CN115093218A - 一种锆酸盐陶瓷材料及其制备方法和应用 - Google Patents

一种锆酸盐陶瓷材料及其制备方法和应用 Download PDF

Info

Publication number
CN115093218A
CN115093218A CN202210857096.8A CN202210857096A CN115093218A CN 115093218 A CN115093218 A CN 115093218A CN 202210857096 A CN202210857096 A CN 202210857096A CN 115093218 A CN115093218 A CN 115093218A
Authority
CN
China
Prior art keywords
temperature
ceramic material
zirconate ceramic
calcining
zirconate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210857096.8A
Other languages
English (en)
Other versions
CN115093218B (zh
Inventor
王志刚
宋希文
谢敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University of Science and Technology
Original Assignee
Inner Mongolia University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University of Science and Technology filed Critical Inner Mongolia University of Science and Technology
Priority to CN202210857096.8A priority Critical patent/CN115093218B/zh
Publication of CN115093218A publication Critical patent/CN115093218A/zh
Application granted granted Critical
Publication of CN115093218B publication Critical patent/CN115093218B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于热障涂层技术领域。本发明提供了一种锆酸盐陶瓷材料及其制备方法和应用。本发明提供了一种锆酸盐陶瓷材料RE2(Zr1‑xMx)2O7,本发明基于高熵化设计理论和多元掺杂改性原理,将多种稀土元素和过渡元素进行混合,使其具有在宽温域可以保持物相稳定性和低热导率特性。本发明还提供了所述锆酸盐陶瓷材料的制备方法,将原料顺次进行球磨、烘干、煅烧和造粒,得到团聚粉体;将团聚粉体顺次进行压制和煅烧,即得锆酸盐陶瓷材料。本发明提供的方法工艺简便,更适合批量工业化生产;对物相组成、杂质元素含量、化学成分偏析、微观粒径尺度及致密度等实现有效控制,能有效提高陶瓷材料的质量。

Description

一种锆酸盐陶瓷材料及其制备方法和应用
技术领域
本发明涉及热障涂层技术领域,尤其涉及一种锆酸盐陶瓷材料及其制备方法和应用。
背景技术
航空发动机和改燃气轮机热端部件防护已成为动力装置的核心技术,热障涂层(TBC)是以服役环境为需求导向、多性能协同发展、支撑构件隔热防护的关键技术之一,主要由表面氧化物陶瓷层和金属粘结层构成,兼顾耐高温、抗腐蚀和高隔热等特性,可有效提高金属构件的许用工作温度和抗高温能力,达到延长热端部件服役寿命和提高服役效率的目的,与高温结构材料,高效气膜冷却技术并列为先进航空发动机涡轮叶片的三大关键技术。
迄今为止,电子束物理气相沉积(EB-PVD)技术和等离子喷涂(APS)技术是现行制备热障涂层的两大主流技术,尤其采用EB-PVD技术制备的氧化钇稳定氧化锆热障涂层体系在1200℃以下综合服役性能最佳。然而,随着发动机涡轮入口温度的持续提升,EB-PVD制备的YSZ/MCrAlY双层结构热障防护系统在应用过程中逐步暴露出诸多不可忽视的核心问题,存在氧化锆相结构高温失稳、服役温度裕度不足、高温烧结加剧以及热导率过高等弊端。鉴于此,本发明提出开发一种适用于航空发动机和改燃气轮机热端部件,在宽温域具备低热导特性的热障涂层材料设计及其靶材的配套制备技术,以适应超高温环境服役EB-PVD热障涂层多主元锆酸盐陶瓷材料研制的需求。
发明内容
本发明的目的在于克服现有技术中的缺陷,提供一种锆酸盐陶瓷材料及其制备方法和应用。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种锆酸盐陶瓷材料,所述锆酸盐陶瓷材料的化学式为RE2(Zr1- xMx)2O7
所述RE为La、Sm、Nd、Y、Yb、Sc和Er中的四种或五种;
RE中各元素的摩尔质量相等;
所述M为Ti、Hf、Nb、Ta或Ce;
X的取值为0<X<1。
本发明还提供了所述锆酸盐陶瓷材料的制备方法,包含下列步骤:
(1)将原料顺次进行球磨、烘干、煅烧和造粒,得到团聚粉体;
(2)将团聚粉体顺次进行压制和煅烧,即得所述锆酸盐陶瓷材料。
作为优选,步骤(1)中所述球磨中分散介质和原料的质量比为1.3~1.8:1;所述球磨中原料和研磨介质的质量比为1.0~2.0:1;
所述球磨的转速为500~1000rpm,时间为12~24h。
作为优选,步骤(1)中所述烘干的温度为60~80℃,时间为18~24h。
作为优选,步骤(1)中所述煅烧的温度为1400~1650℃,时间为3~12h。
作为优选,步骤(1)中所述造粒为将煅烧后的粉体和粘结剂混合得到混料后进行离心喷雾造粒;
所述粘结剂为聚乙烯醇溶液,所述聚乙烯醇溶液中聚乙烯醇的质量分数为5~15%;
所述煅烧后的粉体和粘结剂的质量比为30~60:1.3~2.0;
所述离心喷雾造粒的入口温度为100~250℃,出口温度为100~200℃,雾化盘转速为19000~21000rpm。
作为优选,步骤(2)中所述压制为顺次进行的预压和二次成型;
所述预压的压力为5~15MPa,保压时间为30~120s。
作为优选,所述二次成型的压力为100~250MPa,保压时间为10~30min。
作为优选,步骤(2)中所述煅烧的目标温度为1400~1600℃,保温时间为4~8h;
由初始温度升至中间温度T1的升温速率为1~2℃/min,所述中间温度T1为900~1100℃,保温时间为1~3h,由中间温度T1升至煅烧目标温度的升温速率为3~5℃/min;
由煅烧目标温度降至中间温度T2的降温速率为1~2.5℃/min,所述中间温度T2为800~1000℃,由中间温度T2降至最终温度的降温速率为3~5℃/min;
所述初始温度为20~30℃,所述最终温度为20~30℃。
本发明还提供了所述锆酸盐陶瓷材料作为航空发动机和改燃气轮机发动机涡轮叶片热障涂层材料的应用。
本发明提供了一种锆酸盐陶瓷材料,本发明基于高熵化设计理论和多元掺杂改性原理,将多种稀土元素和过渡元素进行混合,使其具有在宽温域可以保持物相稳定性和低热导率特性。
本发明还提供了所述锆酸盐陶瓷材料的制备方法,将原料顺次进行球磨、烘干、煅烧和造粒,得到团聚粉体;将团聚粉体顺次进行压制和煅烧,即得锆酸盐陶瓷材料。本发明提供的方法工艺简便,应用范围广,实用性强,更适合批量工业化生产;对物相组成、杂质元素含量、化学成分偏析、微观粒径尺度及致密度等实现有效控制,能有效提高陶瓷材料的质量。
附图说明
图1为实施例1中锆酸盐陶瓷材料的XRD图;
图2为实施例2中锆酸盐陶瓷材料的热导率曲线图。
具体实施方式
本发明提供了一种锆酸盐陶瓷材料,所述锆酸盐陶瓷材料的化学式为RE2(Zr1- xMx)2O7
所述RE为La、Sm、Nd、Y、Yb、Sc和Er中的四种或五种;
RE中各元素的摩尔质量相等;
所述M为Ti、Hf、Nb、Ta或Ce;
X的取值为0<X<1。
本发明还提供了所述锆酸盐陶瓷材料的制备方法,包含下列步骤:
(1)将原料顺次进行球磨、烘干、煅烧和造粒,得到团聚粉体;
(2)将团聚粉体顺次进行压制和煅烧,即得所述锆酸盐陶瓷材料。
在本发明中,准备各元素对应的原料,分别为La2O3、Sm2O3、Nd2O3、Y2O3、Yb2O3、Sc2O3、Er2O3、ZrO2、TiO2、HfO2、Nb2O5、Ta2O5、CeO2
在本发明中,步骤(1)所述原料在球磨前单独进行预热处理,所述预热处理的温度优选为800~1000℃,进一步优选为850~950℃,更优选为900℃,时间优选为1~3h,进一步优选为1.5~2.5h,更优选为2h。
在本发明中,步骤(1)所述球磨中研磨介质优选为氧化锆陶瓷球,分散介质优选为去离子水。
在本发明中,步骤(1)中所述球磨中分散介质和原料的质量比优选为1.3~1.8:1,进一步优选为1.4~1.7:1,更优选为1.5~1.6:1;所述球磨中原料和研磨介质的质量比优选为1.0~2.0:1,进一步优选为1.2~1.8:1,更优选为1.4~1.6:1。
在本发明中,所述球磨的转速优选为500~1000rpm,进一步优选为600~900rpm,更优选为700~800rpm;时间优选为12~24h,进一步优选为14~22h,更优选为16~20h。
在本发明中,步骤(1)中所述烘干在对流恒温烘箱中进行;所述烘干的温度优选为60~80℃,进一步优选为65~75℃,更优选为68~72℃;时间优选为18~24h,进一步优选为19~23h,更优选为20~22h。
在本发明中,步骤(1)中煅烧在马弗炉中进行,所述煅烧的气氛优选为空气气氛;所述煅烧的温度优选为1400~1650℃,进一步优选为1450~1600℃,更优选为1500~1550℃;时间优选为3~12h,进一步优选为5~10h,更优选为7~8h。
在本发明中,步骤(1)中所述造粒优选为将煅烧后的粉体和粘结剂混合得到混料后进行离心喷雾造粒。
在本发明中,所述粘结剂优选为聚乙烯醇溶液,所述聚乙烯醇溶液中聚乙烯醇的质量分数优选为5~15%,进一步优选为6~14%,更优选为8~12%。
在本发明中,所述煅烧后的粉体和粘结剂的质量比优选为30~60:1.3~2.0,进一步优选为40~50:1.5~1.8,更优选为44~46:1.6~1.7。
在本发明中,所述离心喷雾造粒的入口温度优选为100~250℃,进一步优选为150~200℃,更优选为170~180℃;出口温度优选为100~200℃,进一步优选为120~180℃,更优选为140~160℃;雾化盘转速优选为19000~21000rpm,进一步优选为19500~20500rpm,更优选为19800~20200rpm。
在本发明中,步骤(2)中所述压制优选为顺次进行的预压和二次成型。
在本发明中,所述预压在电动双轴向压力机中进行;所述预压的压力优选为5~15MPa,进一步优选为6~14MPa,更优选为8~12MPa;保压时间优选为30~120s,进一步优选为50~100s,更优选为70~80s。
在本发明中,所述二次成型在冷等静压机中进行;所述二次成型的压力优选为100~250MPa,进一步优选为150~200MPa,更优选为170~180MPa,保压时间优选为10~30min,进一步优选为15~25min,更优选为18~22min。
在本发明中,步骤(2)中所述煅烧在高温炉中进行,所述煅烧的气氛优选为空气气氛;所述煅烧的目标温度优选为1400~1600℃,进一步优选为1450~1550℃,更优选为1480~1520℃;保温时间优选为4~8h,进一步优选为5~7h,更优选为5.5~6.5h。
在本发明中,由初始温度升至中间温度T1的升温速率优选为1~2℃/min,进一步优选为1.2~1.8℃/min,更优选为1.4~1.6℃/min;所述中间温度T1优选为900~1100℃,进一步优选为950~1050℃,更优选为980~1020℃;保温时间优选为1~3h,进一步优选为1.5~2.5h,更优选为1.8~2.2h;由中间温度T1升至煅烧目标温度的升温速率优选为3~5℃/min,进一步优选为3.5~4.5℃/min,更优选为3.8~4.2℃/min。
在本发明中,由煅烧目标温度降至中间温度T2的降温速率优选为1~2.5℃/min,进一步优选为1.5~2℃/min,更优选为1.6~1.8℃/min;所述中间温度T2优选为800~1000℃,进一步优选为850~950℃,更优选为880~920℃;由中间温度T2降至最终温度的降温速率优选为3~5℃/min,进一步优选为3.5~4.5℃/min,更优选为3.8~4.2℃/min。
在本发明中,所述初始温度优选为20~30℃,进一步优选为22~28℃,更优选为24~26℃;所述最终温度优选为20~30℃,进一步优选为22~28℃,更优选为24~26℃。
本发明还提供了所述锆酸盐陶瓷材料作为航空发动机和改燃气轮机发动机涡轮叶片热障涂层材料的应用。
下面结合实施例对本发明提供的技术方案进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
(La0.2Sm0.2Nd0.2Y0.2Sc0.2)2(Zr0.6Ti0.4)2O7陶瓷材料的制备:以La2O3、Sm2O3、Nd2O3、Y2O3、Sc2O3、ZrO2、TiO2为原料粉体,将原料独自在900℃下预热处理2h,按照陶瓷材料的摩尔组成称取处理后的原料;以氧化锆陶瓷球作为研磨介质,离子水作为分散介质,控制分散介质和原料的质量比为1.3:1,原料和研磨介质的质量比为1.5:1,加入聚氨酯球磨罐进行湿法行星磨球,在800rpm下球磨20h;球磨完成后,将得到的浆料置于75℃对流恒温烘箱中烘干20h得到均匀混合干燥粉体;将获得的干燥粉体置于马弗炉中,在空气气氛、1600℃条件下煅烧6h得到煅烧后的粉体;配制质量分数为6%的聚乙烯醇溶液,控制聚乙烯醇溶液和煅烧后的粉体的质量比为1.8:45,将两者混合后,控制离心喷雾造粒的入口温度为150℃、出口温度为160℃、雾化盘转速为20000rpm得到团聚粉体。
将团聚粉体在电动双轴向压力机中以8MPa压力预压80s,然后在冷等静压机中以150MPa保压15min完成二次成型;然后将获得的产物从25℃以1.5℃/min的速率升温至1000℃保温2h,然后以4℃/min的速率升温至1550℃煅烧6h;煅烧结束后以2℃/min的速率降温至900℃,然后以4℃/min降温至25℃即获得锆酸盐陶瓷材料。
将本实施例制备得到的锆酸盐陶瓷材料进行XRD表征,得到的XRD图谱如图1所示,从图中可以看出陶瓷材料形成了单一的缺陷萤石结构。
实施例2
(La0.2Sm0.2Nd0.2Y0.2Er0.2)2(Zr0.8Ce0.2)2O7陶瓷材料的制备:以La2O3、Sm2O3、Nd2O3、Y2O3、Er2O3、ZrO2、CeO2为原料粉体,将原料独自在850℃下预热处理3h,按照陶瓷材料的摩尔组成称取处理后的原料;以氧化锆陶瓷球作为研磨介质,离子水作为分散介质,控制分散介质和原料的质量比为1.4:1,原料和研磨介质的质量比为1.4:1,加入聚氨酯球磨罐进行湿法行星磨球,在600rpm下球磨20h;球磨完成后,将得到的浆料置于80℃对流恒温烘箱中烘干18h得到均匀混合干燥粉体;将获得的干燥粉体置于马弗炉中,在空气气氛、1550℃条件下煅烧8h得到煅烧后的粉体;配制质量分数为8%的聚乙烯醇溶液,控制聚乙烯醇溶液和煅烧后的粉体的质量比为1.3:40,将两者混合后,控制离心喷雾造粒的入口温度为180℃、出口温度为120℃、雾化盘转速为19000rpm得到团聚粉体。
将团聚粉体在电动双轴向压力机中以6MPa压力预压120s,然后在冷等静压机中以200MPa保压10min完成二次成型;然后将获得的产物从20℃以2℃/min的速率升温至900℃保温1.2h,然后以3℃/min的速率升温至1400℃煅烧5h;煅烧结束后以1℃/min的速率降温至800℃,然后以5℃/min降温至30℃,即获得锆酸盐陶瓷材料。
将本实施例制备得到的锆酸盐陶瓷材料进行热导率测试,得到的热导率曲线如图2所示,从图中可以看出,在室温到1000℃范围内热导率保持较低水平。
实施例3
(Nd0.25Y0.25Yb0.25Sc0.25)2(Zr0.4Ce0.6)2O7陶瓷材料的制备:以Nd2O3、Y2O3、Yb2O3、Sc2O3、ZrO2、Ta2O5为原料粉体,将原料独自在950℃下预热处理1.5h,按照陶瓷材料的摩尔组成称取处理后的原料;以氧化锆陶瓷球作为研磨介质,离子水作为分散介质,控制分散介质和原料的质量比为1.7:1,原料和研磨介质的质量比为1.6:1,加入聚氨酯球磨罐进行湿法行星磨球,在800rpm下球磨24h;球磨完成后,将得到的浆料置于70℃对流恒温烘箱中烘干24h得到均匀混合干燥粉体;将获得的干燥粉体置于马弗炉中,在空气气氛、1600℃条件下煅烧10h得到煅烧后的粉体;配制质量分数为10%的聚乙烯醇溶液,控制聚乙烯醇溶液和煅烧后的粉体的质量比为1.9:35,将两者混合后,控制离心喷雾造粒的入口温度为230℃、出口温度为140℃、雾化盘转速为21000rpm得到团聚粉体。
将团聚粉体在电动双轴向压力机中以7MPa压力预压100s,然后在冷等静压机中以230MPa保压23min完成二次成型;然后将获得的产物从28℃以1.1℃/min的速率升温至1100℃保温2.5h,然后以5℃/min的速率升温至1600℃煅烧6h;煅烧结束后以2.3℃/min的速率降温至850℃,然后以5℃/min降温至27℃,即获得锆酸盐陶瓷材料。
将本实施例制备得到的锆酸盐陶瓷材料进行热导率测试,在室温到1000℃范围内热导率低至1.42W·m-1K-1
由以上实施例可知,本发明提供了一种锆酸盐陶瓷材料,本发明基于高熵化设计理论和多元掺杂改性原理,将多种稀土元素和过渡元素进行混合,使其具有在宽温域可以保持物相稳定性和低热导率特性。本发明将原料顺次进行球磨、烘干、煅烧和造粒,得到团聚粉体;将团聚粉体顺次进行压制和煅烧,即得锆酸盐陶瓷材料。本发明提供的方法工艺简便,应用范围广,实用性强,更适合批量工业化生产;对物相组成、杂质元素含量、化学成分偏析、微观粒径尺度及致密度等实现有效控制,根据实施例的结果可知,本发明提供的锆酸盐陶瓷材料,在室温到1000℃范围内热导率低至1.42W·m-1K-1,表现出优异的性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种锆酸盐陶瓷材料,其特征在于,所述锆酸盐陶瓷材料的化学式为RE2(Zr1-xMx)2O7
所述RE为La、Sm、Nd、Y、Yb、Sc和Er中的四种或五种;
RE中各元素的摩尔质量相等;
所述M为Ti、Hf、Nb、Ta或Ce;
X的取值为0<X<1。
2.权利要求1所述锆酸盐陶瓷材料的制备方法,其特征在于,包含下列步骤:
(1)将原料顺次进行球磨、烘干、煅烧和造粒,得到团聚粉体;
(2)将团聚粉体顺次进行压制和煅烧,即得所述锆酸盐陶瓷材料。
3.如权利要求2所述的制备方法,其特征在于,步骤(1)中所述球磨中分散介质和原料的质量比为1.3~1.8:1;所述球磨中原料和研磨介质的质量比为1.0~2.0:1;
所述球磨的转速为500~1000rpm,时间为12~24h。
4.如权利要求2或3所述的制备方法,其特征在于,步骤(1)中所述烘干的温度为60~80℃,时间为18~24h。
5.如权利要求4所述的制备方法,其特征在于,步骤(1)中所述煅烧的温度为1400~1650℃,时间为3~12h。
6.如权利要求3或5所述的制备方法,其特征在于,步骤(1)中所述造粒为将煅烧后的粉体和粘结剂混合得到混料后进行离心喷雾造粒;
所述粘结剂为聚乙烯醇溶液,所述聚乙烯醇溶液中聚乙烯醇的质量分数为5~15%;
所述煅烧后的粉体和粘结剂的质量比为30~60:1.3~2.0;
所述离心喷雾造粒的入口温度为100~250℃,出口温度为100~200℃,雾化盘转速为19000~21000rpm。
7.如权利要求6所述的制备方法,其特征在于,步骤(2)中所述压制为顺次进行的预压和二次成型;
所述预压的压力为5~15MPa,保压时间为30~120s。
8.如权利要求7所述的制备方法,其特征在于,所述二次成型的压力为100~250MPa,保压时间为10~30min。
9.如权利要求2、7或8所述的制备方法,其特征在于,步骤(2)中所述煅烧的目标温度为1400~1600℃,保温时间为4~8h;
由初始温度升至中间温度T1的升温速率为1~2℃/min,所述中间温度T1为900~1100℃,保温时间为1~3h,由中间温度T1升至煅烧目标温度的升温速率为3~5℃/min;
由煅烧目标温度降至中间温度T2的降温速率为1~2.5℃/min,所述中间温度T2为800~1000℃,由中间温度T2降至最终温度的降温速率为3~5℃/min;
所述初始温度为20~30℃,所述最终温度为20~30℃。
10.权利要求1所述锆酸盐陶瓷材料作为航空发动机和改燃气轮机发动机涡轮叶片热障涂层材料的应用。
CN202210857096.8A 2022-07-20 2022-07-20 一种锆酸盐陶瓷材料及其制备方法和应用 Active CN115093218B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210857096.8A CN115093218B (zh) 2022-07-20 2022-07-20 一种锆酸盐陶瓷材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210857096.8A CN115093218B (zh) 2022-07-20 2022-07-20 一种锆酸盐陶瓷材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115093218A true CN115093218A (zh) 2022-09-23
CN115093218B CN115093218B (zh) 2023-08-15

Family

ID=83298413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210857096.8A Active CN115093218B (zh) 2022-07-20 2022-07-20 一种锆酸盐陶瓷材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115093218B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925419A (zh) * 2022-12-16 2023-04-07 辽宁省轻工科学研究院有限公司 一种纳米结构稀土掺杂锆酸镧热障涂层材料及制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145421A (zh) * 2013-03-26 2013-06-12 铁道警官高等专科学校 钆锆双位掺杂Sm2Ce2O7热障涂层陶瓷材料及其制备方法
CN110272278A (zh) * 2019-05-17 2019-09-24 东华大学 热障涂层用高熵陶瓷粉体及其制备方法
CN110606740A (zh) * 2019-09-11 2019-12-24 中国科学院金属研究所 高熵稀土铪酸盐陶瓷材料及其制备方法
WO2020047278A1 (en) * 2018-08-30 2020-03-05 University Of Virginia Patent Foundation Functional barrier coating and related methods thereof
KR20200076059A (ko) * 2018-12-19 2020-06-29 한국세라믹기술원 열차폐 코팅용 란타늄 지르코네이트계 분말의 제조방법
CN111533557A (zh) * 2020-03-27 2020-08-14 东华大学 一种焦绿石型高熵氧化物固化体及其制备方法
CN112723412A (zh) * 2020-12-22 2021-04-30 中国建筑材料科学研究总院有限公司 一种多相稀土锆酸盐材料及其制备方法和应用
CN112839915A (zh) * 2018-10-09 2021-05-25 欧瑞康美科(美国)公司 用于热障涂层(tbc)面涂层的高熵氧化物
CN113023776A (zh) * 2021-03-10 2021-06-25 上海交通大学 一种热障涂层用萤石结构高熵氧化物粉体及其制备方法
CN113526954A (zh) * 2021-08-12 2021-10-22 昆明理工大学 一种高熵同时稳定a位和b位阳离子的稀土锆酸盐陶瓷及其制备方法
CN113772723A (zh) * 2021-09-23 2021-12-10 中国地质大学(武汉) 一种抗cmas腐蚀的多组分的高熵烧绿石结构热障涂层材料及其制备方法和应用
CN114149260A (zh) * 2021-12-14 2022-03-08 内蒙古工业大学 一种低热导率高熵陶瓷热障涂层材料
US20220106675A1 (en) * 2019-07-22 2022-04-07 Aecc Beijing Institute Of Aeronautical Materials Method for fabricating thermal barrier coating having self-repair and temperature-sensitive functions
US20220112132A1 (en) * 2018-12-29 2022-04-14 Kunming University Of Science And Technology Zirconia/titanium oxide/cerium oxide doped rare earth tantalum/niobate reta/nbo4 ceramic powder and preparation method thereof
CN114671683A (zh) * 2022-03-04 2022-06-28 中国地质大学(武汉) 一种高温相稳定高熵氧化锆热障涂层材料及其制备方法
WO2022150304A1 (en) * 2021-01-05 2022-07-14 Oerlikon Metco (Us) Inc. Complex oxide thermal barrier coatings with low thermal inertia and low thermal conductivity

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145421A (zh) * 2013-03-26 2013-06-12 铁道警官高等专科学校 钆锆双位掺杂Sm2Ce2O7热障涂层陶瓷材料及其制备方法
WO2020047278A1 (en) * 2018-08-30 2020-03-05 University Of Virginia Patent Foundation Functional barrier coating and related methods thereof
CN112839915A (zh) * 2018-10-09 2021-05-25 欧瑞康美科(美国)公司 用于热障涂层(tbc)面涂层的高熵氧化物
KR20200076059A (ko) * 2018-12-19 2020-06-29 한국세라믹기술원 열차폐 코팅용 란타늄 지르코네이트계 분말의 제조방법
US20220112132A1 (en) * 2018-12-29 2022-04-14 Kunming University Of Science And Technology Zirconia/titanium oxide/cerium oxide doped rare earth tantalum/niobate reta/nbo4 ceramic powder and preparation method thereof
CN110272278A (zh) * 2019-05-17 2019-09-24 东华大学 热障涂层用高熵陶瓷粉体及其制备方法
US20220106675A1 (en) * 2019-07-22 2022-04-07 Aecc Beijing Institute Of Aeronautical Materials Method for fabricating thermal barrier coating having self-repair and temperature-sensitive functions
CN110606740A (zh) * 2019-09-11 2019-12-24 中国科学院金属研究所 高熵稀土铪酸盐陶瓷材料及其制备方法
CN111533557A (zh) * 2020-03-27 2020-08-14 东华大学 一种焦绿石型高熵氧化物固化体及其制备方法
CN112723412A (zh) * 2020-12-22 2021-04-30 中国建筑材料科学研究总院有限公司 一种多相稀土锆酸盐材料及其制备方法和应用
WO2022150304A1 (en) * 2021-01-05 2022-07-14 Oerlikon Metco (Us) Inc. Complex oxide thermal barrier coatings with low thermal inertia and low thermal conductivity
CN113023776A (zh) * 2021-03-10 2021-06-25 上海交通大学 一种热障涂层用萤石结构高熵氧化物粉体及其制备方法
CN113526954A (zh) * 2021-08-12 2021-10-22 昆明理工大学 一种高熵同时稳定a位和b位阳离子的稀土锆酸盐陶瓷及其制备方法
CN113772723A (zh) * 2021-09-23 2021-12-10 中国地质大学(武汉) 一种抗cmas腐蚀的多组分的高熵烧绿石结构热障涂层材料及其制备方法和应用
CN114149260A (zh) * 2021-12-14 2022-03-08 内蒙古工业大学 一种低热导率高熵陶瓷热障涂层材料
CN114671683A (zh) * 2022-03-04 2022-06-28 中国地质大学(武汉) 一种高温相稳定高熵氧化锆热障涂层材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YONGHE ZHANG等: "Marked reduction in the thermal conductivity of (La0.2Gd0.2Y0.2Yb0.2Er0.2)2Zr2O7 high-entropy ceramics by substituting Zr4+ with Ti4+", 《CERAMICS INTERNATIONAL》, pages 9602 *
ZHANG, YONGHE: "Low thermal conductivity in La2Zr2O7 pyrochlore with A-site partially substituted with equimolar Yb2O3 and Er2O3", 《CERAMICS INTERNATIONAL》, pages 9151 - 9157 *
周宏明;易丹青;周楠;: "热障涂层陶瓷材料的研究现状及发展趋势", 材料导报, no. 01, pages 1 - 7 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925419A (zh) * 2022-12-16 2023-04-07 辽宁省轻工科学研究院有限公司 一种纳米结构稀土掺杂锆酸镧热障涂层材料及制备方法
CN115925419B (zh) * 2022-12-16 2024-04-12 辽宁省轻工科学研究院有限公司 一种纳米结构稀土掺杂锆酸镧热障涂层材料及制备方法

Also Published As

Publication number Publication date
CN115093218B (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
CN113023776B (zh) 一种热障涂层用萤石结构高熵氧化物粉体及其制备方法
CN113683430B (zh) 缺陷萤石结构的氧化物高熵陶瓷及其抗烧蚀涂层的制备方法
CN113816751B (zh) 一种四方相高熵热障涂层材料及其制备方法
CN112830782B (zh) 一种高熵稀土铌/钽/钼酸盐陶瓷及其制备方法
CN101723667B (zh) 带有网状裂纹结构的多元稀土氧化物掺杂氧化锆热障涂层及其制备方法
CN108101533B (zh) 一种热障涂层用陶瓷靶材的制备方法
CN106884132A (zh) 一种高温热障涂层材料
JP2002069607A (ja) 遮熱コーティング材およびその製造方法、遮熱コーティング材を適用したガスタービン部材、並びにガスタービン
CN115124339B (zh) 多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用
CN112341197B (zh) 一种抗cmas腐蚀的高熵陶瓷材料、制备方法及其应用
CN114478005B (zh) 一种四方相热障涂层材料及其制备方法
CN116082039B (zh) 一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法
CN115093218B (zh) 一种锆酸盐陶瓷材料及其制备方法和应用
CN108439977B (zh) 一种高温低热导氧化铪基热障涂层材料及其制备方法
CN110256092A (zh) 一种热障涂层材料及其制备方法
WO2024021527A1 (zh) 一种镧钆钐基高熵热障涂层及其制备方法
CN115466114A (zh) 一种高韧性长寿命超高温热障涂层材料及其制备方法和应用
CN106746666A (zh) 玻璃陶瓷复合热障涂层设计模型及涂层制备方法
US20220306472A1 (en) Orthophosphate thermal barrier coating material with high coefficient of thermal expansion and preparation method thereof
CN101948308B (zh) 一种陶瓷高温隔热材料
CN114988895A (zh) 一种抗冲击热循环与耐cmas腐蚀的复相共析环境障涂层及其制备方法
CN115073172B (zh) 一种陶瓷靶材及其制备方法和应用
CN111634950A (zh) 一种钙钛矿型高发射率球形团聚粉体的制备方法
CN116903368A (zh) 一种多元共掺杂钇铝石榴石热障涂层材料及其制备方法
CN114231886B (zh) 一种高温长寿命ysz涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant