WO2023246119A1 - 一种高熵合金粉末及其涂层和涂层的制备方法 - Google Patents

一种高熵合金粉末及其涂层和涂层的制备方法 Download PDF

Info

Publication number
WO2023246119A1
WO2023246119A1 PCT/CN2023/075095 CN2023075095W WO2023246119A1 WO 2023246119 A1 WO2023246119 A1 WO 2023246119A1 CN 2023075095 W CN2023075095 W CN 2023075095W WO 2023246119 A1 WO2023246119 A1 WO 2023246119A1
Authority
WO
WIPO (PCT)
Prior art keywords
entropy
powder
alloy powder
coating
entropy alloy
Prior art date
Application number
PCT/CN2023/075095
Other languages
English (en)
French (fr)
Inventor
丁红瑜
Original Assignee
江苏科技大学
江苏科技大学海洋装备研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学, 江苏科技大学海洋装备研究院 filed Critical 江苏科技大学
Priority to KR1020237044006A priority Critical patent/KR20240032743A/ko
Publication of WO2023246119A1 publication Critical patent/WO2023246119A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Definitions

  • the invention relates to a high-entropy alloy powder and a coating thereof and a preparation method of the coating. Specifically, it relates to a method for preparing TiZrCuNiAlCo high-entropy alloy powder and a coating and a preparation method of the coating by laser cladding on a titanium alloy substrate. Entropy alloys, amorphous alloys, and new wear-resistant coating material fields.
  • Titanium alloy has the characteristics of low density, high specific strength, corrosion resistance, and high temperature resistance. It is a key material in the aerospace, shipbuilding and offshore engineering industries. However, titanium alloys also have shortcomings such as low hardness, high friction coefficient, and poor wear resistance, which affect their excellent mechanical properties and limit their applications. Preparing a high-performance coating on the surface of titanium alloys with high hardness, low friction coefficient, excellent anti-wear properties, firm bonding with the substrate, and controllable thickness and performance is an effective method to increase the surface hardness of titanium alloys and improve wear resistance.
  • High-entropy amorphous alloys are the intersection of high-entropy alloys and amorphous alloys. They combine the composition characteristics of high-entropy alloys and the performance characteristics of amorphous alloys, such as high strength, high hardness, high wear resistance, high corrosion resistance, etc., in Certain specific fields have good application prospects.
  • CN109439995B discloses a method for laser cladding a high-entropy amorphous alloy coating on the surface of a No. 45 steel substrate.
  • the composition of the coating is: nickel 28-32%, cobalt 28-32%, silicon 2-6%, boron 2 ⁇ 6%, the balance is iron.
  • the micro-Vickers hardness of the coating is above 400HV 0.1 , with a maximum of 729.5HV 0.1 and an average of 582.9HV 0.1 .
  • the substrate of this system is steel, not titanium alloy; and the hardness of the coating is still not high enough.
  • CN113416910B discloses a method for plasma spraying high-entropy amorphous alloy coating on the surface of Q235 steel substrate.
  • the composition of the coating is: Co 25%, Ni 25%, Cr 15 ⁇ 20%, Mo 5 ⁇ 10%, Nb 2 ⁇ 4%, B 14% and Si 6%; the coating hardness is above 700HV and the thickness is about 50 ⁇ 300 ⁇ m.
  • the substrate of this system is Q235 steel, not titanium alloy; and the thickness of the coating is not thick enough.
  • the high-entropy alloy powder is expressed in atomic percentage. Including Ti: 20% to 21.56%, Zr: 20% to 21.56%, Cu: 20% to 21.56%, Ni: 20% to 21.56%, Al: 10% to 10.76%, Co: 3% to 10%.
  • a method for preparing a high-entropy amorphous-nanocrystalline coating according to the present invention is prepared by using a titanium alloy as a substrate and coating the high-entropy alloy powder according to the present invention on the surface of the substrate through a laser cladding process.
  • the gas atomization powdering process is to use high-pressure inert argon gas flow to crush the metal liquid flow into small droplets and quickly condense it into powder under the protection of inert gas argon.
  • the high-entropy alloy powder prepared by the present invention can be used to prepare high-entropy amorphous-nanocrystalline coatings on the surface of titanium alloys.
  • Figure 1 is the XRD pattern of the high-entropy amorphous alloy-nanocrystalline coating obtained in Example 1;
  • Figure 2 is an SEM image of the high-entropy amorphous alloy-nanocrystalline coating obtained in Example 1.
  • the TiZrCuNiAl 0.5 high-entropy alloy powder and Co powder materials are uniformly mixed by ball milling to obtain a mixed powder, in which Ti: 20%, Zr: 20%, Cu: 20%, Ni: 20%, Al: 10%, Co: 10%, Total atomic percentage is 100%.
  • the specific parameters of the ball mill are: the ball mill jar and the grinding ball are both made of corundum (Al 2 O 3 ).
  • FIG. 2 is an SEM image of the high-entropy amorphous alloy-nanocrystal coating obtained in Example 1. It can be seen from Figure 2 that nanocrystals are precipitated on the amorphous alloy matrix, and the results in Figure 1 are mutually confirmed.
  • the TiZrCuNiAl 0.5 high-entropy alloy powder and Co powder materials are uniformly mixed by ball milling to obtain a mixed powder, in which Ti: 20.89%, Zr: 20.89%, Cu: 20.89%, Ni: 20.89%, Al: 10.44%, Co: 6%, Total atomic percentage is 100%.
  • the specific parameters of the ball mill are: the ball mill jar and the grinding ball are both made of corundum (Al 2 O 3 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种高熵合金粉末及其涂层和涂层的制备方法,高熵合金粉末按原子百分比组成如下:Ti:20%~21.56%、Zr:20%~21.56%、Cu:20%~21.56%、Ni:20%~21.56%、Al:10%~10.76%、Co:3%~10%。先采用气雾化设备制备TiZrCuNiAl0.5高熵合金粉末,再与Co粉末混合均匀,得到粒径范围在50~180μm的高熵合金粉末。对钛合金基板打磨喷砂,并进行预热,再采用激光熔覆工艺将得到的高熵合金粉末熔融后涂敷在钛合金基板表面得到高熵非晶-纳米晶涂层。所得的高熵非晶-纳米晶涂层具有硬度高,组织细小,耐磨性能好等特点,具有良好的应用前景。

Description

一种高熵合金粉末及其涂层和涂层的制备方法 技术领域
本发明涉及一种高熵合金粉末及其涂层和涂层的制备方法,具体涉及在钛合金基板上采用激光熔覆制备TiZrCuNiAlCo高熵合金粉末及其涂层和涂层的制备方法,属于高熵合金、非晶合金、耐磨涂层新材料领域。
背景技术
钛合金具有密度低、比强度高、耐蚀、耐高温等特点,是航空航天、船舶海工行业的关键材料。然而钛合金也存在硬度低、摩擦系数高、耐磨性差等缺点,影响了其优异力学性能的发挥,限制了应用。在钛合金表面制备一层硬度高、摩擦系数低、具有优异抗磨损性能、与基板牢固结合、厚度及性能可控的高性能涂层是提高钛合金表面硬度,改善耐磨性能的有效方法。
高熵非晶合金是高熵合金和非晶合金的交叉领域,结合了高熵合金的成分特点和非晶合金的性能特点,如高强度,高硬度,高耐磨,高耐蚀等,在某些特定的领域具有良好的应用前景。
CN109439995B公开了一种在45号钢基体表面激光熔覆高熵非晶合金涂层的方法,涂层的成分为:镍28~32%、钴28~32%、硅2~6%、硼2~6%、余量为铁。涂层显微维氏硬度在400HV0.1以上,最高可达729.5HV0.1,平均可达582.9HV0.1。然而,该体系的基板是钢,不是钛合金;同时涂层的硬度仍然不够高。
CN113416910B公开了一种在Q235钢基体表面等离子喷涂高熵非晶合金涂层的方法,涂层的成分为:Co 25%,Ni 25%,Cr 15~20%,Mo 5~10%,Nb 2~4%,B 14%和Si 6%;涂层硬度在700HV以上,厚度约50~300μm。然而,该体系的基板是Q235钢,不是钛合金;同时涂层的厚度不够厚。
目前尚没有见到关于在钛合金基板上制备高熵非晶合金涂层的报道。基于此,需要开发出一种在钛合金基板制备高熵非晶合金-纳米晶涂层的方法,使得涂层硬度高,耐磨性好,能够拓展钛合金材料的应用范围。
发明内容
发明目的:本发明的第一目的是提供一种高熵合金粉末,本发明的第二目的是提供一种硬度高、耐磨性好的高熵非晶-纳米晶涂层;本发明的第三目的是提供一种该高熵非晶-纳米晶涂层的制备方法。
技术方案:本发明所述一种高熵合金粉末,所述高熵合金粉末按原子百分比 包括Ti:20%~21.56%、Zr:20%~21.56%、Cu:20%~21.56%、Ni:20%~21.56%、Al:10%~10.76%、Co:3%~10%。
其中,所述高熵合金粉末的粒径为50~180μm。
本发明还包括所述的高熵合金粉末制备的高熵非晶-纳米晶涂层。
其中,所述高熵非晶-纳米晶涂层的维氏硬度>750HV,所述高熵非晶-纳米晶涂层的厚度为100~500μm。
一种本发明所述高熵非晶-纳米晶涂层的制备方法,以钛合金为基板,通过激光熔覆工艺将本发明所述的高熵合金粉末涂覆在基板表面制得。
本发明所述的高熵非晶-纳米晶涂层的制备方法,包括以下步骤:
(1)采用气雾化制粉工艺制TiZrCuNiAl0.5高熵合金粉末;
(2)合成高熵合金粉末:将TiZrCuNiAl0.5高熵合金粉末及Co粉末材料经球磨混合均匀,用筛网进行筛分,得到混合粉末,对混合粉末进行烘干备用;
(3)钛合金基板打磨喷砂:利用喷砂去除钛合金基板表面的氧化层和杂质,利用酒精擦拭去除钛合金基板表面的油污和水渍,将钛合金基板预热;
(4)激光熔覆获得涂层:将高熵合金粉末熔融,在惰性气体保护下,利用激光熔覆工艺将其涂覆在预热的钛合金基板表面即得。
其中,步骤(1)中,所述气雾化制粉工艺是在惰性气体氩气的保护下,用高压惰性氩气气流将金属液流粉碎成小液滴并快速冷凝成粉末。
其中,步骤(1)中,气雾化制粉时,Ti、Zr、Cu、Ni、Al均为质量分数>99.99%的纯金属单质,Ti:Zr:Cu:Ni:Al=2:2:2:2:1。
其中,步骤(1)中,气雾化制粉时精炼的温度为1500~1600℃,精炼的时间为5~15min,中间保温的温度为1300~1400℃,保温的时间为20~40min,雾化压力3~5MPa。
其中,步骤(2)中,球磨混合时球磨罐和研磨球均为刚玉(Al2O3)材质,研磨球和混合粉末的质量比为1:1,速率为200~300r/min,球磨时间为2h。
其中,步骤(4)中,激光熔覆时激光光斑直径约2.4mm,激光功率800~1200W,扫描速度为360~720mm/min,惰性气体为氩气。
因钛合金容易氧化,涂层应力大,易开裂,本申请采用Ti:Zr:Cu:Ni:Al、Co六种元素制备的高熵合金粉末熔融后激光熔覆在钛合金基板表面,可以克服上述问题,得到的涂层硬度高,组织细小,耐磨性能好。
有益效果:与现有技术相比,本发明具有如下显著优点:
(1)本发明所采用的材料价格便宜,不含贵金属及昂贵的Sc等元素;制备 工艺简单,易于实现。
(2)本发明制备的高熵合金粉末可以用于在钛合金表面制备高熵非晶-纳米晶涂层。
(3)本发明所制备的高熵非晶-纳米晶涂层硬度高,组织细小,耐磨性能好。
附图说明
图1为实施例1得到高熵非晶合金-纳米晶涂层XRD图;
图2为实施例1得到高熵非晶合金-纳米晶涂层的SEM图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
实施例1
1、制备TiZrCuNiAl0.5高熵合金粉末:
采用气雾化方法制备TiZrCuNiAl0.5高熵合金粉末,按原子百分比进行配料,所采用Ti、Zr、Cu、Ni、Al均为质量分数>99.99%的纯金属单质,Ti:Zr:Cu:Ni:Al=2:2:2:2:1,精炼温度1500℃,精炼时间15min,中间保温温度1300℃,保温时长20min,雾化压力3MPa,通过高速气流将液态金属流粉碎为小滴并快速冷凝成TiZrCuNiAl0.5高熵合金粉末。
2、合成高熵合金粉末:
将TiZrCuNiAl0.5高熵合金粉末及Co粉末材料经球磨混合均匀得到混合粉末,其中Ti:20%、Zr:20%、Cu:20%、Ni:20%、Al:10%、Co:10%,总原子百分比为100%。球磨的具体参数为:球磨罐和研磨球均为刚玉(Al2O3)材质。将研磨球和混合粉末以质量比1:1的比例放置入球磨罐中,顺时针以200r/min的速率球磨2h,用孔径为180μm的筛网进行筛分,去掉研磨球,混合好的粉末加热至100℃,真空烘干4h,自然冷却用于后续熔覆实验。
3、钛合金基板打磨喷砂:
选用TC4钛合金基板,利用喷砂去除TC4钛合金基板表面的氧化层和杂质,利用酒精擦拭去除TC4钛合金基板表面的油污和水渍备用,将TC4钛合金基板预热至250℃,以提高基板和涂层间的结合力。
4、激光熔覆获得涂层:
将步骤2合成的高熵合金粉末熔融,利用激光熔覆工艺将熔融的高熵合金粉末涂覆在步骤3处理过的钛合金基板表面,得到涂层;激光熔覆工艺参数为:激光光斑直径约2.4mm,激光功率800W,扫描速度为720mm/min,采用氩气作为惰性气体保护,获得高熵非晶合金-纳米晶涂层。
对本实施例得到的高熵非晶合金-纳米晶涂层进行厚度测试,得到高熵非晶合金-纳米晶涂层厚度为100μm,维氏硬度为937HV,磨损量为TC4基体的45%,耐磨性能优异。
将本实施例得到高熵非晶合金-纳米晶涂层进行XRD分析,结果如图1所示。图1为实施例1得到涂层的XRD图,由图1可以看出,其显微组织为非晶基体上析出了其它晶态相。
将本实施例得到高熵非晶合金-纳米晶涂层进行电子显微镜扫描分析,结果如图2所示。图2为实施例1得到高熵非晶合金-纳米晶涂层的SEM图,由图2可以看出,在非晶合金基体上析出纳米晶,且与图1的结果互相印证。
实施例2
1、制备TiZrCuNiAl0.5高熵合金粉末:
采用气雾化方法制备TiZrCuNiAl0.5高熵合金粉末。按原子百分比进行配料,所采用Ti、Zr、Cu、Ni、Al均为质量分数>99.99%的纯金属单质,Ti:Zr:Cu:Ni:Al=2:2:2:2:1,精炼温度1600℃,精炼时间5min,中间包保温温度1400℃,保温时长40min,雾化压力5MPa,通过高速气流将液态金属流粉碎为小滴并快速冷凝成TiZrCuNiAl0.5高熵合金粉末。
2、合成高熵合金粉末:
将TiZrCuNiAl0.5高熵合金粉末及Co粉末材料经球磨混合均匀得到混合粉末,其中Ti:21.56%、Zr:21.56%、Cu:21.56%、Ni:21.56%、Al:10.76%、Co:3%,总原子百分比为100%。球磨的具体参数为:球磨罐和研磨球均为刚玉(Al2O3)材质。将研磨球和混合粉末以1:1的比例放置入球磨罐中,顺时针以250r/min的速率球磨2h,用筛网进行筛分,去掉杂质和研磨球,将混合好的粉末加热至90℃,真空烘干4h,自然冷却用于后续熔覆实验。
3、钛合金基板打磨喷砂:
选用TC4钛合金基板,利用喷砂去除TC4钛合金基板表面的氧化层和杂质,利用酒精擦拭去除TC4钛合金基板表面的油污和水渍备用,将TC4钛合金基板预热至300℃,以提高基板和涂层间的结合力。
4、激光熔覆获得涂层:
将步骤2合成的高熵合金粉末熔融,利用激光熔覆工艺将熔融的高熵合金粉末涂覆在步骤3处理过的钛合金基板表面,得到涂层;激光熔覆工艺参数为:激光光斑直径约2.4mm,激光功率1200W,扫描速度为360mm/min,采用氩气作为惰性气体保护,获得高熵非晶合金-纳米晶涂层。
对本实施例得到的高熵非晶合金-纳米晶涂层进行厚度测试,得到高熵非晶合金-纳米晶涂层厚度为500μm,维氏硬度为795HV,磨损量为TC4基体的70%,耐磨性能优异。
实施例3
1、制备TiZrCuNiAl0.5高熵合金粉末:
采用气雾化方法制备TiZrCuNiAl0.5高熵合金粉末。按原子百分比进行配料,所采用Ti、Zr、Cu、Ni、Al均为质量分数>99.99%的纯金属单质,Ti:Zr:Cu:Ni:Al=2:2:2:2:1,精炼温度1550℃,精炼时间10min,中间保温温度1360℃,保温时长30min,雾化压力4MPa,通过高速气流将液态金属流粉碎为小滴并快速冷凝成TiZrCuNiAl0.5高熵合金粉末。
2、合成高熵合金粉末:
将TiZrCuNiAl0.5高熵合金粉末及Co粉末材料经球磨混合均匀得到混合粉末,其中Ti:20.89%、Zr:20.89%、Cu:20.89%、Ni:20.89%、Al:10.44%、Co:6%,总原子百分比为100%。球磨的具体参数为:球磨罐和研磨球均为刚玉(Al2O3)材质。将研磨球和混合粉末以1:1的比例放置入球磨罐中,顺时针以300r/min的速率球磨2h,用筛网进行筛分,去掉杂质和研磨球,将混合好的粉末加热至80℃,真空烘干4h,自然冷却用于后续熔覆实验。
3、钛合金基板打磨喷砂:
选用TC4钛合金基板,利用喷砂去除TC4钛合金基板表面的氧化层和杂质,利用酒精擦拭去除TC4钛合金基板表面的油污和水渍备用,将TC4钛合金基板预热至350℃,以提高基板和涂层间的结合力。
4、激光熔覆获得涂层:
将步骤2合成的高熵合金粉末熔融,利用激光熔覆工艺将熔融的高熵合金粉末涂覆在步骤3处理过的钛合金基板表面,得到涂层;激光熔覆工艺参数为:激光光斑直径约2.4mm,激光功率1000W,扫描速度为480mm/min,采用氮气作为惰性气体保护,获得高熵非晶合金-纳米晶涂层。
对本实施例得到的高熵非晶合金-纳米晶涂层进行厚度测试,得到高熵非晶合金-纳米晶涂层厚度为260μm,维氏硬度为890HV,磨损量为TC4基体的50%,耐磨性能优异。

Claims (5)

  1. 一种高熵合金粉末,其特征在于,所述高熵合金粉末按原子百分比包括Ti:20%~21.56%、Zr:20%~21.56%、Cu:20%~21.56%、Ni:20%~21.56%、Al:10%~10.76%、Co:3%~10%,其中,Ti:Zr:Cu:Ni:Al=2:2:2:2:1,所述TiZrCuNiAl0.5的制备包括(1)采用气雾化制粉工艺制TiZrCuNiAl0.5高熵合金粉末,所述气雾化制粉工艺是在惰性气体氩气的保护下,用高压惰性氩气气流将金属液流粉碎成小液滴并快速冷凝成粉末,气雾化制粉时,Ti:Zr:Cu:Ni:Al均为质量分数>99.99%的纯金属单质,精炼的温度为1500~1600℃,精炼的时间为5~15min,中间保温的温度为1300~1400℃,保温的时间为20~40min,雾化压力为3~5MPa;
    (2)合成高熵合金粉末:将TiZrCuNiAl0.5高熵合金粉末及Co粉末材料经球磨混合均匀,用筛网进行筛分,得到混合粉末,对混合粉末进行烘干备用,球磨混合时,球磨罐和研磨球均为刚玉材质,速率为200~300r/min。
  2. 根据权利要求1所述的高熵合金粉末,其特征在于,所述高熵合金粉末的粒径为50~180μm。
  3. 权利要求1或2所述的高熵合金粉末制备的高熵非晶-纳米晶涂层。
  4. 根据权利要求3所述的高熵非晶-纳米晶涂层,其特征在于,所述高熵非晶-纳米晶涂层的维氏硬度>750HV,所述高熵非晶-纳米晶涂层的厚度为100~500μm。
  5. 一种权利要求3或4所述高熵非晶-纳米晶涂层的制备方法,其特征在于,以钛合金为基板,通过激光熔覆工艺将权利要求3或权利要求4所述的高熵合金粉末涂覆在基板表面制得,包括以下步骤:
    (1)采用气雾化制粉工艺制TiZrCuNiAl0.5高熵合金粉末,所述气雾化制粉工艺是在惰性气体氩气的保护下,用高压惰性氩气气流将金属液流粉碎成小液滴并快速冷凝成粉末,气雾化制粉时,Ti:Zr:Cu:Ni:Al均为质量分数>99.99%的纯金属单质,精炼的温度为1500~1600℃,精炼的时间为5~15min,中间保温的温度为1300~1400℃,保温的时间为20~40min,雾化压力为3~5MPa。;
    (2)合成高熵合金粉末:将TiZrCuNiAl0.5高熵合金粉末及Co粉末材料经球磨混合均匀,用筛网进行筛分,得到混合粉末,对混合粉末进行烘干备用,球磨混合时,球磨罐和研磨球均为刚玉材质,速率为200~300r/min;
    (3)钛合金基板打磨喷砂:利用喷砂去除钛合金基板表面的氧化层和杂质,利用酒精擦拭去除钛合金基板表面的油污和水渍,将钛合金基板预热;
    (4)激光熔覆获得涂层:将高熵合金粉末熔融,在惰性气体保护下,利用激光熔覆工艺将其涂覆在预热的钛合金基板表面即得,激光熔覆涂层时,激光功率800~1200W,扫描速度为360~720mm/min,惰性气体为氩气。
PCT/CN2023/075095 2022-06-23 2023-02-09 一种高熵合金粉末及其涂层和涂层的制备方法 WO2023246119A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237044006A KR20240032743A (ko) 2022-06-23 2023-02-09 고(高)엔트로피 합금 분말 및 이의 코팅층과 코팅층 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210717079.4A CN115094295B (zh) 2022-06-23 2022-06-23 一种高熵合金粉末及其涂层和涂层的制备方法
CN202210717079.4 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023246119A1 true WO2023246119A1 (zh) 2023-12-28

Family

ID=83293254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075095 WO2023246119A1 (zh) 2022-06-23 2023-02-09 一种高熵合金粉末及其涂层和涂层的制备方法

Country Status (3)

Country Link
KR (1) KR20240032743A (zh)
CN (1) CN115094295B (zh)
WO (1) WO2023246119A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094295B (zh) * 2022-06-23 2023-03-31 江苏科技大学 一种高熵合金粉末及其涂层和涂层的制备方法
CN115961251B (zh) * 2022-12-19 2023-08-08 广东省科学院中乌焊接研究所 一种具有纳米双相结构涂层的钛合金零件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW567230B (en) * 1998-12-10 2003-12-21 Univ Tsinghua High-entropy multi-elements alloys
CN104862510A (zh) * 2015-06-03 2015-08-26 华中科技大学 一种高熵合金颗粒增强铝基复合材料及其制备方法
CN113278967A (zh) * 2021-05-14 2021-08-20 贵州大学 高硬度高耐磨性的难熔高熵金属间化合物涂层及其制备方法
CN115094295A (zh) * 2022-06-23 2022-09-23 江苏科技大学 一种高熵合金粉末及其涂层和涂层的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020159914A1 (en) * 2000-11-07 2002-10-31 Jien-Wei Yeh High-entropy multielement alloys
JP4190720B2 (ja) * 2000-11-29 2008-12-03 國立清華大學 多元合金
FR2905707B1 (fr) * 2006-09-08 2009-01-23 Centre Nat Rech Scient Procede pour deposer sur un substrat une couche mince d'alliage metallique et alliage metallique sous forme de couche mince.
CN105562680B (zh) * 2016-01-05 2017-12-05 济南大学 一种高熵合金粉末和热压烧结制备高熵合金涂层的方法
CN112981279B (zh) * 2021-02-04 2022-08-16 江苏科技大学 一种基于三种三元非晶合金元素组合的五元高熵非晶合金及其制备方法
CN113061763B (zh) * 2021-03-23 2022-05-24 广东省科学院智能制造研究所 一种高熵合金及其制备方法
CN113969369A (zh) * 2021-10-22 2022-01-25 西北工业大学 新型Ti-Zr-Hf-Ni-Co-Cu高熵形状记忆合金及其制备方法
CN114164425A (zh) * 2021-11-11 2022-03-11 昆明理工大学 一种激光熔覆用低密度难熔高熵合金熔覆层制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW567230B (en) * 1998-12-10 2003-12-21 Univ Tsinghua High-entropy multi-elements alloys
CN104862510A (zh) * 2015-06-03 2015-08-26 华中科技大学 一种高熵合金颗粒增强铝基复合材料及其制备方法
CN113278967A (zh) * 2021-05-14 2021-08-20 贵州大学 高硬度高耐磨性的难熔高熵金属间化合物涂层及其制备方法
CN115094295A (zh) * 2022-06-23 2022-09-23 江苏科技大学 一种高熵合金粉末及其涂层和涂层的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINHONG PI; XIANCONG HE; ZHANGZHONG WANG: "Preparation of High Entropy Alloy Cu29Zr32Ti15Al5Ni19with High Glass Forming Ability", RARE METAL MATERIALS AND ENGINEERING, ELSEVIER, AMSTERDAM, NL, vol. 46, no. 7, 1 January 1900 (1900-01-01), AMSTERDAM, NL , pages 1810 - 1814, XP085266027, ISSN: 1875-5372, DOI: 10.1016/S1875-5372(17)30171-6 *
YANG SHUANG, ZHANG CHUN, CUI KAIYAN, ZHANG BANGWEI, LIAO SHUZHI: "Glass Forming Ability of Zr–(Ni, Cu) Based Ternary Metallic Glasses Based on Bond Parameter Function and Formation Enthalpy Model", MATERIALS TRANSACTIONS, THE JAPANESE INSTITUTE OF METALS AND MATERIALS, JP, vol. 63, no. 5, 1 May 2022 (2022-05-01), JP , pages 676 - 683, XP093119394, ISSN: 1345-9678, DOI: 10.2320/matertrans.MT-M2021248 *

Also Published As

Publication number Publication date
KR20240032743A (ko) 2024-03-12
CN115094295B (zh) 2023-03-31
CN115094295A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2023246119A1 (zh) 一种高熵合金粉末及其涂层和涂层的制备方法
Lin et al. Influence of laser re-melting and vacuum heat treatment on plasma-sprayed FeCoCrNiAl alloy coatings
WO2015035542A1 (zh) 抗高温材料用表面合金涂层复合材料、涂层及其制备方法
CN101144159A (zh) 一种纳米/亚微米TiB-TiC增强钛基复合材料(TiB+TiC)/Ti的制备方法
EP0511318A1 (en) PLASMA SPRAYING OF FAST-SOLID ALUMINUM BASE ALLOYS.
US5433978A (en) Method of making quasicrystal alloy powder, protective coatings and articles
CN106799496A (zh) 一种石墨和铝硅合金复合电子封装材料及其制备方法
CN110396687A (zh) 一种Ti2AlC MAX相陶瓷涂层及其冷喷涂制备方法
CN113564576A (zh) 一种陶瓷相梯度的单相高熵合金涂层材料及其制备方法
Qiu et al. A viable approach to repair neutron shielding B4C/6061 Al composite sheets through cold spray and hot rolling co-treatment
CN113186483B (zh) 一种适用于复杂工况的非晶功能性防护涂层及制备方法
Yurkova et al. Synthesis of high-entropy AlNiCoFeCrTi coating by cold spraying
CN113293366A (zh) 一种Ni3Al涂层的制备方法
CN117089834A (zh) 一种用于超高速激光熔覆的难熔高熵合金粉末及其涂层和制备方法
CN1167831C (zh) 一种激光熔覆金属间化合物/陶瓷复合涂层及制备方法
CN115418595B (zh) 一种抗空蚀-腐蚀的高熵合金涂层及其制备方法
CN109112461B (zh) 一种激光两步法在海洋平台钢表面制备铝基非晶复合陶瓷涂层的方法
CN114875291B (zh) 一种高熵合金粉末及其制备方法和一种高熵合金激光熔覆层及其制备方法
Qingyu et al. Effects of Y2O3 on the microstructure and wear resistance of cobalt-based alloy coatings deposited by plasma transferred arc process
CN113957294A (zh) 一种CrCoNi中熵合金增强Al基复合材料及其制备方法
CN110760782A (zh) 一种耐磨铝合金及其制备方法
CN114318208B (zh) 一种铅基反应堆泵叶轮用复合涂层及其制备方法
CN117305829B (zh) 一种适用于冷喷涂的纳米陶瓷颗粒增强高熵合金基复合粉末的制备方法
Yumoto et al. Al/Al-Si nano-composite graded coating prepared by supersonic free-jet PVD
CN114769616B (zh) 一种成分梯度变化的合金复合层及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020237044006

Country of ref document: KR

Ref document number: KR1020237044006

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825778

Country of ref document: EP

Kind code of ref document: A1