estimation of the surface free energy ofpolymers.J.Appl.Polym.Sci.1969;13:1741-7.
131.Li X,Tian X,Zhang J,et al.In vitro and in vivo evaluation offolate receptor-targeting amphiphilic copolymer-modified liposomes loadedwith docetaxel.Int.J.Nanomedicine.2011;6:1167-84.
132.Strother T,Hamers RJ,Smith LM.Covalent attachment ofoligodeoxyribonucleotides to amine-modified Si(001)surfaces.Nucleic AcidsRes.2000;28:3535-41.
133.Muscari C,Gamberini C,Basile I et al.Comparison between cultureconditions improving growth and differentiation of blood and bone marrowcells committed to the endothelial cell lineage.Biol.Proceed.Online.2010;12:89-106.
134.Molloi S,Ersahin A,Tang J,et al.Quantification of volumetriccoronary blood flow with dual-energy digital subtractionangiography.Circulation.1996;93:1919-27.
135.Thoma R.Untersuchungen uber die histogenese und histomechanickdes gefassystems.Stuttgart,Germany:Enke;1893.
136.Armstrong ML,Heistad DD,Marcus ML,Megan MB,Piegors DJ.Structuraland hemodynamic response of peripheral arteries of macaque monkeys toatherogenic diet.Arteriosclerosis.1985;5:336-46.
137.Glagov S,Weisenberg E,Zarins CK,Stankunavicius R,KolettisGJ.Compensatory enlargement of human atherosclerotic coronaryarteries.N.Engl.J.Med.1987;316:1371-5.
138.Hermiller JB,Tenaglia AN,Kisslo KB,et al.In vivo validation ofcompensatory enlargement of atherosclerotic coronaryarteries.Am.J.Cardiol.1993;71:665-8.
139.Alfonso F,Macaya C,Goicolea J,et al.Intravascular ultrasoundimaging of angiographically normal coronary segments in patients withcoronary artery disease.Am.Heart J.1994;127:536-44.
140.Pasterkamp G,Wensing PJ,Post MJ,et al.Paradoxical arterial wallshrinkage may contribute to luminal narrowing of human atheroscleroticfemoral arteries.Circulation.1995;91:1444-9.
141.Smits PC,Pasterkamp G,Quarles van Ufford MA,et al.Coronary arterydisease:arterial remodelling and clinical presentation.Heart.1999;82:461-4.
142.von Birgelen C,Klinkhart W,Mintz GS,et al.Plaque distribution andvascular remodeling of ruptured and nonruptured coronary plaques in the samevessel:an intravascular ultrasound study in vivo.J.Am.Coll.Cardiol.2001;37:1864-70.
143.Pasterkamp G,Schoneveld AH,van Wolferen W,et al.The impact ofatherosclerotic arterial remodeling on percentage of luminal stenosis varieswidely within the arterial system.A postmortem study.Arterioscler.Thromb.Vasc.Biol.1997;17:3057-63.
144.Langille BL.Arterial remodeling:relation to hemodynamics.Can.J.Physiol.Pharmacol.1996;74:834-41.
145.Kramsch DM,Aspen AJ,Abramowitz BM,Kreimendahl T,Hood WBJr.Reduction of coronary atherosclerosis by moderate conditioning exercise inmonkeys on an atherogenic diet.N.Engl.J.Med.1981;305:1483-9.
146.Tronc F,Wassef M,Esposito B,et al.Role of NO in flow-inducedremodeling of the rabbit common carotid artery.Arterioscler.Thromb.Vasc.Biol.1996;16:1256-62.
147.Abbruzzese TA,Guzman RJ,Martin RL,et al.Matrix metalloproteinaseinhibition limits arterial enlargements in a rodent arteriovenous fistulamodel.Surgery.1998;124:328-34.
148.Lehoux S,Tedgui A.Signal transduction of mechanical stresses inthe vascular wall.Hypertension.1998;32:338-45.
149.Di Stefano I,Koopmans DR,Langille BL.Modulation of arterialgrowth of the rabbit carotid artery associated with experimental elevation ofblood flow.J.Vasc.Res.1998;35:1-7.
150.Kornowski R,Mintz GS,Lansky AJ,et al.Paradoxic decreases inatherosclerotic plaque mass in insulin-treated diabeticpatients.Am.J.Cardiol.1998;81:1298-304.
151.Tauth J,Pinnow E,Sullebarger JT,et al.Predictors of coronaryarterial remodeling patterns in patients with myocardialischemia.Am.J.Cardiol.1997;80:1352-1355.
152.Lim TT,Liang DH,Botas J,et al.Role of compensatory enlargementand shrinkage in transplant coronary artery disease:Serial intravascularultrasound study.Circulation.1997;95:885-859.
153.Vane JR,Anggard EE,Botting RM.Regulatory functions of thevascular endothelium.N.Engl.J.Med.1990;323:27-36.
154.Vane JR,Botting RM.Pharmacodynamic profile ofprostacyclin.Am.J.Cardiol.1995;75:3A-10A.
155.Negishi M,Sugimoto Y,Ichikawa A.Molecular mechanisms of diverseactions of prostanoid receptors.Biochim.Biophys.Acta.1995;1259:109-19.
156.Forman BM,Chen J,Evans RM.Hypolipidemic drugs,polyunsaturatedfatty acids,and eicosanoids are ligands for peroxisome proliferator-activatedreceptors alpha and delta.Proc.Natl.Acad.Sc.i USA.1997;94:4312-7.
157.Gupta RA,Tan J,Krause WF,et al.Prostacyclin-mediated activationof peroxisome proliferator-activated receptor delta in colorectal cancer.Proc.Natl.Acad.Sci.USA.2000;97:13275-80.
158.Hatae T,Wada M,Yokoyama C,Shimonishi M,Tanabe T.Prostacyclin-dependent apoptosis mediated by PPAR delta.J.Biol.Chem.2001;276:46260-7.
159.Moncada S,Vane JR.Pharmacology and endogenous roles ofprostaglandin endoperoxides,thromboxane A2,andprostacyclin.Pharmacol.Rev.1978;30:293-331.
160.Vane J,Corin RE.Prostacyclin:a vascular mediator.Eur.J.Vasc.Endovasc.Surg.2003;26:571-8.
161.Geraci M,Gao B,Shepherd D,et al.Pulmonary prostacyclin synthaseoverexpression by adenovirus transfection and in transgenic mice.Chest.1998;114:99S.
162.Nagaya N,Yokoyama C,Kyotani S,et al.Gene transfer of humanprostacyclin synthase ameliorates monocrotaline-induced pulmonaryhypertension in rats.Circulation.2000;102:2005-10.
163.Suhara H,Sawa Y,Fukushima N,et al.Gene transfer of humanprostacyclin synthase into the liver is effective for the treatment ofpulmonary hypertension in rats.J.Thorac.Cardiovasc.Surg.2002;123:855-61.
164.Todaka T,Yokoyama C,Yanamoto H,et al.Gene transfer of humanprostacyclin synthase prevents neointimal formation after carotid ballooninjury in rats.Stroke.1999;30:419-26.
165.Yamada M,Numaguchi Y,Okumura K,et al.Prostacyclin synthase genetransfer modulates cyclooxygenase-2-derived prostanoid synthesis and inhibitsneointimal formation in rat balloon-injured arteries.Arterioscler.Thromb.Vasc.Biol.2002;22:256-62.
166.Numaguchi Y,Okumura K,Harada M,et al.Catheter-based prostacyclinsynthase gene transfer prevents in-stent restenosis in rabbit atheromatousarteries.Cardiovasc.Res.2004;61:177-185
167.Bell D,McDermott BJ.Calcitonin gene-related peptide in thecardiovascular system:characterization of receptor populations and their(patho)physiological significance.Pharmacol.Rev.1996;48:253-88.
168.Brain SD,Cambridge H.Calcitonin gene-related peptide:vasoactiveeffects and potential therapeutic role.Gen.Pharmacol.1996;27:607-11.
169.Marshall I.Mechanism of vascular relaxation by the calcitoningene-related peptide.Ann.NY Acad.Sci.1992;657:204-15.
170.Yoshimoto R,Mitsui-Saito M,Ozaki H,Karaki H.Effects ofadrenomedullin and calcitonin gene-related peptide on contractions of the rataorta and porcine coronary artery.Br.J.Pharmacol.1998;123:1645-54.
171.Vega AV,Avila G.CGRP,a vasodilator neuropeptide that stimulatesneuromuscular transmission and EC coupling.Curr.Vasc.Pharacol.2010;8:394-403.
172.Hirata Y,Takagi Y,Takata S,et al.Calcitonin gene-related peptidereceptor in cultured vascular smooth muscle and endothelial cells.Biochem.Biophys.Res.Commun.1988;151:1113-21.
173.Wellman GC,Quayle JM,Standen NB.ATP-sensitive K+channelactivation by calcitonin gene-related peptide and protein kinase A in pigcoronary arterial smooth muscle.J.Physiol.1998;507:117-29.
174.Gray DW,Marshall I.Human alpha-calcitonin gene-related peptidestimulates adenylate cyclase and guanylate cyclase and relaxes rat thoracicaorta by releasing nitric oxide.Br.J.Pharmacol.1992;107:691-6.
175.Franco-Cereceda A.Calcitonin gene-related peptide and tachykininsin relation to local sensory control of cardiac contractility and coronaryvascular tone.Acta.Physiol.Scand.Suppl.1988;569:1-63.
176.Gulbenkian S,Saetrum Opgaard O,Ekman R,et al.Peptidergicinnervation of human epicardial coronary arteries.Circ.Res.1993;73:579-88.
177.Uren NG,Seydoux C,Davies GJ.Effect of intravenous calcitonin generelated peptideon ischaemia threshold and coronary stenosis severity inhumans.Cardiovasc.Res.1993;27:1477-81.
178.Ward MR,Thompson KA,Isaac K,Vecchiarelli J,Zhang Q,Stewart DJ,Kutryk MJ.Nitric oxide synthase gene transfer restores activity ofcirculating angiogenic cells from patients with coronary arterydisease.Mol.Ther.2011;19:1323-1330.
179.Dallos A,Kiss M,Polyanka H,et al.Effects of the neuropeptidessubstance P,calcitonin gene-related peptide,vasoactive intestinal polypeptideand galanin on the production of nerve growth factor and inflammatorycytokines in cultured human keratinocytes.Neuropeptides.2006;40:251-63.
180.Chou TM,Sudhir K,Iwanaga S,Chatterjee K,Yock PG.Measurement ofvolumetric coronary blood flow by simultaneous intravascular two-dimensionaland Doppler ultrasound:validation in an animal model.Am.Heart J.1994;128:237-43.
181.Kornowski R,Hong MK,Tio FO,et al.In-stent restenosis:contributions of inflammatory responses and arterial injury to neointimal hyperplasia.J.Am.Coll.Cardiol.1998;31:224-30.
182.Franco EJ,Hofstetter H,Hofstetter O.A comparative evaluation ofrandom and site-specific immobilization techniques for the preparation ofantibody-based chiral stationary phases.J.Sep.Sci.2006;29:1458-69.
183.Alves NJ,Kiziltepe T,Bilgicer B.Oriented surface immobilizationof antibodies at the conserved nucleotide binding site for enhanced antigendetection.Langmuir.2012;28:9640-8.
184.Giaretta I,Madeo D,Bonagur R,et al.A comparative evaluation ofgene transfer into blood cells using the same retroviral backbone forindependent expression of the EGFP and ALNGFR markergenes.Haematologica.2000;85:680-9.
185.Perin EC,Tian M,Marini FC III,et al.Imaging long-term fate ofintramyocardially implanted mesenchymal stem cells in a porcine myocardialinfarction model.PLoS ONE.2011;6:e22949.
本发明的范围不受上文具体示出和描述的内容的限制。本领域技术人员将认识到,对于所描绘的材料、构造、构建和维度的示例存在合适的替代方案。在本发明的描述中引用和讨论了包括专利和各种出版物在内的众多参考文献。提供这些参考文献的引用和讨论仅仅是为了阐明本发明的描述,并不是承认任何参考文献是本文描述的本发明的现有技术。本说明书中引用和讨论的所有参考文献的全部内容通过引用并入本文。在不脱离本发明的精神和范围的情况下,本领域普通技术人员将想到本文所描述的变化、修改和其他实现。尽管已经示出和描述了本发明的某些实施方式,但是对于本领域技术人员来说明显的是,可以在不脱离本发明的精神和范围的情况下可以进行改变和修改。提供在前面的说明书和附图中阐述的内容仅作为说明,而非作为限制。

Claims (1)

1.一种具有涂层的医疗设备,其中,所述涂层包括(i)聚多巴胺、(ii)聚醚衍生物、和(iii)抗体和/或抗体片段,其中,所述聚多巴胺共价连接至所述聚醚衍生物,并且其中,所述聚醚衍生物共价连接至所述抗体和/或抗体片段。
CN202210661346.0A 2017-04-13 2018-04-13 一种具有涂层的医疗设备 Active CN115137880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210661346.0A CN115137880B (zh) 2017-04-13 2018-04-13 一种具有涂层的医疗设备

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201762485223P 2017-04-13 2017-04-13
US62/485,223 2017-04-13
US201862645606P 2018-03-20 2018-03-20
US62/645,606 2018-03-20
CN202210661346.0A CN115137880B (zh) 2017-04-13 2018-04-13 一种具有涂层的医疗设备
CN201880024744.3A CN110545754B (zh) 2017-04-13 2018-04-13 具有涂层的医疗设备以及治疗或预防血管病症的用途
PCT/US2018/027597 WO2018191681A1 (en) 2017-04-13 2018-04-13 Medical devices coated with polydopamine and antibodies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201880024744.3A Division CN110545754B (zh) 2017-04-13 2018-04-13 具有涂层的医疗设备以及治疗或预防血管病症的用途

Publications (2)

Publication Number Publication Date
CN115137880A true CN115137880A (zh) 2022-10-04
CN115137880B CN115137880B (zh) 2024-05-03

Family

ID=63791405

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210661346.0A Active CN115137880B (zh) 2017-04-13 2018-04-13 一种具有涂层的医疗设备
CN201880024744.3A Active CN110545754B (zh) 2017-04-13 2018-04-13 具有涂层的医疗设备以及治疗或预防血管病症的用途

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201880024744.3A Active CN110545754B (zh) 2017-04-13 2018-04-13 具有涂层的医疗设备以及治疗或预防血管病症的用途

Country Status (6)

Country Link
US (2) US11129926B2 (zh)
EP (1) EP3609434A4 (zh)
JP (3) JP7174712B2 (zh)
CN (2) CN115137880B (zh)
CA (1) CA3059800A1 (zh)
WO (1) WO2018191681A1 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11129926B2 (en) 2017-04-13 2021-09-28 Orbusneich Medical Pte. Ltd. Medical devices coated with polydopamine and antibodies
WO2019195860A2 (en) 2018-04-04 2019-10-10 Vdyne, Llc Devices and methods for anchoring transcatheter heart valve
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US10321995B1 (en) 2018-09-20 2019-06-18 Vdyne, Llc Orthogonally delivered transcatheter heart valve replacement
US10595994B1 (en) 2018-09-20 2020-03-24 Vdyne, Llc Side-delivered transcatheter heart valve replacement
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11109969B2 (en) 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
US11370880B1 (en) * 2018-10-30 2022-06-28 Florida Atlantic University Board Of Trustees Growth factor-loaded elastic poly(xylitol-dodecanedioic acid) polymer for tissue engineering
WO2020109833A1 (en) * 2018-11-27 2020-06-04 Institut National De La Sante Et De La Recherche Medicale (Inserm) Method for the modification of a substrate surface by grafting a peptide onto the surface of said substrate
US20220001083A1 (en) * 2018-11-27 2022-01-06 Balt Extrusion Method for the modification of a device surface by grafting a cd31-derived peptide onto the surface of said device
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
EP4215223B1 (en) * 2019-03-01 2024-10-09 DSM IP Assets B.V. Medical implant component comprising a composite biotextile and method of making
EP3934583B1 (en) 2019-03-05 2023-12-13 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
EP3965701A4 (en) 2019-05-04 2023-02-15 Vdyne, Inc. CINCH DEVICE AND METHOD FOR DEPLOYING A SIDE-PLACED PROSTHETIC HEART VALVE IN A NATIVE RING
CN110237311B (zh) * 2019-06-18 2022-04-15 郑州大学 一种聚多巴胺-外泌体核壳结构纳米颗粒、及其修饰后制得的血管支架材料和应用
AU2020334080A1 (en) 2019-08-20 2022-03-24 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
CA3152632A1 (en) 2019-08-26 2021-03-04 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
CN110882423B (zh) * 2019-10-15 2021-11-02 杭州未名信科科技有限公司 一种抗生物污染的涂层及其制备方法、植入式医疗器械
CN110664509A (zh) * 2019-10-21 2020-01-10 南方医科大学 一种植入耳支架及其制备方法
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
CN111760077B (zh) * 2020-07-06 2021-03-30 四川大学 用于体外膜肺氧合(ecmo)的长效膜式氧合器中空纤维抗凝涂层及制备方法
CN112876722A (zh) * 2021-01-14 2021-06-01 广东顺德工业设计研究院(广东顺德创新设计研究院) 一种提高医疗器械表面生物相容性的中药涂层及其制备方法
CN112891642A (zh) * 2021-01-27 2021-06-04 文军 一种生物因子涂层支架及其制备方法
CN112933302B (zh) * 2021-02-02 2022-06-03 四川大学华西医院 基于中药厚朴的多功能生物医用涂层材料及其制备方法
CN112973461B (zh) * 2021-03-22 2021-12-28 上海交通大学 手性金属有机分子笼为填料的混合基质膜及其制备与应用
CN113117157A (zh) * 2021-04-08 2021-07-16 复旦大学 表面生物功能化的医用骨螺钉及其制备方法及其应用
CN113546223A (zh) * 2021-06-22 2021-10-26 华南理工大学 利用多巴胺和重组水蛭素复合构建抗凝血表面涂层的方法
CN113413933A (zh) * 2021-07-02 2021-09-21 山东大学第二医院 一种基于玻璃微球的微流控芯片及其应用
BR102021017465A2 (pt) * 2021-09-02 2023-03-14 Labcor Laboratórios Ltda. Método para produção de tecido conjuntivo colágeno preservado, tecido conjuntivo colágeno, seus usos e kit para implante em tecido
CN113713172B (zh) * 2021-09-08 2023-04-11 深圳清华大学研究院 原位促内皮化涂层及其制备方法
DE102021123779A1 (de) 2021-09-14 2023-03-16 Eberhard Karls Universität Tübingen Medizinische Fakultät, Anstalt des öffentlichen Rechts Besiedelung von Oberflächen mit biologischen Zellen
CN113940923B (zh) * 2021-09-30 2023-04-25 东华大学 一种智能释放药物的柔性纤维药盒及其制备和应用
CN113908346B (zh) * 2021-11-12 2023-03-07 上海交通大学 一种放射性管腔支架及其制备方法
WO2023099932A1 (en) 2021-12-03 2023-06-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Cd31 mimetic coating for endovascular stent
CN114288479A (zh) * 2021-12-30 2022-04-08 智享生物(苏州)有限公司 一种基于超分子自组装的细胞粘附材料及其制备方法
CN115010974B (zh) * 2022-05-11 2023-01-20 四川大学 耐弯折黑色素涂覆聚酰亚胺薄膜及其制备方法
CN115197899B (zh) * 2022-07-20 2023-06-30 淮阴工学院 一种可调控内皮祖细胞分化趋势涂覆层的制备方法
CN115626860A (zh) * 2022-09-19 2023-01-20 西安近代化学研究所 一种分子钙钛矿型含能化合物的包覆方法
DE102022134575A1 (de) 2022-12-22 2024-06-27 Acandis Gmbh Medizinische Vorrichtung, insbesondere Stent
CN115651881B (zh) * 2022-12-27 2023-03-28 广州傲农生物科技有限公司 一种益生菌复合菌液、制备方法及其应用
CN116212121A (zh) * 2023-04-25 2023-06-06 四川大学华西医院 一种铜氨络合物-多巴胺-肝素抗菌抗凝透析导管及其制备方法
CN117398528B (zh) * 2023-10-31 2024-05-14 广州曼翔医药有限公司 中耳通气引流管及其制备方法和应用
CN117582556B (zh) * 2024-01-19 2024-03-19 广州瑞泰生物科技有限公司 一种减少生物医用材料抗原性的方法
CN118490891A (zh) * 2024-07-18 2024-08-16 浙江大学 一种负载小分子干扰rna的人工血管及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1142775A (zh) * 1993-12-08 1997-02-12 免疫医学股份有限公司 免疫结合物的制备和使用
US20020049495A1 (en) * 2000-03-15 2002-04-25 Kutryk Michael John Bradley Medical device with coating that promotes endothelial cell adherence
US20070129789A1 (en) * 2000-03-15 2007-06-07 Orbusneich Medical, Inc. Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device
CN102648988A (zh) * 2011-02-28 2012-08-29 刘斌 Cd34抗体包被支架的制备方法
WO2016025922A1 (en) * 2014-08-14 2016-02-18 Dana-Farber Cancer Institute, Inc. Coated particles for drug delivery
KR20160100057A (ko) * 2015-02-13 2016-08-23 한국과학기술연구원 카테콜기를 함유한 접착 유도체가 도입된 생체 적합성 고분자로 표면 개질된 생체 재료 및 그 제조 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69030811T2 (de) * 1989-01-27 1997-10-02 Au Membrane & Biotech Res Inst Rezeptormembranen und selektive steuerung des ionenflusses durch ionophoren
CA2074304C (en) * 1991-08-02 1996-11-26 Cyril J. Schweich, Jr. Drug delivery catheter
US20050271701A1 (en) * 2000-03-15 2005-12-08 Orbus Medical Technologies, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
US20020055759A1 (en) 2000-11-06 2002-05-09 Shibuya Terry Y. Bioactive surgical suture
WO2008011614A2 (en) * 2006-07-20 2008-01-24 Orbusneich Medical, Inc. Bioabsorbable polymeric medical device
US20080033541A1 (en) * 2006-08-02 2008-02-07 Daniel Gelbart Artificial mitral valve
EP2078062B1 (en) * 2006-10-19 2018-12-05 Northwestern University Surface-independent, surface-modifying, multifunctional coatings and applications thereof
US8017050B2 (en) 2008-07-10 2011-09-13 Board Of Regents The University Of Texas System Water purification membranes with improved fouling resistance
WO2011005258A1 (en) 2009-07-09 2011-01-13 Board Of Regents, The University Of Texas System Polymer deposition and modification of membranes for fouling resistance
US8784895B2 (en) 2011-03-15 2014-07-22 Northwestern University Multifunctional metal nanoparticles having a polydopamine-based surface and methods of making and using the same
US20140257473A1 (en) * 2012-10-22 2014-09-11 Nalini Marie Rajamannan Methods for inhibiting stenosis, obstruction, or calcification of a stented heart valve or bioprosthesis
KR102247959B1 (ko) * 2013-02-04 2021-05-06 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 기재용 코팅
US9272075B2 (en) * 2013-02-04 2016-03-01 W.L. Gore & Associates, Inc. Coating for substrate
CN104069547B (zh) * 2014-07-24 2015-12-09 吉林大学 一种复合血管支架
CN104758985B (zh) * 2015-03-20 2017-10-24 西南交通大学 一种捕获内皮祖细胞EPCs的新型抗凝血支架涂层的制备方法
WO2016183421A1 (en) * 2015-05-13 2016-11-17 Boston Scientific Scimed, Inc. Drug coated medical devices
US11129926B2 (en) 2017-04-13 2021-09-28 Orbusneich Medical Pte. Ltd. Medical devices coated with polydopamine and antibodies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1142775A (zh) * 1993-12-08 1997-02-12 免疫医学股份有限公司 免疫结合物的制备和使用
US20020049495A1 (en) * 2000-03-15 2002-04-25 Kutryk Michael John Bradley Medical device with coating that promotes endothelial cell adherence
US20070129789A1 (en) * 2000-03-15 2007-06-07 Orbusneich Medical, Inc. Progenitor Endothelial Cell Capturing with a Drug Eluting Implantable Medical Device
CN102648988A (zh) * 2011-02-28 2012-08-29 刘斌 Cd34抗体包被支架的制备方法
WO2016025922A1 (en) * 2014-08-14 2016-02-18 Dana-Farber Cancer Institute, Inc. Coated particles for drug delivery
KR20160100057A (ko) * 2015-02-13 2016-08-23 한국과학기술연구원 카테콜기를 함유한 접착 유도체가 도입된 생체 적합성 고분자로 표면 개질된 생체 재료 및 그 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUN ZHOU等: "Site-Specific Antibody−Drug Conjugation through Glycoengineering", 《BIOCONJUGATE CHEMISTRY》, vol. 25, 17 February 2014 (2014-02-17), pages 510 - 520 *
王钰洁等: "抗体偶联药物设计及临床研究进展", 《药学学报》, vol. 51, no. 8, 31 August 2016 (2016-08-31), pages 1209 - 1216 *

Also Published As

Publication number Publication date
JP7498757B2 (ja) 2024-06-12
US20210386916A1 (en) 2021-12-16
CA3059800A1 (en) 2018-10-18
CN110545754B (zh) 2022-06-28
JP7174712B2 (ja) 2022-11-17
JP2020516386A (ja) 2020-06-11
JP2024113012A (ja) 2024-08-21
CN110545754A (zh) 2019-12-06
WO2018191681A1 (en) 2018-10-18
CN115137880B (zh) 2024-05-03
US11129926B2 (en) 2021-09-28
EP3609434A4 (en) 2020-11-25
EP3609434A1 (en) 2020-02-19
US20180296732A1 (en) 2018-10-18
JP2023017932A (ja) 2023-02-07

Similar Documents

Publication Publication Date Title
CN110545754B (zh) 具有涂层的医疗设备以及治疗或预防血管病症的用途
JP5859179B2 (ja) 内皮細胞接着を促進するコーティング
CA2563329C (en) Medical device with coating for capturing genetically-altered cells and methods for using same
EP1471853B1 (en) Medical device with coating that promotes endothelial cell adherence and differentiation
US9522217B2 (en) Medical device with coating for capturing genetically-altered cells and methods for using same
US20070213801A1 (en) Medical device with coating that promotes endothelial cell adherence and differentiation
US20130172988A1 (en) Medical device with coating that promotes endothelial cell adherence and differentiation
US20070191932A1 (en) Medical device with coating for capturing genetically-altered cells and methods for using same
JP2009515659A (ja) 薬剤溶出式の植設可能な医療デバイスによる前駆内皮細胞の捕捉方法
CN209662276U (zh) 医疗设备
Boulanger Directional Conjugation of Antibodies to Capture Circulating Cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40080451

Country of ref document: HK

CB02 Change of applicant information

Address after: Singapore, Singapore

Applicant after: Yeju Medical Pte. Ltd.

Address before: Singapore, Singapore

Applicant before: ORBUSNEICH MEDICAL, Inc.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant