CN115094295B - 一种高熵合金粉末及其涂层和涂层的制备方法 - Google Patents

一种高熵合金粉末及其涂层和涂层的制备方法 Download PDF

Info

Publication number
CN115094295B
CN115094295B CN202210717079.4A CN202210717079A CN115094295B CN 115094295 B CN115094295 B CN 115094295B CN 202210717079 A CN202210717079 A CN 202210717079A CN 115094295 B CN115094295 B CN 115094295B
Authority
CN
China
Prior art keywords
powder
entropy
coating
alloy powder
entropy alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210717079.4A
Other languages
English (en)
Other versions
CN115094295A (zh
Inventor
丁红瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Marine Equipment and Technology Institute Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Marine Equipment and Technology Institute Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology, Marine Equipment and Technology Institute Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202210717079.4A priority Critical patent/CN115094295B/zh
Publication of CN115094295A publication Critical patent/CN115094295A/zh
Priority to KR1020237044006A priority patent/KR20240032743A/ko
Priority to PCT/CN2023/075095 priority patent/WO2023246119A1/zh
Application granted granted Critical
Publication of CN115094295B publication Critical patent/CN115094295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种高熵合金粉末及其涂层和涂层的制备方法,高熵合金粉末按原子百分比组成如下:Ti:20%~21.56%、Zr:20%~21.56%、Cu:20%~21.56%、Ni:20%~21.56%、Al:10%~10.76%、Co:3%~10%。先采用气雾化设备制备TiZrCuNiAl0.5高熵合金粉末,再与Co粉末混合均匀,得到粒径范围在50~180μm的高熵合金粉末。对钛合金基板打磨喷砂,并进行预热,再采用激光熔覆工艺将得到的高熵合金粉末熔融后涂敷在钛合金基板表面得到高熵非晶‑纳米晶涂层。所得的高熵非晶‑纳米晶涂层具有硬度高,组织细小,耐磨性能好等特点,具有良好的应用前景。

Description

一种高熵合金粉末及其涂层和涂层的制备方法
技术领域
本发明涉及一种高熵合金粉末及其涂层和涂层的制备方法,具体涉及在钛合金基板上采用激光熔覆制备TiZrCuNiAlCo高熵合金粉末及其涂层和涂层的制备方法,属于高熵合金、非晶合金、耐磨涂层新材料领域。
背景技术
钛合金具有密度低、比强度高、耐蚀、耐高温等特点,是航空航天、船舶海工行业的关键材料。然而钛合金也存在硬度低、摩擦系数高、耐磨性差等缺点,影响了其优异力学性能的发挥,限制了应用。在钛合金表面制备一层硬度高、摩擦系数低、具有优异抗磨损性能、与基板牢固结合、厚度及性能可控的高性能涂层是提高钛合金表面硬度,改善耐磨性能的有效方法。
高熵非晶合金是高熵合金和非晶合金的交叉领域,结合了高熵合金的成分特点和非晶合金的性能特点,如高强度,高硬度,高耐磨,高耐蚀等,在某些特定的领域具有良好的应用前景。
CN109439995B公开了一种在45号钢基体表面激光熔覆高熵非晶合金涂层的方法,涂层的成分为:镍28~32%、钴28~32%、硅2~6%、硼2~6%、余量为铁。涂层显微维氏硬度在400HV0.1以上,最高可达729.5HV0.1,平均可达582.9HV0.1。然而,该体系的基板是钢,不是钛合金;同时涂层的硬度仍然不够高。
CN113416910B公开了一种在Q235钢基体表面等离子喷涂高熵非晶合金涂层的方法,涂层的成分为:Co 25%,Ni 25%,Cr 15~20%,Mo 5~10%,Nb 2~4%,B 14%和Si6%;涂层硬度在700HV以上,厚度约50~300μm。然而,该体系的基板是Q235钢,不是钛合金;同时涂层的厚度不够厚。
目前尚没有见到关于在钛合金基板上制备高熵非晶合金涂层的报道。基于此,需要开发出一种在钛合金基板制备高熵非晶合金-纳米晶涂层的方法,使得涂层硬度高,耐磨性好,能够拓展钛合金材料的应用范围。
发明内容
发明目的:本发明的第一目的是提供一种高熵合金粉末,本发明的第二目的是提供一种硬度高、耐磨性好的高熵非晶-纳米晶涂层;本发明的第三目的是提供一种该高熵非晶-纳米晶涂层的制备方法。
技术方案:本发明所述一种高熵合金粉末,所述高熵合金粉末按原子百分比包括Ti:20%~21.56%、Zr:20%~21.56%、Cu:20%~21.56%、Ni:20%~21.56%、Al:10%~10.76%、Co:3%~10%。
其中,所述高熵合金粉末的粒径为50~180μm。
本发明还包括所述的高熵合金粉末制备的高熵非晶-纳米晶涂层。
其中,所述高熵非晶-纳米晶涂层的维氏硬度>750HV,所述高熵非晶-纳米晶涂层的厚度为100~500μm。
一种本发明所述高熵非晶-纳米晶涂层的制备方法,以钛合金为基板,通过激光熔覆工艺将本发明所述的高熵合金粉末涂覆在基板表面制得。
本发明所述的高熵非晶-纳米晶涂层的制备方法,包括以下步骤:
(1)采用气雾化制粉工艺制TiZrCuNiAl0.5高熵合金粉末;
(2)合成高熵合金粉末:将TiZrCuNiAl0.5高熵合金粉末及Co粉末材料经球磨混合均匀,用筛网进行筛分,得到混合粉末,对混合粉末进行烘干备用;
(3)钛合金基板打磨喷砂:利用喷砂去除钛合金基板表面的氧化层和杂质,利用酒精擦拭去除钛合金基板表面的油污和水渍,将钛合金基板预热;
(4)激光熔覆获得涂层:将高熵合金粉末熔融,在惰性气体保护下,利用激光熔覆工艺将其涂覆在预热的钛合金基板表面即得。
其中,步骤(1)中,所述气雾化制粉工艺是在惰性气体氩气的保护下,用高压惰性氩气气流将金属液流粉碎成小液滴并快速冷凝成粉末。
其中,步骤(1)中,气雾化制粉时,Ti、Zr、Cu、Ni、Al均为质量分数>99.99%的纯金属单质,Ti:Zr:Cu:Ni:Al=2:2:2:2:1。
其中,步骤(1)中,气雾化制粉时精炼的温度为1500~1600℃,精炼的时间为5~15min,中间保温的温度为1300~1400℃,保温的时间为20~40min,雾化压力3~5MPa。
其中,步骤(2)中,球磨混合时球磨罐和研磨球均为刚玉(Al2O3)材质,研磨球和混合粉末的质量比为1:1,速率为200~300r/min,球磨时间为2h。
其中,步骤(4)中,激光熔覆时激光光斑直径约2.4mm,激光功率800~1200W,扫描速度为360~720mm/min,惰性气体为氩气。
因钛合金容易氧化,涂层应力大,易开裂,本申请采用Ti:Zr:Cu:Ni:Al、Co六种元素制备的高熵合金粉末熔融后激光熔覆在钛合金基板表面,可以克服上述问题,得到的涂层硬度高,组织细小,耐磨性能好。
有益效果:与现有技术相比,本发明具有如下显著优点:
(1)本发明所采用的材料价格便宜,不含贵金属及昂贵的Sc等元素;制备工艺简单,易于实现。
(2)本发明制备的高熵合金粉末可以用于在钛合金表面制备高熵非晶-纳米晶涂层。
(3)本发明所制备的高熵非晶-纳米晶涂层硬度高,组织细小,耐磨性能好。
附图说明
图1为实施例1得到高熵非晶合金-纳米晶涂层XRD图;
图2为实施例1得到高熵非晶合金-纳米晶涂层的SEM图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
实施例1
1、制备TiZrCuNiAl0.5高熵合金粉末:
采用气雾化方法制备TiZrCuNiAl0.5高熵合金粉末,按原子百分比进行配料,所采用Ti、Zr、Cu、Ni、Al均为质量分数>99.99%的纯金属单质,Ti:Zr:Cu:Ni:Al=2:2:2:2:1,精炼温度1500℃,精炼时间15min,中间保温温度1300℃,保温时长20min,雾化压力3MPa,通过高速气流将液态金属流粉碎为小滴并快速冷凝成TiZrCuNiAl0.5高熵合金粉末。
2、合成高熵合金粉末:
将TiZrCuNiAl0.5高熵合金粉末及Co粉末材料经球磨混合均匀得到混合粉末,其中Ti:20%、Zr:20%、Cu:20%、Ni:20%、Al:10%、Co:10%,总原子百分比为100%。球磨的具体参数为:球磨罐和研磨球均为刚玉(Al2O3)材质。将研磨球和混合粉末以质量比1:1的比例放置入球磨罐中,顺时针以200r/min的速率球磨2h,用孔径为180μm的筛网进行筛分,去掉研磨球,混合好的粉末加热至100℃,真空烘干4h,自然冷却用于后续熔覆实验。
3、钛合金基板打磨喷砂:
选用TC4钛合金基板,利用喷砂去除TC4钛合金基板表面的氧化层和杂质,利用酒精擦拭去除TC4钛合金基板表面的油污和水渍备用,将TC4钛合金基板预热至250℃,以提高基板和涂层间的结合力。
4、激光熔覆获得涂层:
将步骤2合成的高熵合金粉末熔融,利用激光熔覆工艺将熔融的高熵合金粉末涂覆在步骤3处理过的钛合金基板表面,得到涂层;激光熔覆工艺参数为:激光光斑直径约2.4mm,激光功率800W,扫描速度为720mm/min,采用氩气作为惰性气体保护,获得高熵非晶合金-纳米晶涂层。
对本实施例得到的高熵非晶合金-纳米晶涂层进行厚度测试,得到高熵非晶合金-纳米晶涂层厚度为100μm,维氏硬度为937HV,磨损量为TC4基体的45%,耐磨性能优异。
将本实施例得到高熵非晶合金-纳米晶涂层进行XRD分析,结果如图1所示。图1为实施例1得到涂层的XRD图,由图1可以看出,其显微组织为非晶基体上析出了其它晶态相。
将本实施例得到高熵非晶合金-纳米晶涂层进行电子显微镜扫描分析,结果如图2所示。图2为实施例1得到高熵非晶合金-纳米晶涂层的SEM图,由图2可以看出,在非晶合金基体上析出纳米晶,且与图1的结果互相印证。
实施例2
1、制备TiZrCuNiAl0.5高熵合金粉末:
采用气雾化方法制备TiZrCuNiAl0.5高熵合金粉末。按原子百分比进行配料,所采用Ti、Zr、Cu、Ni、Al均为质量分数>99.99%的纯金属单质,Ti:Zr:Cu:Ni:Al=2:2:2:2:1,精炼温度1600℃,精炼时间5min,中间包保温温度1400℃,保温时长40min,雾化压力5MPa,通过高速气流将液态金属流粉碎为小滴并快速冷凝成TiZrCuNiAl0.5高熵合金粉末。
2、合成高熵合金粉末:
将TiZrCuNiAl0.5高熵合金粉末及Co粉末材料经球磨混合均匀得到混合粉末,其中Ti:21.56%、Zr:21.56%、Cu:21.56%、Ni:21.56%、Al:10.76%、Co:3%,总原子百分比为100%。球磨的具体参数为:球磨罐和研磨球均为刚玉(Al2O3)材质。将研磨球和混合粉末以1:1的比例放置入球磨罐中,顺时针以250r/min的速率球磨2h,用筛网进行筛分,去掉杂质和研磨球,将混合好的粉末加热至90℃,真空烘干4h,自然冷却用于后续熔覆实验。
3、钛合金基板打磨喷砂:
选用TC4钛合金基板,利用喷砂去除TC4钛合金基板表面的氧化层和杂质,利用酒精擦拭去除TC4钛合金基板表面的油污和水渍备用,将TC4钛合金基板预热至300℃,以提高基板和涂层间的结合力。
4、激光熔覆获得涂层:
将步骤2合成的高熵合金粉末熔融,利用激光熔覆工艺将熔融的高熵合金粉末涂覆在步骤3处理过的钛合金基板表面,得到涂层;激光熔覆工艺参数为:激光光斑直径约2.4mm,激光功率1200W,扫描速度为360mm/min,采用氩气作为惰性气体保护,获得高熵非晶合金-纳米晶涂层。
对本实施例得到的高熵非晶合金-纳米晶涂层进行厚度测试,得到高熵非晶合金-纳米晶涂层厚度为500μm,维氏硬度为795HV,磨损量为TC4基体的70%,耐磨性能优异。
实施例3
1、制备TiZrCuNiAl0.5高熵合金粉末:
采用气雾化方法制备TiZrCuNiAl0.5高熵合金粉末。按原子百分比进行配料,所采用Ti、Zr、Cu、Ni、Al均为质量分数>99.99%的纯金属单质,Ti:Zr:Cu:Ni:Al=2:2:2:2:1,精炼温度1550℃,精炼时间10min,中间保温温度1360℃,保温时长30min,雾化压力4MPa,通过高速气流将液态金属流粉碎为小滴并快速冷凝成TiZrCuNiAl0.5高熵合金粉末。
2、合成高熵合金粉末:
将TiZrCuNiAl0.5高熵合金粉末及Co粉末材料经球磨混合均匀得到混合粉末,其中Ti:20.89%、Zr:20.89%、Cu:20.89%、Ni:20.89%、Al:10.44%、Co:6%,总原子百分比为100%。球磨的具体参数为:球磨罐和研磨球均为刚玉(Al2O3)材质。将研磨球和混合粉末以1:1的比例放置入球磨罐中,顺时针以300r/min的速率球磨2h,用筛网进行筛分,去掉杂质和研磨球,将混合好的粉末加热至80℃,真空烘干4h,自然冷却用于后续熔覆实验。
3、钛合金基板打磨喷砂:
选用TC4钛合金基板,利用喷砂去除TC4钛合金基板表面的氧化层和杂质,利用酒精擦拭去除TC4钛合金基板表面的油污和水渍备用,将TC4钛合金基板预热至350℃,以提高基板和涂层间的结合力。
4、激光熔覆获得涂层:
将步骤2合成的高熵合金粉末熔融,利用激光熔覆工艺将熔融的高熵合金粉末涂覆在步骤3处理过的钛合金基板表面,得到涂层;激光熔覆工艺参数为:激光光斑直径约2.4mm,激光功率1000W,扫描速度为480mm/min,采用氮气作为惰性气体保护,获得高熵非晶合金-纳米晶涂层。
对本实施例得到的高熵非晶合金-纳米晶涂层进行厚度测试,得到高熵非晶合金-纳米晶涂层厚度为260μm,维氏硬度为890HV,磨损量为TC4基体的50%,耐磨性能优异。

Claims (5)

1.一种高熵合金粉末,其特征在于,所述高熵合金粉末按原子百分比包括Ti:20%~21.56%、Zr:20%~21.56%、Cu:20%~21.56%、Ni:20%~21.56%、Al:10%~10.76%、Co: 3%~10%,其中,Ti:Zr:Cu:Ni:Al=2:2:2:2:1,所述TiZrCuNiAl0.5的制备包括(1)采用气雾化制粉工艺制TiZrCuNiAl0.5高熵合金粉末,所述气雾化制粉工艺是在惰性气体氩气的保护下,用高压惰性氩气气流将金属液流粉碎成小液滴并快速冷凝成粉末,气雾化制粉时,Ti:Zr:Cu:Ni:Al均为质量分数>99.99%的纯金属单质,精炼的温度为1500~1600℃,精炼的时间为5~15 min,中间保温的温度为1300~1400 ℃,保温的时间为20~40 min,雾化压力为3~5MPa;
(2)合成高熵合金粉末:将TiZrCuNiAl0.5高熵合金粉末及Co粉末材料经球磨混合均匀,用筛网进行筛分,得到混合粉末,对混合粉末进行烘干备用,球磨混合时,球磨罐和研磨球均为刚玉材质,速率为200~300 r/min。
2.根据权利要求1所述的高熵合金粉末,其特征在于,所述高熵合金粉末的粒径为50~180μm。
3.权利要求1或2所述的高熵合金粉末制备的高熵非晶-纳米晶涂层。
4.根据权利要求3所述的高熵非晶-纳米晶涂层,其特征在于,所述高熵非晶-纳米晶涂层的维氏硬度>750HV,所述高熵非晶-纳米晶涂层的厚度为100~500μm。
5.一种权利要求3或4所述高熵非晶-纳米晶涂层的制备方法,其特征在于,以钛合金为基板,通过激光熔覆工艺将权利要求3或权利要求4所述的高熵合金粉末涂覆在基板表面制得,包括以下步骤:
(1)采用气雾化制粉工艺制TiZrCuNiAl0.5高熵合金粉末,所述气雾化制粉工艺是在惰性气体氩气的保护下,用高压惰性氩气气流将金属液流粉碎成小液滴并快速冷凝成粉末,气雾化制粉时,Ti:Zr:Cu:Ni:Al均为质量分数>99.99%的纯金属单质,精炼的温度为1500~1600℃,精炼的时间为5~15 min,中间保温的温度为1300~1400 ℃,保温的时间为20~40min,雾化压力为3~5 MPa;
(2)合成高熵合金粉末:将TiZrCuNiAl0.5高熵合金粉末及Co粉末材料经球磨混合均匀,用筛网进行筛分,得到混合粉末,对混合粉末进行烘干备用,球磨混合时,球磨罐和研磨球均为刚玉材质,速率为200~300 r/min;
(3)钛合金基板打磨喷砂:利用喷砂去除钛合金基板表面的氧化层和杂质,利用酒精擦拭去除钛合金基板表面的油污和水渍,将钛合金基板预热;
(4)激光熔覆获得涂层:将高熵合金粉末熔融,在惰性气体保护下,利用激光熔覆工艺将其涂覆在预热的钛合金基板表面即得,激光熔覆涂层时,激光功率800~1200 W,扫描速度为360~720 mm/min,惰性气体为氩气。
CN202210717079.4A 2022-06-23 2022-06-23 一种高熵合金粉末及其涂层和涂层的制备方法 Active CN115094295B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210717079.4A CN115094295B (zh) 2022-06-23 2022-06-23 一种高熵合金粉末及其涂层和涂层的制备方法
KR1020237044006A KR20240032743A (ko) 2022-06-23 2023-02-09 고(高)엔트로피 합금 분말 및 이의 코팅층과 코팅층 제조방법
PCT/CN2023/075095 WO2023246119A1 (zh) 2022-06-23 2023-02-09 一种高熵合金粉末及其涂层和涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210717079.4A CN115094295B (zh) 2022-06-23 2022-06-23 一种高熵合金粉末及其涂层和涂层的制备方法

Publications (2)

Publication Number Publication Date
CN115094295A CN115094295A (zh) 2022-09-23
CN115094295B true CN115094295B (zh) 2023-03-31

Family

ID=83293254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210717079.4A Active CN115094295B (zh) 2022-06-23 2022-06-23 一种高熵合金粉末及其涂层和涂层的制备方法

Country Status (3)

Country Link
KR (1) KR20240032743A (zh)
CN (1) CN115094295B (zh)
WO (1) WO2023246119A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094295B (zh) * 2022-06-23 2023-03-31 江苏科技大学 一种高熵合金粉末及其涂层和涂层的制备方法
CN115961251B (zh) * 2022-12-19 2023-08-08 广东省科学院中乌焊接研究所 一种具有纳米双相结构涂层的钛合金零件及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW567230B (en) * 1998-12-10 2003-12-21 Univ Tsinghua High-entropy multi-elements alloys
US20020159914A1 (en) * 2000-11-07 2002-10-31 Jien-Wei Yeh High-entropy multielement alloys
JP4190720B2 (ja) * 2000-11-29 2008-12-03 國立清華大學 多元合金
FR2905707B1 (fr) * 2006-09-08 2009-01-23 Centre Nat Rech Scient Procede pour deposer sur un substrat une couche mince d'alliage metallique et alliage metallique sous forme de couche mince.
CN104862510B (zh) * 2015-06-03 2016-09-07 华中科技大学 一种高熵合金颗粒增强铝基复合材料及其制备方法
CN105562680B (zh) * 2016-01-05 2017-12-05 济南大学 一种高熵合金粉末和热压烧结制备高熵合金涂层的方法
CN112981279B (zh) * 2021-02-04 2022-08-16 江苏科技大学 一种基于三种三元非晶合金元素组合的五元高熵非晶合金及其制备方法
CN113061763B (zh) * 2021-03-23 2022-05-24 广东省科学院智能制造研究所 一种高熵合金及其制备方法
CN113278967B (zh) * 2021-05-14 2022-11-04 贵州大学 高硬度高耐磨性的难熔高熵金属间化合物涂层及其制备方法
CN113969369A (zh) * 2021-10-22 2022-01-25 西北工业大学 新型Ti-Zr-Hf-Ni-Co-Cu高熵形状记忆合金及其制备方法
CN114164425A (zh) * 2021-11-11 2022-03-11 昆明理工大学 一种激光熔覆用低密度难熔高熵合金熔覆层制备方法
CN115094295B (zh) * 2022-06-23 2023-03-31 江苏科技大学 一种高熵合金粉末及其涂层和涂层的制备方法

Also Published As

Publication number Publication date
KR20240032743A (ko) 2024-03-12
WO2023246119A1 (zh) 2023-12-28
CN115094295A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN115094295B (zh) 一种高熵合金粉末及其涂层和涂层的制备方法
DE60022053T2 (de) Verfahren zur stahlherstellung
US11850659B2 (en) High entropy alloy powder for laser cladding and application method thereof
CN109055885B (zh) 一种利用超音速喷涂制备高碳高铌高铬耐磨蚀合金涂层的方法及其所用预合金粉末
CN109778042B (zh) 一种高强度钨基合金及其制备方法
CN113564577B (zh) 一种铜基表面金属间化合物强化梯度高熵合金的涂层及制备方法
CN108103494A (zh) 一种新型高熵合金涂层及其制备方法
WO1991010755A2 (en) Plasma spraying of rapidly solidified aluminum base alloys
CN114939654B (zh) 一种用于激光增材制造的高熵合金粉末及其制备方法、应用
CN112974813B (zh) 一种钛基复合粉末及其制备方法、原位增强钛基复合涂层及其制备方法
CN112384636A (zh) 制造铝合金零件的方法
CN113549801A (zh) 一种第二相强化高熵粘结剂硬质合金及其制备方法
CN113564576A (zh) 一种陶瓷相梯度的单相高熵合金涂层材料及其制备方法
CN113430513A (zh) 一种镁合金表面冷喷涂高熵合金涂层的制备方法
CN115418595B (zh) 一种抗空蚀-腐蚀的高熵合金涂层及其制备方法
CN109136788B (zh) 一种高碳高合金非晶预合金粉末及其制备方法
CN115074724B (zh) 使用V元素增强Ni基耐磨激光熔覆涂层及其制备方法
CN117089834A (zh) 一种用于超高速激光熔覆的难熔高熵合金粉末及其涂层和制备方法
CN116275010A (zh) 一种原位氮化物增强3d打印镍基高温合金粉末
JPH093618A (ja) TiB2系コーティングの製造方法及びこうして製造されたコーティング物品
CN113416910B (zh) 耐磨、耐蚀高熵非晶合金粉末及其涂层、涂层制备方法和应用
CN112191851B (zh) 一种高熵合金增强铝基复合材料及其制备方法
GB2560256A (en) Coated superhard particles and composite materials made from coated superhard particles
RU2674050C1 (ru) Материал покрытия
Chen et al. Effect of Submicron SiC Particles on the Properties of Alcocrfeni High Entropy Alloy Coatings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant