CN116082039B - 一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法 - Google Patents

一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法 Download PDF

Info

Publication number
CN116082039B
CN116082039B CN202211658384.7A CN202211658384A CN116082039B CN 116082039 B CN116082039 B CN 116082039B CN 202211658384 A CN202211658384 A CN 202211658384A CN 116082039 B CN116082039 B CN 116082039B
Authority
CN
China
Prior art keywords
emissivity
powder
coating
low
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211658384.7A
Other languages
English (en)
Other versions
CN116082039A (zh
Inventor
陈国梁
王亚明
王树棋
邹永纯
裘俊
欧阳家虎
帅永
贾德昌
周玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202211658384.7A priority Critical patent/CN116082039B/zh
Publication of CN116082039A publication Critical patent/CN116082039A/zh
Application granted granted Critical
Publication of CN116082039B publication Critical patent/CN116082039B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/42Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法。本发明属于热防护陶瓷及辐射热控涂层材料技术领域,具体涉及一种高发射率低热导功能复合高温热障涂层粉体的方法。本发明解决的关键问题是如何制备一种在25‑1500℃大温度范围内具有宽光谱(0.5‑14μm)高发射率和低热导率的复合性能的涂层。方法:一、高温煅烧;二、混合、球磨、干燥;三、固相反应煅烧;四、造粒。本发明成本低、操作简单,材料的高发射率和低热导可由一种材料实现,材料的结构性好、稳定性强、环境适应度高,从而使本发明提供的高发射率和低热导陶瓷和涂层具有广泛的应用前景。本发明可获得一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层。

Description

一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层 制备的方法
技术领域
本发明属于热防护陶瓷及辐射热控涂层材料技术领域,具体涉及一种高发射率低热导功能复合高温热障涂层粉体的方法。
背景技术
设计合成具有低热导率和高发射率的陶瓷及涂层材料在热防护和能源利用等热管理领域具有十分重要的意义。例如:超高声速飞行器和航天返回舱在高速飞行或载入大气时会引起大量的气动摩擦热,从而对飞行器引起的热冲击,严重影响其飞行稳定性和安全性,因此需要其表面具有好的隔热性能,同时高发射率表面能有效带走表面的气动热,降低热端温度,起到良好的热防护效果;对于高温炉内衬而言,一方面需要其具有良好的保温隔热作用,减少热能损失,另一方面需要其具有较高的发射率,增加炉膛内部的再辐射加热作用,增加热量的利用效率。目前,低热导和高发射率功能复合材料方面的研究越来越得到重视。
中国专利(CN 110468365A)设计一种CoNiCrAlY底层、氧化锆过渡层和高发射率面层的高发射率、低热导率涂层及其制备方法。该方法涉及高发射率面层和低热导热障内层多层涂层设计,没有从材料本身的角度同时解决高发射率和低热导复合的需求,在实际应用中容易产生界面热匹配失效。
中国专利(CN 112723884A)设计一种HfO2和Sm2O3固相反应喷涂形成兼具低热导率和高红外发射率的陶瓷涂层。但是其高发射率的波长范围仅限制于声子极化波段的8~14μm,这主要对应室温下的辐射波段,和高温下的辐射波长偏离,不适用于高温场景。
中国专利(CN 111960823 B)设计碱土金属掺杂稀土铌酸盐和坦酸盐陶瓷,降低陶瓷热导率小于1.1W/(m·K)。但是该方法不涉及发射率的调控和不等价离子掺杂的内容,单离子掺杂对于发射率的提高作用受限。
中国专利(CN 114956802 A)、(CN 113149088 A)和(CN 113429213 A)从高熵的角度出发,设计了包括(Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)AlxCr2-xO4的高熵尖晶石和钙钛矿高发射率低热导陶瓷的制备方法,但是高熵的策略需要复杂的化学成分和制造成本和难度,特别是在制备涂层的时候容易出现相析出,影响陶瓷涂层的性能。
虽然,已经有一些研究实现了高发射率和低热导的功能复合。但是现有的研究要么仅限于热导率和发射率分开的单独调控;要么就是通过低热导陶瓷和高发射率陶瓷多层材料的复合来实现高发射和低热导功能复合,这在实际高温服役过程中容易造成热应力导致的界面匹配失效;虽然通过高熵陶瓷有望实现了高发射率和低热导率的功能复合,但是高熵陶瓷的化学成分和制备工艺都很复杂,对于发射率和热导率耦合调控的机制也不明晰,限制了其实际的应用。因此,如果能采用一种简单,可控的方法,设计制备出一种材料满足大温度范围内的高发射率和低热导性能的结合,将对我国高推重比飞行器热端部件热防护涂层、节能热管理利用等领域的发展具有十分重要的意义。
发明内容
为了解决上述现有技术存在的不足和热控、热防护领域的关键需求,本发明解决的关键问题是如何制备一种在25℃-1500℃大温度范围内具有宽光谱(0.5-14μm)高发射率和低热导率的复合性能的涂层,而提供一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法。
一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法,具体是按以下步骤完成的:
一、高温煅烧:
分别将含有掺杂离子的氧化物和基相陶瓷所对应的氧化物进行高温煅烧;
步骤一中所述的掺杂离子为低价态金属离子与高价态金属离子的组合,其中低价态金属离子与高价态金属离子的原子含量比为(0.1~4):1;
二、混合、球磨、干燥:
称取高温煅烧后的含有掺杂离子的氧化物和基相陶瓷所对应的氧化物,得到混合粉体;将混合粉体、无水乙醇和氧化锆球放入行星球磨罐机中,球磨,得到浆料;将浆料进行干燥,得到球磨后的混合粉体;
三、固相反应煅烧:
①、采用示差扫描量热法对球磨后的混合粉体进行测试,得出混合粉体的固相反应温度,记为T℃;在T℃+(0℃~100℃)下对球磨后的混合粉体进行固相反应煅烧,得到煅烧后的粉体;
②、将煅烧后的粉体、无水乙醇和氧化锆球放入行星球磨罐机中球磨,干燥,得到球磨后的粉体;
③、重复步骤三①~②,直至掺杂离子完全进入到基相陶瓷中,得到功能粉体;
四、造粒:
采用150目~300目的筛网过滤功能粉体,得到过滤后的功能粉体;对过滤后的功能粉体进行粉末球型化造粒,得到造粒粉体;将造粒粉体制备成不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层。
本发明的原理:
本发明通过不等价离子掺杂诱导氧空位和杂质能级的产生,降低电子带隙小于1eV,提高0.5~2μm波段的短波段发射率大于0.85;不等价离子掺杂引起的晶格畸变和多模态振动,晶格常数变化大于0.1%,提高2~14μm波段的发射率大于0.85;不等价离子的掺杂增加基相陶瓷的化学键强度差异,软化声子振动模,降低声子群速度,而且增加了热声子的点缺陷散射作用,从而降低体系的热导率小于2W/(m·K)。
本发明的优点:
一、本发明制备的一种不等价离子掺杂制备高发射率低热导功能高温热障涂层粉体与现有的多层陶瓷体系相比,突破了高发射率层和热导率涂层多层复合,存在界面匹配失效的问题;与现有的高熵陶瓷制备高发射率或低热导复合陶瓷方法相比,具有材料成分和制备工艺简单可控的优势,且原理上更为清楚,突破了“高熵效应”在发射率和热导调控方面的不确定性和不可控缺点;
二、本发明成本低、操作简单,材料的高发射率和低热导可由一种材料实现,材料的结构性好、稳定性强、环境适应度高,从而使本发明提供的高发射率和低热导陶瓷和涂层具有广泛的使用范围和应用前景,可以应用于超高速飞行器、导弹、航天返回舱的辐射热防护,也可以应用于工业高温炉内衬,提高加热功率和能量利用率等领域。
附图说明
图1为本发明所述的不等价离子掺杂的示意图;
图2为实施例1所述的Ca2+和Cr3+不等价离子共掺杂Y3NbO7的高发射率低热导功能陶瓷涂层的辐射热防护示意图;
图3为XRD图谱,图中1为Y3NbO7,2为实施例1步骤三③制备的(Y0.9Ca0.1)3(Nb0.9Cr0.1)O7
图4为SEM图,图中(a)为Y3NbO7,(b)为实施例1步骤三③制备的(Y0.9Ca0.1)3(Nb0.9Cr0.1)O7
图5为实施例1步骤五制备的Ca2+和Cr3+不等价离子共掺杂Y3NbO7的高发射率低热导功能陶瓷涂层截面的SEM图;
图6为发射率图谱,图中1为Y3NbO7,2为实施例1步骤五制备的Ca2+和Cr3+不等价离子共掺杂Y3NbO7的高发射率低热导功能陶瓷涂层;
图7为光谱图,图中(a)为发射率,(b)为禁带宽度,图中1为Y3NbO7,2为Y2.7Ca0.3NbO7,3为Y3Nb0.9Cr0.1O7,4为Y2.7Ca0.3Nb0.9Cr0.1O7
具体实施方式
具体实施方式一:本实施方式一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法,具体是按以下步骤完成的:
一、高温煅烧:
分别将含有掺杂离子的氧化物和基相陶瓷所对应的氧化物进行高温煅烧;
步骤一中所述的掺杂离子为低价态金属离子与高价态金属离子的组合,其中低价态金属离子与高价态金属离子的原子含量比为(0.1~4):1;
二、混合、球磨、干燥:
称取高温煅烧后的含有掺杂离子的氧化物和基相陶瓷所对应的氧化物,得到混合粉体;将混合粉体、无水乙醇和氧化锆球放入行星球磨罐机中,球磨,得到浆料;将浆料进行干燥,得到球磨后的混合粉体;
三、固相反应煅烧:
①、采用示差扫描量热法对球磨后的混合粉体进行测试,得出混合粉体的固相反应温度,记为T℃;在T℃+(0℃~100℃)下对球磨后的混合粉体进行固相反应煅烧,得到煅烧后的粉体;
②、将煅烧后的粉体、无水乙醇和氧化锆球放入行星球磨罐机中球磨,干燥,得到球磨后的粉体;
③、重复步骤三①~②,直至掺杂离子完全进入到基相陶瓷中,得到功能粉体;
四、造粒:
采用150目~300目的筛网过滤功能粉体,得到过滤后的功能粉体;对过滤后的功能粉体进行粉末球型化造粒,得到造粒粉体;将造粒粉体制备成不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一中所述的低价态金属离子为Ca2+、Mg2+、Sr2+和Ba2+中的一种或几种的组合;所述的高价态金属离子为Ti4+、Cr3+、Mn4+、Fe3+、La3+、Ce4+、Pr4+、Nd3+、Sm3+、Eu3+、Ga3+、Te3+、Dy3+、Ho3+、Er3+、Tm3+、Yb3+和Lu3+中的一种或几种的组合。其它步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的基相陶瓷为ReSiO5、Re2Si2O7、ReCrO3、ReNb3O7、ReTa3O9、Re2Hf2O7、Re2Zr2O7中的一种(如:Y3NbO7和Ce2Hf2O7)或含有几种稀土阳离子的陶瓷(如:(Y0.5Lu0.5)2SiO5和(TaNb)2(HfZr)2O7),其中Re为稀土元素,;步骤一中所述的高温煅烧的温度为650℃~900℃,高温煅烧的时间为2h~6h。其它步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤二中所述的混合粉体、无水乙醇和氧化锆球的质量比为1:0.1:4;步骤二中所述的球磨的转速为200r/min~400r/min,球磨的时间为6h~12h;步骤二中所述的干燥的温度为60℃~120℃,干燥的时间为3h~12h。其它步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤三①中所述的固相反应煅烧的气氛为氩气、真空、空气、氢气或氧气气氛中的任意一种;步骤三①中所述的固相反应煅烧的保温时间为2h~12h,升温速率为2~8℃/min。其它步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤三②中所述的煅烧后的粉体、无水乙醇和氧化锆球的质量比为1:0.1:4;步骤三②中所述的球磨采用正反转相结合的方式,正反转周期为30min,间隔休息时间为5min,公转转速为300~600r/min,公转与自传转速比为1:2,球磨的总时间为6h~24h;步骤三②中所述的干燥的温度为60℃~120℃,干燥的时间为3h~12h。其它步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤三③中所述的功能粉体中掺杂离子占除氧原子以外的总原子的1%~60%;步骤四中所述的粉末球型化造粒的方式为喷雾造粒、静电场辅助电喷造粒中的一种或两种造粒方式所得粉体的混合;所述的造粒粉体的尺寸为20μm~200μm。其它步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤四中将造粒粉体制备成不等价离子掺杂的高发射率低热导功能复合陶瓷的方法为:无压烧结、热压烧结、放电等离子体烧结或闪烧;步骤四中将造粒粉体(喂料)制备成涂层的方法为:采用大气等离子体喷涂、超音速火焰喷涂、真空等离子体喷涂、等离子体物理气相沉积、电子束物理气相沉积或离子注入的方法在基底上将造粒粉体制备成涂层。其它步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:步骤四中所述的涂层的厚度为5~500μm;所述的涂层在25~1500℃的温度范围内具有高发射率和低热导率特征,其中在0.5~14μm宽光谱的发射率大于0.85和热导率小于2W/(m·K),且其发射率和热导率的比值大于0.4。其它步骤与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:所述的涂层与基底结合强度大于30MPa,同时,涂层具有很好的抗热震性能,在室温和1200℃间的抗热震循环次数大于50次;所述的基底为镍基合金、铌基合金、C/C、SiC/SiC、C/SiC或SiC/Si3N4。其它步骤与具体实施方式一至九相同。
采用以下实施例验证本发明的有益效果:
实施例1:Ca2+和Cr3+不等价离子共掺杂Y3NbO7的高发射率低热导功能陶瓷涂层的制备方法,具体是按以下步骤完成的:
一、高温煅烧:
分别将含有掺杂离子的氧化物(CaO、Cr2O3)和基相陶瓷所对应的氧化物(Y2O3和Nb2O5)进行高温煅烧,高温煅烧的温度为650℃,高温煅烧的时间为2h;
所述的低价态金属离子为Ca2+
所述的高价态金属离子为Cr3+
步骤一中所述的基相陶瓷为:Y3NbO7
二、混合、球磨、干燥:
称取高温煅烧后的CaO、Cr2O3、Y2O3和Nb2O5的摩尔比为6:1:27:9,得到混合粉体;将混合粉体、无水乙醇和氧化锆球按质量比为1:0.1:4称取并放入行星球磨罐中,在转速为300r/min下行星球磨12h,得到浆料;将浆料在120℃下进行干燥12h,得到球磨后的混合粉体;
三、固相反应煅烧:
①、采用示差扫描量热法对球磨后的混合粉体进行测试,得出混合粉体的固相反应温度为1200℃,以5℃/min的升温速率升温至1300℃,在空气气氛和1300℃下对球磨后的混合粉体进行固相反应煅烧4h;
②、将煅烧后的粉体、无水乙醇和氧化锆球按质量比为1:0.1:4放入行星球磨罐机中球磨,再在120℃下干燥6h,得到球磨后的粉体;
步骤三②中所述的球磨采用正反转相结合的方式,正反转周期为30min,间隔休息时间为5min,公转转速为300r/min,公转与自传转速比为1:2,球磨的总时间为12h;
③、重复步骤三①~②,直至Ca2+和Cr3+进入到基相Y3NbO7陶瓷的晶格中,XRD无第二相杂峰出现,得到功能粉体((Y0.9Ca0.1)3(Nb0.9Cr0.1)O7);
步骤三③中所述的功能粉体中掺杂离子占除氧原子以外的总原子的10%;
四、造粒:
采用200目的筛网过滤功能粉体,得到过滤后的功能粉体;采用喷雾造粒将过滤后的功能粉体制备成造粒粉体;所述的造粒粉体尺寸为20~200μm;
五、将造粒粉体作为喂料,将牌号为GH4061的镍基合金作为基体,采用大气喷涂在基体上制备Ca2+和Cr3+不等价离子共掺杂Y3NbO7的高发射率低热导功能陶瓷涂层((Y0.9Ca0.1)3(Nb0.9Cr0.1)O7陶瓷涂层);
步骤五中所述的大气喷涂的工艺参数为:电流600A,功率45kW,主气流45slpm,辅助气流8slpm,载送气流2.5slpm,送粉2.5rpm,喷距110mm。
图3为XRD图谱,图中1为Y3NbO7,2为实施例1步骤三③制备的(Y0.9Ca0.1)3(Nb0.9Cr0.1)O7
从图3中可以看出,实施例1步骤三③制备的(Y0.9Ca0.1)3(Nb0.9Cr0.1)O7表面具有典型的晶粒结构,没有第二相析出,表明掺杂离子已经进入到基相的主晶格中,进一步地,XRD精修的结果表明,掺杂后陶瓷晶格常数的变大了0.14%。
图4为SEM图,图中(a)为Y3NbO7,(b)为实施例1步骤三③制备的(Y0.9Ca0.1)3(Nb0.9Cr0.1)O7
从图4中看出,实施例1步骤三③制备的(Y0.9Ca0.1)3(Nb0.9Cr0.1)O7陶瓷具有Fm-3m空间群的萤石结构,和基相Y3NbO7陶瓷的结构保持一致,说明掺杂离子以固溶的方法进入到基相Y3NbO7陶瓷的主晶格中。
本实施例采用基于傅里叶红外光谱的发射率测试设备,对本实施例步骤三③制备的(Y0.9Ca0.1)3(Nb0.9Cr0.1)O7陶瓷进行光谱响应特性测试,测量结果表明本实施例步骤三③制备的(Y0.9Ca0.1)3(Nb0.9Cr0.1)O7在0.5~14μm波段的发射率为0.88。
本实施例采用紫外-可见光-近红外光谱仪对本实施例步骤三③制备的(Y0.9Ca0.1)3(Nb0.9Cr0.1)O7陶瓷的反射率和禁带宽度进行测量;测量结果表明Ca和Cr离子掺杂可将Y3NbO7陶瓷的禁带宽度从3.3eV缩小到0.5eV。
本实施例采用LFA457激光热导仪对本实施例步骤三③制备的(Y0.9Ca0.1)3(Nb0.9Cr0.1)O7陶瓷的热导率进行测量。结果表明,步骤三③制备的(Y0.9Ca0.1)3(Nb0.9Cr0.1)O7陶瓷的热导率在1000℃下为1.5W/(m·K)。
本实施例在基体上制备的Ca2+和Cr3+不等价离子共掺杂Y3NbO7的高发射率低热导功能陶瓷涂层的厚度为220μm,如图5所示。
图5为实施例1步骤五制备的Ca2+和Cr3+不等价离子共掺杂Y3NbO7的高发射率低热导功能陶瓷涂层截面的SEM图;
从图5可知:Ca2+和Cr3+不等价离子共掺杂Y3NbO7的高发射率低热导功能陶瓷涂层与基底具有良好的结合强度,结合强度为34MPa,同时,涂层具有很好的抗热震性能,在室温和1200℃的抗热震循环次数大于50次;
图6为发射率图谱,图中1为Y3NbO7,2为实施例1步骤五制备的Ca2+和Cr3+不等价离子共掺杂Y3NbO7的高发射率低热导功能陶瓷涂层;
从图6可知,实施例1步骤五制备的Ca2+和Cr3+不等价离子共掺杂Y3NbO7的高发射率低热导功能陶瓷涂层在0.5~14μm宽光谱的发射率为0.88,涂层热导率为0.7W/(m·K),且其发射率和热导率的比值为1.26。在1200℃的氧乙炔火焰冲击下,没有裂纹和涂层脱落,从而证明本实施例制备的Ca2+和Cr3+不等价离子共掺杂Y3NbO7的高发射率低热导功能陶瓷涂层具有优异的热防护性能。
实施例2:Ba2+、Ti4+和Mn4+不等价离子共掺杂Ce2Hf2O7的高发射率低热导功能陶瓷涂层的制备方法,具体是按以下步骤完成的:
一、高温煅烧:
分别将含有掺杂离子的氧化物(BaO、TiO2、MnO2)和基相陶瓷所对应的氧化物(CeO2和HfO2)进行高温煅烧,高温煅烧的温度为650℃,高温煅烧的时间为2h;
步骤一中所述的掺杂离子为低价态金属离子与高价态金属离子的组合,所述的低价态金属离子为Ba2+;所述的高价态金属离子为Ti4+和Mn4+
步骤一中所述的基相陶瓷为:Ce2Hf2O7
二、混合、球磨、干燥:
称取高温煅烧后的BaO、TiO2、MnO2、CeO2和HfO2的摩尔比为1:1:1:9:8,得到混合粉体;将混合粉体、无水乙醇和氧化锆球按质量比为1:0.1:4称取并放入行星球磨罐机中,在转速为400r/min下球磨12h,得到浆料;将浆料在120℃下进行干燥12h,得到球磨后的混合粉体;
三、固相反应煅烧:
①、采用示差扫描量热法对球磨后的混合粉体进行测试,得出混合粉体的固相反应温度为1400℃,以5℃/min的升温速率升温至1400℃,在真空气氛和1400℃下对球磨后的混合粉体进行固相反应煅烧6h,得到煅烧后的粉体;
②、将煅烧后的粉体、无水乙醇和氧化锆球按质量比为1:0.1:4放入行星球磨罐机中球磨,再在120℃下干燥12h,得到球磨后的粉体;
步骤三②中所述的球磨采用正反转相结合的方式,正反转周期为30min,间隔休息时间为5min,公转转速为300r/min,公转与自传转速比为1:2,球磨的总时间为18h;
③、重复步骤三①~②,直至Ba2+、Ti4+和Mn4+进入到基相Ce2Hf2O7陶瓷的晶格中,XRD无第二相杂峰出现,得到功能粉体((Ba0.1Ce0.9)2(Ti0.1Mn0.1Hf0.8)2O7);
步骤三③中所述的功能粉体中掺杂离子占除氧原子以外的总原子的15%;
四、造粒:
采用200目的筛网过滤功能粉体,得到过滤后的功能粉体;采用喷雾造粒将过滤后的功能粉体制备成造粒粉体;所述的造粒粉体尺寸为20~200μm;
五、将造粒粉体作为喂料,将牌号为GH4061的镍基合金作为基体,采用大气喷涂在基体上制备Ba2+、Ti4+和Mn4+不等价离子共掺杂Ce2Hf2O7的高发射率低热导功能陶瓷涂层((Ba0.1Ce0.9)2(Ti0.1Mn0.1Hf0.8)2O7陶瓷涂层);
步骤五中所述的大气喷涂的工艺参数为:电流500A,功率45kW,主气流45slpm,辅助气流8slpm,载送气流3slpm,送粉2.5rpm,喷距110mm。
本实施例采用X射线衍射分析技术(XRD)对本实施例制备的Ba2+、Ti4+和Mn4+不等价离子共掺杂Ce2Hf2O7的高发射率低热导功能陶瓷涂层进行物相结构分析,Ba2+、Ti4+和Mn4+不等价离子共掺杂Ce2Hf2O7的高发射率低热导功能陶瓷涂层表现为单相结构,且晶格常数变化了0.12%。
本实施例采用基于傅里叶红外光谱的发射率测试设备,对本实施例制备的Ba2+、Ti4+和Mn4+不等价离子共掺杂Ce2Hf2O7的高发射率低热导功能陶瓷涂层进行光谱响应特性测试,测量结果表明:Ba2+、Ti4+和Mn4+不等价离子共掺杂Ce2Hf2O7的高发射率低热导功能陶瓷涂层在0.5~14μm波段的发射率为0.85。
本实施例采用紫外-可见光-近红外光谱仪对本实施例所制备的Ba2+、Ti4+和Mn4+不等价离子共掺杂Ce2Hf2O7的高发射率低热导功能陶瓷涂层的反射率和禁带宽度进行测量。测量结果表明:Ba2+、Ti4+和Mn4+离子掺杂可将Ce2Hf2O7陶瓷的禁带宽度从3.5eV缩小到0.4eV。
本实施例采用LFA457激光热导仪对Ce2Hf2O7陶瓷和本实施例所制备的Ba2+、Ti4+和Mn4+不等价离子共掺杂Ce2Hf2O7的陶瓷涂层的热导率进行测量。结果表明,该Ba2+、Ti4+和Mn4+不等价离子共掺杂Ce2Hf2O7的高发射率低热导功能陶瓷涂层的热导率在1000℃下为1.5W/(m·K),Ce2Hf2O7陶瓷的热导率在1000℃下为1.9W/(m·K);
本实施例所制备的Ca2+和Cr3+不等价离子共掺杂Y3NbO7的高发射率低热导功能陶瓷涂层和基底具有良好的结合强度,结合强度为32MPa,同时,涂层具有很好的抗热震性能,在室温和1200℃间抗热震循环次数大于50次;涂层在0.5~14μm宽光谱的发射率为0.85和热导率为0.75W/(m·K),且其发射率和热导率的比值为1.13;在1200℃的氧乙炔火焰冲击下,没有裂纹和涂层脱落。从而证明本实施例制备的Ba2+、Ti4+和Mn4+不等价离子共掺杂Ce2Hf2O7的高发射率低热导功能陶瓷涂层具有优异的热防护性能。
实施例3:Sr2+、Yb3+和Ti4+不等价离子共掺杂(Y0.5Lu0.5)2SiO5的高发射率低热导功能陶瓷涂层的制备方法,具体是按以下步骤完成的:
一、高温煅烧:
分别将含有掺杂离子的氧化物(SrO、Yb2O3、TiO2)和基相陶瓷所对应的氧化物(Y2O3、Lu2O3和SiO2)进行高温煅烧,高温煅烧的温度为650℃,高温煅烧的时间为2h;
步骤一中所述的掺杂离子为低价态金属离子与高价态金属离子的组合,所述的低价态金属离子为Sr2+;所述的高价态金属离子为Yb3+和Ti4+
步骤一中所述的基相陶瓷为:(Y0.5Lu0.5)2SiO5
二、混合、球磨、干燥:
称取高温煅烧后的SrO、Yb2O3、TiO2、Y2O3、Lu2O3和SiO2的摩尔比为2:1:2:1:1:5,得到混合粉体;将混合粉体、无水乙醇和氧化锆球按质量比为1:0.1:4称取并放入行星球磨罐机中,在转速为350r/min下球磨12h,得到浆料;将浆料在100℃下进行干燥12h,得到球磨后的混合粉体;
三、固相反应煅烧:
①、采用示差扫描量热法对球磨后的混合粉体进行测试,得出混合粉体的固相反应温度为1400℃,以5℃/min的升温速率升温至1400℃,在真空气氛和1400℃下对球磨后的混合粉体进行固相反应煅烧6h,得到煅烧后的粉体;
②、将煅烧后的粉体、无水乙醇和氧化锆球按质量比为1:0.1:4放入行星球磨罐机中球磨,再在120℃下干燥12h,得到球磨后的粉体;
步骤三②中所述的球磨采用正反转相结合的方式,正反转周期为30min,间隔休息时间为5min,公转转速为300r/min,公转与自传转速比为1:2,球磨的总时间为12h;
③、重复步骤三①~②,直至Sr2+和Yb3+,Ti4+进入到基相(Y0.5Lu0.5)2SiO5陶瓷的晶格中,XRD无第二相杂峰出现,得到功能粉体((Sr0.2Yb0.2Ti0.2Y0.2Lu0.2)2SiO5);
步骤三③中所述的功能粉体中掺杂离子占除氧原子以外的总原子的60%;
四、造粒:
采用200目的筛网过滤功能粉体,得到过滤后的功能粉体;采用喷雾造粒将过滤后的功能粉体制备成造粒粉体;所述的造粒粉体尺寸为20~200μm;
五、将造粒粉体作为喂料,将C/SiC作为基体,采用大气喷涂在基体上制备Sr2+、Yb3 +和Ti4+不等价离子共掺杂(Y0.5Lu0.5)2SiO5的高发射率低热导功能陶瓷涂层((Sr0.2Yb0.2Ti0.2Y0.2Lu0.2)2SiO5陶瓷涂层);
步骤五中所述的大气喷涂的工艺参数为:电流500A,功率45kW,主气流45slpm,辅助气流8slpm,载送气流3slpm,送粉2.5rpm,喷距110mm。
本实施例采用X射线衍射分析技术(XRD)对本实施例制备的Sr2+、Yb3+和Ti4+不等价离子共掺杂(Y0.5Lu0.5)2SiO5的高发射率低热导功能陶瓷涂层进行物相结构分析,掺杂后,陶瓷表现为单相结构,且晶格常数变化了0.16%。
本实施例采用基于傅里叶红外光谱的发射率测试设备,对本实施例制备的Sr2+、Yb3+和Ti4+不等价离子共掺杂(Y0.5Lu0.5)2SiO5的高发射率低热导功能陶瓷涂层进行光谱响应特性测试,测量结果表明:本实施例制备的Sr2+、Yb3+和Ti4+不等价离子共掺杂(Y0.5Lu0.5)2SiO5的高发射率低热导功能陶瓷涂层在0.5~14μm波段的发射率为0.91。
本实施例采用紫外-可见光-近红外光谱仪对本实施例所制备的Sr2+、Yb3+和Ti4+不等价离子共掺杂(Y0.5Lu0.5)2SiO5的高发射率低热导功能陶瓷涂层的反射率和禁带宽度进行测量。测量结果表明Sr2+、Yb3+和Ti4+离子掺杂可将(Y0.5Lu0.5)2SiO5陶瓷的禁带宽度从4.8eV缩小到0.45eV。
本实施例采用LFA457激光热导仪对(Y0.5Lu0.5)2SiO5陶瓷和本实施例所制备的Sr2 +、Yb3+和Ti4+不等价离子共掺杂(Y0.5Lu0.5)2SiO5的高发射率低热导功能陶瓷涂层的热导率进行测量。结果表明,本实施例制备的Sr2+、Yb3+和Ti4+不等价离子共掺杂(Y0.5Lu0.5)2SiO5的高发射率低热导功能陶瓷涂层的热导率在1000℃下为1.4W/(m·K),(Y0.5Lu0.5)2SiO5陶瓷在1000℃下为1.6W/(m·K)。
本实施例制备的Sr2+、Yb3+和Ti4+不等价离子共掺杂(Y0.5Lu0.5)2SiO5的高发射率低热导功能陶瓷涂层和基底具有良好的结合强度,结合强度为35MPa,同时,涂层具有很好的抗热震性能,在室温和1200℃间抗热震循环次数大于50次;涂层在0.5~14μm宽光谱的发射率为0.91和热导率为0.65W/(m·K),且其发射率和热导率的比值为1.3,在1200℃的氧乙炔火焰冲击下,没有裂纹和涂层脱落。从而证明本实施例制备的Sr2+、Yb3+和Ti4+不等价离子共掺杂(Y0.5Lu0.5)2SiO5的高发射率低热导功能陶瓷涂层具有优异的热防护性能。
对比实施例1:Ca2+掺杂Y3NbO7(Y2.7Ca0.3NbO7)的制备方法,具体是按以下步骤完成的:
一、高温煅烧:
分别将含有Ca2+掺杂离子的氧化物(CaO)和基相陶瓷所对应的氧化物(Y2O3和Nb2O5)进行高温煅烧,高温煅烧的温度为650℃,高温煅烧的时间为2h;
步骤一中所述的基相陶瓷为:Y3NbO7
二、混合、球磨、干燥:
称取高温煅烧后的CaO、Y2O3和Nb2O5的摩尔比为6:27:10,得到混合粉体;将混合粉体、无水乙醇和氧化锆球按质量比为1:0.1:4称取并放入行星球磨罐中,在转速为300r/min下行星球磨12h,得到浆料;将浆料在120℃下进行干燥12h,得到球磨后的混合粉体;
三、固相反应煅烧:
①、采用示差扫描量热法对球磨后的混合粉体进行测试,得出混合粉体的固相反应温度为1200℃,以5℃/min的升温速率升温至1300℃,在空气气氛和1300℃下对球磨后的混合粉体进行固相反应煅烧4h;
②、将煅烧后的粉体、无水乙醇和氧化锆球按质量比为1:0.1:4放入行星球磨罐机中球磨,再在120℃下干燥6h,得到球磨后的粉体;
步骤三②中所述的球磨采用正反转相结合的方式,正反转周期为30min,间隔休息时间为5min,公转转速为300r/min,公转与自传转速比为1:2,球磨的总时间为12h;
③、重复步骤三①~②,直至Ca2+进入到基相Y3NbO7陶瓷的晶格中,XRD无第二相杂峰出现,得到Y2.7Ca0.3NbO7
对比实施例2:Cr3+掺杂Y3NbO7(Y3Nb0.9Cr0.1O7)的制备方法,具体是按以下步骤完成的:
一、高温煅烧:
分别将含有Cr3+掺杂离子的氧化物(Cr2O3)和基相陶瓷所对应的氧化物(Y2O3和Nb2O5)进行高温煅烧,高温煅烧的温度为650℃,高温煅烧的时间为2h;
步骤一中所述的基相陶瓷为:Y3NbO7
二、混合、球磨、干燥:
称取高温煅烧后的Cr2O3、Y2O3和Nb2O5的摩尔比为1:30:9,得到混合粉体;将混合粉体、无水乙醇和氧化锆球按质量比为1:0.1:4称取并放入行星球磨罐中,在转速为300r/min下行星球磨12h,得到浆料;将浆料在120℃下进行干燥12h,得到球磨后的混合粉体;
三、固相反应煅烧:
①、采用示差扫描量热法对球磨后的混合粉体进行测试,得出混合粉体的固相反应温度为1200℃,以5℃/min的升温速率升温至1300℃,在空气气氛和1300℃下对球磨后的混合粉体进行固相反应煅烧4h;
②、将煅烧后的粉体、无水乙醇和氧化锆球按质量比为1:0.1:4放入行星球磨罐机中球磨,再在120℃下干燥6h,得到球磨后的粉体;
步骤三②中所述的球磨采用正反转相结合的方式,正反转周期为30min,间隔休息时间为5min,公转转速为300r/min,公转与自传转速比为1:2,球磨的总时间为12h;
③、重复步骤三①~②,直至Cr3+进入到基相Y3NbO7陶瓷的晶格中,XRD无第二相杂峰出现,得到Y3Nb0.9Cr0.1O7
图7为光谱图,图中(a)为发射率,(b)为禁带宽度,图中1为Y3NbO7,2为Y2.7Ca0.3NbO7,3为Y3Nb0.9Cr0.1O7,4为Y2.7Ca0.3Nb0.9Cr0.1O7
从图7可知:Y3NbO7单掺杂低价Ca2+的发射率仅从0.1提高到0.3,禁带宽度从3.3eV缩小到1.8eV;Y3NbO7单掺杂低价Cr3+的发射率仅从0.1提高到0.4,禁带宽度从3.3eV缩小到1.6eV。
采用LFA457激光热导仪对Y3NbO7陶瓷和本对比实施例制备的Y2.7NbCa0.3O7、Y3Nb0.9Cr0.1O7的陶瓷的热导率进行测量。结果表明,该低价Ca2+离子掺杂Y3NbO7陶瓷(Y2.7NbCa0.3O7)的热导率在1000℃下为1.8W/(m·K),高价Cr3+离子掺杂Y3NbO7陶瓷(Y3Nb0.9Cr0.1O7)的热导率在1000℃下为1.7W/(m·K)。

Claims (8)

1.一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法,其特征在于该方法具体是按以下步骤完成的:
一、高温煅烧:
分别将含有掺杂离子的氧化物和基相陶瓷所对应的氧化物进行高温煅烧;
步骤一中所述的掺杂离子为低价态金属离子与高价态金属离子的组合,其中低价态金属离子与高价态金属离子的原子含量比为(0.1~4):1;
步骤一中所述的基相陶瓷为ReSiO5、Re2Si2O7、ReNb3O7、ReTa3O9、Re2Hf2O7和Re2Zr2O7中的一种或含有几种稀土阳离子的陶瓷,其中Re为稀土元素;
步骤一中所述的低价态金属离子为Ca2+、Mg2+、Sr2+和Ba2+中的一种或几种的组合;所述的高价态金属离子为Ti4+、Cr3+、Mn4+、Fe3+、La3+、Ce4+、Pr4+、Nd3+、Sm3+、Eu3+、Ga3+、Te3+、Dy3+、Ho3 +、Er3+、Tm3+、Yb3+和Lu3+中的一种或几种的组合;
二、混合、球磨、干燥:
称取高温煅烧后的含有掺杂离子的氧化物和基相陶瓷所对应的氧化物,得到混合粉体;将混合粉体、无水乙醇和氧化锆球放入行星球磨罐机中,球磨,得到浆料;将浆料进行干燥,得到球磨后的混合粉体;
三、固相反应煅烧:
①、采用示差扫描量热法对球磨后的混合粉体进行测试,得出混合粉体的固相反应温度,记为T℃;在T℃+(0℃~100℃)下对球磨后的混合粉体进行固相反应煅烧,得到煅烧后的粉体;
②、将煅烧后的粉体、无水乙醇和氧化锆球放入行星球磨罐机中球磨,干燥,得到球磨后的粉体;
③、重复步骤三①~②,直至掺杂离子完全进入到基相陶瓷中,得到功能粉体;
四、造粒:
采用150目~300目的筛网过滤功能粉体,得到过滤后的功能粉体;对过滤后的功能粉体进行粉末球型化造粒,得到造粒粉体;将造粒粉体制备成不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层;
步骤四中所述的涂层的厚度为5~500μm;所述的涂层在25~1500℃的温度范围内具有高发射率和低热导率特征,其中在0.5~14μm宽光谱的发射率大于0.85和热导率小于2W/(m·K),且其发射率和热导率的比值大于0.4。
2.根据权利要求1所述的一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法,其特征在于步骤一中所述的高温煅烧的温度为650℃~900℃,高温煅烧的时间为2h~6h。
3.根据权利要求1所述的一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法,其特征在于步骤二中所述的混合粉体、无水乙醇和氧化锆球的质量比为1:0.1:4;步骤二中所述的球磨的转速为200r/min~400r/min,球磨的时间为6h~12h;步骤二中所述的干燥的温度为60℃~120℃,干燥的时间为3h~12h。
4.根据权利要求1所述的一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法,其特征在于步骤三①中所述的固相反应煅烧的气氛为氩气、真空、空气、氢气或氧气气氛中的任意一种;步骤三①中所述的固相反应煅烧的保温时间为2h~12h,升温速率为2~8℃/min。
5.根据权利要求1所述的一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法,其特征在于步骤三②中所述的煅烧后的粉体、无水乙醇和氧化锆球的质量比为1:0.1:4;步骤三②中所述的球磨采用正反转相结合的方式,正反转周期为30min,间隔休息时间为5min,公转转速为300~600r/min,公转与自传转速比为1:2,球磨的总时间为6h~24h;步骤三②中所述的干燥的温度为60℃~120℃,干燥的时间为3h~12h。
6.根据权利要求1所述的一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法,其特征在于步骤三③中所述的功能粉体中掺杂离子占除氧原子以外的总原子的1%~60%;步骤四中所述的粉末球型化造粒的方式为喷雾造粒、静电场辅助电喷造粒中的一种或两种造粒方式所得粉体的混合;所述的造粒粉体的尺寸为20μm~200μm。
7.根据权利要求1所述的一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法,其特征在于步骤四中将造粒粉体制备成不等价离子掺杂的高发射率低热导功能复合陶瓷的方法为:无压烧结、热压烧结、放电等离子体烧结或闪烧;步骤四中将造粒粉体制备成涂层的方法为:采用大气等离子体喷涂、超音速火焰喷涂、真空等离子体喷涂、等离子体物理气相沉积、电子束物理气相沉积或离子注入的方法在基底上将造粒粉体制备成涂层。
8.根据权利要求1所述的一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法,其特征在于所述的涂层与基底结合强度大于30MPa,同时,涂层具有很好的抗热震性能,在室温和1200℃间的抗热震循环次数大于50次;所述的基底为镍基合金、铌基合金、C/C、SiC/SiC、C/SiC或SiC/Si3N4
CN202211658384.7A 2022-12-22 2022-12-22 一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法 Active CN116082039B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211658384.7A CN116082039B (zh) 2022-12-22 2022-12-22 一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211658384.7A CN116082039B (zh) 2022-12-22 2022-12-22 一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法

Publications (2)

Publication Number Publication Date
CN116082039A CN116082039A (zh) 2023-05-09
CN116082039B true CN116082039B (zh) 2023-10-20

Family

ID=86211306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211658384.7A Active CN116082039B (zh) 2022-12-22 2022-12-22 一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法

Country Status (1)

Country Link
CN (1) CN116082039B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116854463A (zh) * 2023-07-17 2023-10-10 云南贵金属实验室有限公司 一种Lu掺杂钛酸锶基巨介电陶瓷材料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091198A1 (ko) * 2010-12-29 2012-07-05 한국세라믹기술원 프라세오디뮴이 도핑된 칼슘-망간계 열전 조성물 및 그 제조방법
EP2767525A1 (en) * 2013-02-18 2014-08-20 General Electric Company Ceramic powders and methods therefor
CN104710179A (zh) * 2015-03-11 2015-06-17 哈尔滨工业大学 一种过渡金属离子掺杂稀土锆酸盐材料的制备方法
CN106380210A (zh) * 2016-08-26 2017-02-08 中国农业机械化科学研究院 一种多元稀土氧化物掺杂改性ysz热喷涂粉末及其制备方法
CN106967953A (zh) * 2017-04-13 2017-07-21 乐延伟 一种基于缺陷萤石结构的稀土铌酸盐的发光热障涂层体系及其制备方法
CN110468365A (zh) * 2019-09-06 2019-11-19 北京星航机电装备有限公司 一种高发射率、低热导率涂层及其制备方法
CN110746186A (zh) * 2019-11-26 2020-02-04 内蒙古工业大学 一种Al3+掺杂型低红外、低热导率半导体陶瓷材料及其制备方法
KR20200137250A (ko) * 2019-05-29 2020-12-09 한국과학기술원 고출력 적외선 레이저 세라믹 소재용 나노복합체 및 그의 제조방법
CN112723884A (zh) * 2021-01-18 2021-04-30 武汉理工大学 一种兼具低热导率和高红外发射率的陶瓷材料、陶瓷涂层及其制备方法
CN113683430A (zh) * 2021-10-12 2021-11-23 西北工业大学 缺陷萤石结构的氧化物高熵陶瓷及其抗烧蚀涂层的制备方法
CN114105635A (zh) * 2021-12-07 2022-03-01 内蒙古科技大学 一种陶瓷材料及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098411A1 (en) * 2011-09-28 2014-04-10 Woohong Kim RARE EARTH DOPED Lu2O3 POLYCRYSTALLINE CERAMIC LASER GAIN MEDIUM

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091198A1 (ko) * 2010-12-29 2012-07-05 한국세라믹기술원 프라세오디뮴이 도핑된 칼슘-망간계 열전 조성물 및 그 제조방법
EP2767525A1 (en) * 2013-02-18 2014-08-20 General Electric Company Ceramic powders and methods therefor
CN104710179A (zh) * 2015-03-11 2015-06-17 哈尔滨工业大学 一种过渡金属离子掺杂稀土锆酸盐材料的制备方法
CN106380210A (zh) * 2016-08-26 2017-02-08 中国农业机械化科学研究院 一种多元稀土氧化物掺杂改性ysz热喷涂粉末及其制备方法
CN106967953A (zh) * 2017-04-13 2017-07-21 乐延伟 一种基于缺陷萤石结构的稀土铌酸盐的发光热障涂层体系及其制备方法
KR20200137250A (ko) * 2019-05-29 2020-12-09 한국과학기술원 고출력 적외선 레이저 세라믹 소재용 나노복합체 및 그의 제조방법
CN110468365A (zh) * 2019-09-06 2019-11-19 北京星航机电装备有限公司 一种高发射率、低热导率涂层及其制备方法
CN110746186A (zh) * 2019-11-26 2020-02-04 内蒙古工业大学 一种Al3+掺杂型低红外、低热导率半导体陶瓷材料及其制备方法
CN112723884A (zh) * 2021-01-18 2021-04-30 武汉理工大学 一种兼具低热导率和高红外发射率的陶瓷材料、陶瓷涂层及其制备方法
CN113683430A (zh) * 2021-10-12 2021-11-23 西北工业大学 缺陷萤石结构的氧化物高熵陶瓷及其抗烧蚀涂层的制备方法
CN114105635A (zh) * 2021-12-07 2022-03-01 内蒙古科技大学 一种陶瓷材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Effect of co-doping with calcium and transition metals on the infrared emissivity of La2(Zr0.7Ce0.3)2O7 ceramics for high-temperature thermal protection applications";Shijie Feng et al.;《The Ceramic Society of Japan》;第128卷(第8期);第565-568页 *
Ca-Mn co-doping LaCrO3 coating with high emissivity and good mechanical property for enhancing high-temperature radiant heat dissipation;Haipeng Zhanga et al.;《Journal of the European Ceramic Society》;第42卷(第15期);第7288-7299页 *

Also Published As

Publication number Publication date
CN116082039A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
CN113683430B (zh) 缺陷萤石结构的氧化物高熵陶瓷及其抗烧蚀涂层的制备方法
CN106380210B (zh) 一种多元稀土氧化物掺杂改性ysz热喷涂粉末及其制备方法
EP3243925B1 (en) Coating material, coated member and method for producing coated member
US7597971B2 (en) Thermal barrier coating material
CN108658626B (zh) MoSi2-SiO2-硼硅酸盐耐高温高发射率涂层及其制备方法与应用
WO2016129591A1 (ja) コーティング部材及びコーティング部材の製造方法
US20040101699A1 (en) Heat insulating layer based on la2zr2o7 for high temperatures
CN116082039B (zh) 一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法
Liu et al. Fabrication and characterization of Pr6O11-HfO2 ultra-high temperature infrared radiation coating
JP6200169B2 (ja) リチウムイオン伝導性酸化物の製造方法
CN111777413B (zh) 一种等离子喷涂用纳米锆酸钆粉体的制备方法及应用
CN104891990A (zh) 共晶结构热障涂层材料及其可用于热喷涂的粉粒制造方法
CN113372108A (zh) 一种具有良好光吸收性能的高熵陶瓷材料的制备方法
CN111876719A (zh) 一种高发射率复合涂层及其制备方法
CN113403566B (zh) 一种基于荧光亚层的热障/红外低发射率一体化涂层及其制备方法
CN113817946B (zh) 一种HEA-SiC高温吸波材料及其制备方法
Huang et al. Compatibility of low thermal conductivity and high infrared emissivity of plasma-sprayed Sm2Hf2O7 and Pr2Hf2O7 coatings
CN114561114B (zh) 一种涂料及其制备方法和应用
CN114988895A (zh) 一种抗冲击热循环与耐cmas腐蚀的复相共析环境障涂层及其制备方法
CN114086102A (zh) 一种Ba(Mg1/3Ta2/3)O3-YSZ双陶瓷层热障涂层及其制备方法
Li Preparation and properties of plasma sprayed NiCr spinel infrared radiation ceramic coatings
KR100915920B1 (ko) 파이로클로어 결정 구조의 저열전도성 세라믹 소재 및 그제조방법
CN114855113B (zh) 一种低吸发比高发射率涂层材料及其制备工艺、以及一种涂层系统及其制备工艺
CN113716959B (zh) 一种用于热障涂层的球形粉体及其制备方法
CN112979310B (zh) 一种低热导率、高断裂韧性航空航天热障材料及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant