CN115108825B - (Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷材料及其制备方法 - Google Patents
(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷材料及其制备方法 Download PDFInfo
- Publication number
- CN115108825B CN115108825B CN202210753357.1A CN202210753357A CN115108825B CN 115108825 B CN115108825 B CN 115108825B CN 202210753357 A CN202210753357 A CN 202210753357A CN 115108825 B CN115108825 B CN 115108825B
- Authority
- CN
- China
- Prior art keywords
- equal
- ball milling
- laalo
- microwave dielectric
- dielectric ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/47—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/3222—Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
- C04B2235/3234—Titanates, not containing zirconia
- C04B2235/3236—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
本发明提供一种(Sr,Ca)(Ti,Ga)O3‑LaAlO3复合微波介质陶瓷及制备方法,其化学式为Sr(m‑y)CayTi1‑zGazO3‑xLaAlO3,其中0.98≤m≤1.01,1.0≤x≤1.50,0.01≤y≤0.02;0.001≤z≤0.01。该材料属于电子信息功能材料技术领域。空气中的烧结温度1500℃~1600℃,Q×f值50000~58000GHz,相对介电常数38~45,谐振频率温度系数0±5ppm/℃。本发明采用传统固相陶瓷合成工艺制备,具有原材料便宜、环保和成本低的优点,便于批量生产及应用推广。
Description
技术领域
本发明属于电子信息功能材料技术领域,涉及微波介质陶瓷材料,具体涉及可用于制作现代通信技术中的介质谐振器、介质滤波器、介质基板以及介质天线等微波通信元器件的高品质因数微波介质陶瓷材料。
背景技术
制造业水平的高低是衡量一个国家立足于世界的根本标准,由众多院士起草的《中国制造2025》,对新材料的研发给予了高度重视。目前,国内对于微波介质材料的研究与制造与国外相比仍有很大的差距。近年来,随着微波通信技术的快速发展,微波介质陶瓷在电路中的应用越来越广泛,例如由微波介质材料做成的谐振器、滤波器、介质天线、微波集成电路基片等元器件广泛应用于移动通讯、卫星通信、全球卫星定位系统(GPS)等等通信设备之中。这些陶瓷必须符合三个基本要求:首先,介电常数εr值与设备的工作频率相匹配;其次,品质因数Q值(Q=1/tanδ)足够高,以实现良好的信号识别;最后,谐振频率的温度系数τf值接近零,确保工作的可靠性和稳定性。
(1-x)MTiO3-xLnAlO3(M=Ba,Sr,Ca;Ln=La,Nd,Sm等)系微波介质陶瓷是一类具有钙钛矿固溶体结构的复合陶瓷,且MTiO3-LnAlO3具有介电损耗低、介电常数可调和微波性能较好的优点,其介电常数和介电损耗均能满足研究需求,广泛用于军用雷达、移动通信基站及Ku频段数字电视接收系统等领域,无论是在军用电子设备,还是民用通信领域都发挥了举足轻重的作用。SrTiO3-LaAlO3基陶瓷是一种前景较好的的微波介质陶瓷,因其具有优异的介电性能而得到广泛的研究,当SrTiO3与LaAlO3的比例达到一定值时,其介电常数为εr=40、Q×f≥40000GHz、频率温度系数τf=0±5ppm/℃。但是纯SrTiO3-LaAlO3由于烧结温度过高(>1650℃),并且在烧结过程中会出现高温失氧产生黑心的现象,极大地恶化了其介电性能,所以纯SrTiO3-LaAlO3陶瓷的应用价值比较低。Sun PH,Nakamura T等人于1998年在《日本应用物理学报》(Japanese Journal of Applied Physics)中的文章《SrTiO3-LaAlO3固溶体在微波频率下的介电性能》(Dielectric behavior of(1-x)SrTiO3-xLaAlO3 solidsolution system at microwave frequencies)报道了SrTiO3-LaAlO3陶瓷的性能。1999年,Seo-Yong Cho等人在《材料研究公告》(Materials Research Bulletin)中的文献《SrTiO3-LaAlO3体系陶瓷混合行为的微波介电性能》(Mixture-like behavior in the microwavedielectric properties of the(1-x)SrTiO3-xLaAlO3system)报道了分别合成SrTiO3和LaAlO3粉料,再按照一定比例混合烧结成陶瓷的介电性能。2001年,Huang C L等人在《材料研究公告》(Materials Research Bulletin)上发表了《在低的烧结温度下提高0.5SrTiO3-0.5LaAlO3微波陶瓷品质因素》(Improved high Q value of 0.5LaA1O3-0.5SrTiO3microwave dielectric ceramics at low sintering)的研究,当掺入0.25%-1%wt的B2O3时,0.5LaA1O3-0.5SrTiO3陶瓷的烧结温度降低到了1430℃,但是其介电性能相对较差,玻璃相的大量加入导致了微波性能的恶化。其后几年中,大量的研究学者对SrTiO3-LaAlO3系列陶瓷进行研究,其研究主要集中在陶瓷在复合过程中相变机理和掺杂CuO等降低烧结温度方面。2009年,T.Shimada等人在《铁电材料》(Ferroelectrics)上报道了《烧结气氛对SrTiO3-LaAlO3体系微波介电性能的影响》(Effect of Sintering Atmosphere onDielectric Properties of SrTiO3-LaAlO3 System)的文章,在不同O2分压下烧结陶瓷,发现了当SrTiO3的比例越来越大时,SrTiO3-LaAlO3陶瓷的介电损耗就越高;当烧结气氛中的氧气含量越来越大时,其介电损耗越小。通过XPS分析得出产生此现象的原因是高温下SrTiO3-LaAlO3陶瓷会半导体化,其机理为Ti4+→Ti3+,由此产生了氧空位,导致微波介质陶瓷的性能变差。具有高品质的微波介电性能的陶瓷可以在O2的气氛中烧结获得,但是其需要的条件增加了对烧结设备以及需要较高的烧结温度的要求,使得推广实用化的陶瓷受到了很大的阻力。2015年,Zhang等人在《陶瓷国际》(Ceramics International)上报道了(1-x)LaAlO3-xCa0.2Sr0.8TiO3陶瓷的结构、微观结构和微波介电性能。证实了固溶体(1-x)LaAlO3-xCa0.2Sr0.8TiO3的形成。晶格参数、平均晶粒尺寸和介电常数(εr)随着Ca0.2Sr0.8TiO3用量的增加而增加,而品质因数(Q×f)则下降。2016年,Dou等人通过传统的两步固态反应工艺制备了0.67CaTiO3-0.33La(Al1-xGax)O3(0<x<0.4)(CTLAG)纯过氧化物结构的陶瓷。随后研究了Ga3+取代Al3+对陶瓷的微波介电性能的影响。发现随着Ga含量的增加,离子极化性增加,导致介电常数(εr)的增加。同时,随着Ga含量的增加,CTLAG陶瓷的容忍系数(t)和A位键价都被认为对谐振频率(τf)的温度系数有影响。结果还表明,品质因数(Q×f)随着Ga3+含量的增加而变化,这不仅是由于内在因素,也是由于外在因素,如双峰晶粒大小分布、相对密度的变化和填料分数。2017年,Huang等人在《陶瓷国际》(Ceramics International)上报道了CaO/SnO2添加剂对传统固态反应法制备的0.6SrTiO3-0.4LaAlO3(6ST-4LA)微波介电陶瓷的烧结性能、相组成、微结构和介电性能的影响。结果表明,CaO/SnO2作为添加剂对6ST-4LA陶瓷的相组成没有明显影响,所有的样品都表现出纯ABO3结构。加入适量的CaO/SnO2不仅有效地将烧结温度从1550℃降低到1400℃,而且由于形成了固溶体,改善了介电性能,并减少了微观结构缺陷和内在损耗。
以SrTiO3-LaAlO3基陶瓷为基础,克服其在烧结过程中形成的黑心,研究具有高品质因数(高Q×f值)、低频率温度系数,同时可在空气中温烧结(<1600℃)、原材料成本低、工艺重复性好的新型微波介质陶瓷具有很大科研价值和市场前景。
发明内容
本发明的目的是为克服现有制备SrTiO3-LaAlO3基微波介质陶瓷的技术难关,提供一种高品质因数、低频率温度系数,且烧结温度在小于1650℃的空气中成瓷的(Sr,Ca)(Ti,Ga)O3-LaAlO3微波介质陶瓷及其具有良好稳定性陶瓷性能的制备生产工艺。
本发明所采用的技术方案如下:
一种(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷,其化学式为Sr(m-y)CayTi1- zGazO3-xLaAlO3,其中0.98≤m≤1.01,1.0≤x≤1.50,0.01≤y≤0.02;0.001≤z≤0.01。
作为优选方式,形成的主晶相为复合钙钛矿SrTiO3-LaAlO3相;所述微波介质陶瓷材料在空气中的烧结温度为1500℃~1600℃,Q×f值50000~58000GHz,相对介电常数38~45,谐振频率温度系数0±5ppm/℃。上述微波介质陶瓷材料中,Ca取代Sr的作用是减少缺陷,降低烧结温度;添加适量Ga2O3的主要作用是克服其高温烧结过程中产生的缺陷,促使晶粒均匀生长,从而达到提高Q×f值的目的,使此微波介质陶瓷能在空气中烧结。
本发明还提供一种(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷的制备方法,包括以下步骤:
步骤1:配料;
以Ga2O3、SrCO3、CaCO3、La2O3、Al2O3和TiO2为原料,按照化学组成式Sr(m-y)CayTi1- zGazO3-xLaAlO3的摩尔比进行配料并混合得到混合料,其中0.98≤m≤1.01,1.0≤x≤1.50,0.01≤y≤0.02;0.001≤z≤0.01;
步骤2:一次球磨;
将步骤1配好的混合料进行一次球磨,球磨完后将球磨料于100℃下烘干并过60目筛,得到一次球磨料;
步骤3:预烧;
将步骤2所得一次球磨料在1200℃~1400℃温度条件下预烧,保温6~8小时,得到预烧粉体;
步骤4:过筛;
将步骤3所得粉体通过60目筛网,得到颗粒细致的粉体;
步骤5:二次球磨;
将步骤4中过筛后的粉体进行二次球磨,球磨时间为3~6小时,球磨完后将其所得到的浆料于100℃下烘干并过60目筛,得到二次球磨料;
步骤6:造粒、成型;
将步骤5所得二次球磨料添加相当于所述二次球磨料质量5~7%的聚乙烯醇混合后造粒,造粒尺寸控制在100~250目,并在16MPa的压力下成型得到生坯;
步骤7:烧结;
将步骤6得到的生坯,在温度为1500℃~1600℃、气氛为空气的条件下烧结4~10小时,得到最终的(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷。
作为优选方式,步骤2中所述一次球磨工艺为:在尼龙罐中球磨,以去离子水或酒精作为球磨介质,锆球与球磨介质的质量比为1:(1~1.5),球磨料与锆球的质量比为1:5,球磨时间为5~8小时;步骤5中所述二次球磨工艺与步骤2中所述一次球磨工艺相同,但球磨时间为3~6小时。
与现有的技术相比,本发明具有以下特点:
1.本发明的配方中不含Pb、Cd等挥发性或重金属元素,是一种环保无污染的微波介质陶瓷。
2.不添加杂质的SrTiO3-LaAlO3陶瓷的烧结温度大于1650℃,而且Q×f值比较低。本陶瓷的烧结温度在1500℃~1600℃之间,Q×f较高,具有一定的节能优势。
3.本陶瓷的烧结条件较为简单,烧结气氛为空气,性能上实现了较大提升,性能稳定,能够满足现代通信技术的应用要求,具有很好的实用价值。
4.原材料在国内供应充足,且价格低廉,适合于制作现代通信技术中高性能微波通信元器件。
附图说明
图1为本发明中实施例4制备的(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷的XRD分析结果。
图2为本发明中实施例4制备的(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷的SEM图。
具体实施方式
实施例1-9
各实施例提供一种(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷,其化学式为Sr(m-y)CayTi1-zGazO3-xLaAlO3,其中0.98≤m≤1.01,1.0≤x≤1.50,0.01≤y≤0.02;0.001≤z≤0.01。
形成的主晶相为复合钙钛矿SrTiO3-LaAlO3相;所述微波介质陶瓷材料在空气中的烧结温度为1500℃~1600℃,Q×f值50000~58000GHz,相对介电常数38~45,谐振频率温度系数±5ppm/℃。上述微波介质陶瓷材料中,Ca取代Sr的作用是减少缺陷,降低烧结温度;添加适量Ga2O3的主要作用是克服其高温烧结过程中产生的缺陷,促使晶粒均匀生长,从而达到提高Q×f值的目的,使此微波介质陶瓷能在空气中烧结。
实施例还提供一种(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷的制备方法,包括以下步骤:
步骤1:配料;
以Ga2O3、SrCO3、CaCO3、La2O3、Al2O3和TiO2为原料,按照化学组成式Sr(m-y)CayTi1- zGazO3-xLaAlO3的摩尔比进行配料并混合得到混合料,其中0.98≤m≤1.01,1.0≤x≤1.50,0.01≤y≤0.02;0.001≤z≤0.01;
步骤2:一次球磨;
将步骤1配好的混合料进行一次球磨,球磨完后将球磨料于100℃下烘干并过60目筛,得到一次球磨料;
步骤3:预烧;
将步骤2所得一次球磨料在1200℃~1400℃温度条件下预烧,保温6~8小时,得到预烧粉体;
步骤4:过筛;
将步骤3所得粉体通过60目筛网,得到颗粒细致的粉体;
步骤5:二次球磨;
将步骤4中过筛后的粉体进行二次球磨,球磨时间为3~6小时,球磨完后将其所得到的浆料于100℃下烘干并过60目筛,得到二次球磨料;
步骤6:造粒、成型;
将步骤5所得二次球磨料添加相当于所述二次球磨料质量5~7%的聚乙烯醇混合后造粒,造粒尺寸控制在100~250目,并在16MPa的压力下成型得到生坯;
步骤7:烧结;
将步骤6得到的生坯,在温度为1500℃~1600℃、气氛为空气的条件下烧结4~10小时,得到最终的(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷。
优选的,步骤2中所述一次球磨工艺为:在尼龙罐中球磨,以去离子水或酒精作为球磨介质,锆球与球磨介质的质量比为1:(1~1.5),球磨料与锆球的质量比为1:5,球磨时间为5~8小时;步骤5中所述二次球磨工艺与步骤2中所述一次球磨工艺相同,但球磨时间为3~6小时。
通过上述实验步骤得到的(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷。根据Hakki–Coleman介质谐振法,用网络分析仪(Agilent Technologies E5071C)测试样品高频下的微波介电性能。频率温度系数由公式计算所得,其中t1=25℃、t2=85℃,/>和/>是在这两个温度点的谐振频率。测试结果如表1所示。
实施例1~9具体成分组成和微波介电性能请见表1:
表1实施例1~9具体成分组成和微波介电性能
实施例中最优化的方案为实施例6。本发明也不局限于上述9个具体实施例,需要说明的是,对掺杂剂和制备工艺适当调整得到性能优异的微波介质陶瓷完全是可行的,但这都属于本发明范围。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
Claims (3)
1.一种(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷,其特征在于:其化学式为Sr(m-y)CayTi1-zGazO3-xLaAlO3,其中0.98≤m≤1.01,1.05≤x≤1.50,0.01≤y≤0.02;0.001≤z≤0.01;
形成的主晶相为复合钙钛矿SrTiO3-LaAlO3相;所述微波介质陶瓷材料在空气中的烧结温度为1500℃~1600℃,Q×f值50000~58000GHz,相对介电常数38~45,谐振频率温度系数0±5ppm/℃。
2.权利要求1所述的一种(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷的制备方法,其特征在于包括以下步骤:
步骤1:配料;
以Ga2O3、SrCO3、CaCO3、La2O3、Al2O3和TiO2为原料,按照化学组成式Sr(m-y)CayTi1-zGazO3-xLaAlO3的摩尔比进行配料并混合得到混合料,其中0.98≤m≤1.01,1.0≤x≤1.50,0.01≤y≤0.02;0.001≤z≤0.01;
步骤2:一次球磨;
将步骤1配好的混合料进行一次球磨,球磨完后将球磨料于100℃下烘干并过60目筛,得到一次球磨料;
步骤3:预烧;
将步骤2所得一次球磨料在1200℃~1400℃温度条件下预烧,保温6~8小时,得到预烧粉体;
步骤4:过筛;
将步骤3所得粉体通过60目筛网,得到颗粒细致的粉体;
步骤5:二次球磨;
将步骤4中过筛后的粉体进行二次球磨,球磨时间为3~6小时,球磨完后将其所得到的浆料于100℃下烘干并过60目筛,得到二次球磨料;
步骤6:造粒、成型;
将步骤5所得二次球磨料添加相当于所述二次球磨料质量5~7%的聚乙烯醇混合后造粒,造粒尺寸控制在100~250目,并在16MPa的压力下成型得到生坯;
步骤7:烧结;
将步骤6得到的生坯,在温度为1500℃~1600℃、气氛为空气的条件下烧结4~10小时,得到最终的(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷。
3.根据权利要求2所述的一种(Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷的制备方法,其特征在于:步骤2中所述一次球磨工艺为:在尼龙罐中球磨,以去离子水或酒精作为球磨介质,锆球与球磨介质的质量比为1:(1~1.5),球磨料与锆球的质量比为1:5,球磨时间为5~8小时;步骤5中所述二次球磨工艺与步骤2中所述一次球磨工艺相同,但球磨时间为3~6小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210753357.1A CN115108825B (zh) | 2022-06-29 | 2022-06-29 | (Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210753357.1A CN115108825B (zh) | 2022-06-29 | 2022-06-29 | (Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115108825A CN115108825A (zh) | 2022-09-27 |
CN115108825B true CN115108825B (zh) | 2023-09-15 |
Family
ID=83330772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210753357.1A Active CN115108825B (zh) | 2022-06-29 | 2022-06-29 | (Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115108825B (zh) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11278927A (ja) * | 1998-01-14 | 1999-10-12 | Kyocera Corp | 誘電体磁器組成物、誘電体磁器の製造方法並びに誘電体共振器 |
JP2002187771A (ja) * | 2000-12-20 | 2002-07-05 | Kyocera Corp | 誘電体磁器およびこれを用いた誘電体共振器 |
JP2003034573A (ja) * | 2000-11-20 | 2003-02-07 | Kyocera Corp | 誘電体磁器及びこれを用いた誘電体共振器 |
JP2012046374A (ja) * | 2010-08-26 | 2012-03-08 | Kyocera Corp | 誘電体セラミックスおよび共振器 |
CN102603287A (zh) * | 2012-03-15 | 2012-07-25 | 南京工业大学 | 一种中介电常数微波介质陶瓷及其制备方法 |
CN103130499A (zh) * | 2011-11-30 | 2013-06-05 | 深圳市大富科技股份有限公司 | 一种微波介质陶瓷材料的制备方法 |
CN103601487A (zh) * | 2013-11-29 | 2014-02-26 | 电子科技大学 | 一种(SrCa)TiO3-LaAlO3基微波介质陶瓷材料及其制备方法 |
CN111825445A (zh) * | 2019-04-22 | 2020-10-27 | 中南大学深圳研究院 | 一种高介电常数微波介质陶瓷材料、制备及其应用 |
CN113956033A (zh) * | 2021-12-06 | 2022-01-21 | 武汉理工大学 | 一种中介高q值微波介质陶瓷及其制备方法 |
CN114075070A (zh) * | 2020-08-13 | 2022-02-22 | 华为技术有限公司 | 一种复相微波陶瓷材料及其制作方法和电子器件 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103172376B (zh) * | 2013-03-20 | 2014-07-09 | 华为技术有限公司 | 一种白钨矿型微波介质陶瓷材料及其制备方法 |
-
2022
- 2022-06-29 CN CN202210753357.1A patent/CN115108825B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11278927A (ja) * | 1998-01-14 | 1999-10-12 | Kyocera Corp | 誘電体磁器組成物、誘電体磁器の製造方法並びに誘電体共振器 |
JP2003034573A (ja) * | 2000-11-20 | 2003-02-07 | Kyocera Corp | 誘電体磁器及びこれを用いた誘電体共振器 |
JP2002187771A (ja) * | 2000-12-20 | 2002-07-05 | Kyocera Corp | 誘電体磁器およびこれを用いた誘電体共振器 |
JP2012046374A (ja) * | 2010-08-26 | 2012-03-08 | Kyocera Corp | 誘電体セラミックスおよび共振器 |
CN103130499A (zh) * | 2011-11-30 | 2013-06-05 | 深圳市大富科技股份有限公司 | 一种微波介质陶瓷材料的制备方法 |
CN102603287A (zh) * | 2012-03-15 | 2012-07-25 | 南京工业大学 | 一种中介电常数微波介质陶瓷及其制备方法 |
CN103601487A (zh) * | 2013-11-29 | 2014-02-26 | 电子科技大学 | 一种(SrCa)TiO3-LaAlO3基微波介质陶瓷材料及其制备方法 |
CN111825445A (zh) * | 2019-04-22 | 2020-10-27 | 中南大学深圳研究院 | 一种高介电常数微波介质陶瓷材料、制备及其应用 |
CN114075070A (zh) * | 2020-08-13 | 2022-02-22 | 华为技术有限公司 | 一种复相微波陶瓷材料及其制作方法和电子器件 |
CN113956033A (zh) * | 2021-12-06 | 2022-01-21 | 武汉理工大学 | 一种中介高q值微波介质陶瓷及其制备方法 |
Non-Patent Citations (3)
Title |
---|
(1-x)LaAlO_3-xSrTiO_3陶瓷结构及介电性能研究;肖鹏;丁士华;李常昊;张瑶;刘杨琼;;压电与声光(03);第1-8页 * |
0.6Ca_xSr_(1-x)TiO_3-0.4LaAlO_3(x=0.6~0.9)微波介电陶瓷的微观结构及介电性能研究;贾希彬;衣峻志;刘利;徐越;赵萍;王雪;;齐鲁工业大学学报(01);第1-8页 * |
Microwave dielectric characteristics of [(Mg1-x-yCax)La-y](Ti1-yAly)O-3 ceramic series;Tang, Bin;《JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS》;第3551-3554页 * |
Also Published As
Publication number | Publication date |
---|---|
CN115108825A (zh) | 2022-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103601487B (zh) | 一种(SrCa)TiO3-LaAlO3基微波介质陶瓷材料及其制备方法 | |
CN1117708C (zh) | 可低温烧结的低损耗介质陶瓷组合物及其制备方法 | |
CN108358632B (zh) | 一种超低温烧结高Q×f值微波介质材料及其制备方法 | |
CN111302788B (zh) | 一种具有高Qf值低介电常数的陶瓷材料及其制备方法 | |
CN108358633B (zh) | 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法 | |
CN110981439A (zh) | 一种微波陶瓷粉料及其制备方法和其在介质滤波器中的应用 | |
CN111302787A (zh) | 一种具有高Qf高强度的微波介质陶瓷材料及其制备方法 | |
CN105254293A (zh) | 一种微波介质陶瓷材料及其制备方法 | |
CN108863322A (zh) | 一种低介电微波介质陶瓷及其制备方法 | |
CN103435349B (zh) | 一种锰离子取代制备高品质因数铌酸钕微波介质陶瓷 | |
CN115108825B (zh) | (Sr,Ca)(Ti,Ga)O3-LaAlO3复合微波介质陶瓷材料及其制备方法 | |
CN1821171A (zh) | 一种低温烧结的微波介质陶瓷及其制备方法 | |
CN111925199A (zh) | 一种低温烧结微波介质陶瓷材料及其制备方法 | |
CN113956033B (zh) | 一种中介高q值微波介质陶瓷及其制备方法 | |
CN111646796B (zh) | 低温烧结低介微波陶瓷材料Sr2VxO7及其制备方法 | |
CN112266238B (zh) | 一种微波器件用的低介电常数陶瓷材料及其制备方法 | |
CN109650886B (zh) | 一种Ba-Mg-Ta系LTCC材料及其制备方法 | |
CN111825445B (zh) | 一种高介电常数微波介质陶瓷材料、制备及其应用 | |
CN111423227B (zh) | 具有中介电常数高Qf的微波介质陶瓷材料及其制备方法 | |
CN113429204A (zh) | 一种锆锡钛系微波介质陶瓷材料及其制备方法 | |
CN112500153A (zh) | 一种温度系数可调低损耗介电常数微波介质陶瓷及其制备方法 | |
CN113292338B (zh) | 一种Ba-Co-V基低介低烧微波陶瓷材料及其制备方法 | |
CN112250436B (zh) | 一种陶瓷材料及其制备方法与应用 | |
CN110395984A (zh) | 一种低温烧结微波陶瓷材料及其制备方法 | |
CN115784718B (zh) | 一种微波介质陶瓷瓷粉及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |