CN116854463A - 一种Lu掺杂钛酸锶基巨介电陶瓷材料及其制备方法 - Google Patents

一种Lu掺杂钛酸锶基巨介电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN116854463A
CN116854463A CN202310876655.4A CN202310876655A CN116854463A CN 116854463 A CN116854463 A CN 116854463A CN 202310876655 A CN202310876655 A CN 202310876655A CN 116854463 A CN116854463 A CN 116854463A
Authority
CN
China
Prior art keywords
ceramic material
dielectric
ball milling
temperature
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310876655.4A
Other languages
English (en)
Inventor
曾一明
何佳麒
陈力
韩娇
李明伟
周菊
杞文涵
杨平
李仕祺
李梦虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Precious Metals Laboratory Co ltd
Original Assignee
Yunnan Precious Metals Laboratory Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Precious Metals Laboratory Co ltd filed Critical Yunnan Precious Metals Laboratory Co ltd
Priority to CN202310876655.4A priority Critical patent/CN116854463A/zh
Publication of CN116854463A publication Critical patent/CN116854463A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明涉及电子功能材料技术领域,提供了一种Lu掺杂钛酸锶基巨介电陶瓷材料及其制备方法。本发明通过使用Lu3+掺杂SrTiO3,在陶瓷内部形成一定数量稳定的缺陷簇,增大极化率,从而使Sr1‑1.5xLuxTiO3(0<x≤0.02)具有巨介电效应;本发明采用固相合成法制备Lu掺杂SrTiO3基巨介电陶瓷材料,在普通空气气氛下烧结即可,且稀土Lu的掺杂量较少,生产成本低;本发明的制备方法简单,重复性好,成品率高,成本较低,便于商业化生产。实施例结果表明,当x=0.01时,在室温、1kHz的测试频率下,所得陶瓷材料的介电常数为101067,在室温、1MHz的测试频率下介电常数为32584。

Description

一种Lu掺杂钛酸锶基巨介电陶瓷材料及其制备方法
技术领域
本发明涉及电子功能材料技术领域,尤其涉及一种Lu掺杂钛酸锶基巨介电陶瓷材料及其制备方法。
背景技术
巨介电陶瓷电容器以功率密度高、充放电速度快、循环使用寿命长等优点,一直在电子元器件小型化和储能器件方面扮演着举足轻重的角色。常见的巨介电陶瓷材料包括BaTiO3、NiO、CaCu3Ti4O12与TiO2等,其中BaTiO3是弛豫铁电体,室温下这类陶瓷材料有较高的介电常数(~1400),但在居里温度120℃时会发生铁电相变,介电常数增加到6000~10000,这种相较室温下的剧烈变化,影响其在高温下的使用。NiO基陶瓷虽然具有巨介电常数,但其介电损耗较高(>0.3)。CaCu3Ti4O12基陶瓷有着半导体的晶粒与绝缘体的晶界的结构,巨介电常数的产生可用IBLC模型解释,且介电常数在宽的温度、频率范围较为稳定,但其介电损耗同样难以降低。掺杂的TiO2陶瓷虽然兼具巨介电常数与低介电损耗,但其击穿强度较低,难以应用。因此,开发频率、温度稳定性良好的巨介电陶瓷材料是十分重要的。
纯SrTiO3的介电常数约为300,并且兼具高击穿强度与低介电损耗,同时SrTiO3也是一种量子顺电体,不存在发生铁电相变的居里温度,因此其介电常数可在较宽的温度范围内保持稳定,并且通过掺杂改性与改进烧结工艺条件的方式可以提升其介电性能。采用稀土阳离子掺杂Sr2+位点或Ti4+位点,可大幅提升其介电性能。然而,传统的在空气气氛下烧结稀土掺杂的SrTiO3陶瓷对介电常数的提升仍然有限(<104),例如Qi等人制备的Sr0.985Ce0.01TiO3陶瓷在空气下烧结只有~7000的介电常数;Zhang等人制备的空气烧结的Ho0.02Sr0.97TiO3介电常数只有~4500左右。因此,为获得巨介电效应,通常SrTiO3基陶瓷需要在惰性气氛或还原气氛下烧结,以产生足够的等缺陷,来提升介电性能。Pu等人成功制备出惰性气氛或还原气氛烧结的Sr1-1.5xRexTiO3(Re=La、Dy、Nd、Er、Y、Ce)陶瓷,结果表明这些陶瓷具有巨介电效应(>105),但是气氛烧结的生产成本较高,且对炉体密封性要求高,若维修保养不当炉体会出现漏气而引发重大安全事故,所以这种烧结方式并不利于实际生产,因此开发在空气中烧结的巨介电(>105)SrTiO3基陶瓷非常具有实际应用价值。
发明内容
有鉴于此,本发明提供了一种Lu掺杂钛酸锶基巨介电陶瓷材料及其制备方法。本发明提供的Lu掺杂钛酸锶基巨介电陶瓷材料在空气气氛下烧结即可获得巨介电常数,并且介电常数的频率、温度稳定性良好,满足电子元器件小型化和储能器件对电介质材料的需求。
为了实现上述发明目的,本发明提供以下技术方案:
一种Lu掺杂SrTiO3基巨介电陶瓷材料的制备方法,包括以下步骤:
(1)按照式I中的化学计量比,将SrCO3、TiO2和Lu2O3进行一次球磨,将所得一次球磨料干燥后煅烧,得到煅烧粉;
Sr1-1.5xLuxTiO3式I;
式I中:x的取值范围为0<x≤0.02;
(2)将所述煅烧粉一次球磨后依次进行过筛和干燥,得到二次球磨料;
(3)将所述二次球磨料、粘结剂和水混合后依次进行陈腐、造粒和干压成型,得到陶瓷坯体;
(4)将所述陶瓷坯体依次进行排胶和烧结,得到所述Lu掺杂SrTiO3基巨介电陶瓷材料;所述烧结在空气气氛中进行。
优选的,所述一次球磨和二次球磨的条件独立地的包括:球磨转速为300~450rpm,球磨时间为4~8h,球磨介质为去离子水。
优选的,所述煅烧的温度为1100~1350℃,保温时间为3~5h;升温至所述煅烧的温度的升温速率为3~7℃/min。
优选的,所述粘结剂为聚乙烯醇溶液,所述聚乙烯醇溶液的质量浓度为4~8%;所述粘结剂的用量为所述煅烧粉质量的1~2%,所述水的用量为所述煅烧粉质量的0.5~1%。
优选的,所述干压成型的压力为10~20MPa;所述陶瓷坯体的直径为8~15mm,厚度为1~2mm。
优选的,所述排胶的温度为550~650℃,保温时间为2~3h。
优选的,所述烧结的温度为1425~1525℃,保温时间为6~8h;升温至所述烧结的温度的程序为:先以8~12℃/min的速率升温至400~600℃,之后以4~6℃/min的速率升温至烧结的温度。
本发明还提供了上述方案所述制备方法制备得到的Lu掺杂SrTiO3基巨介电陶瓷材料,化学式如式I所示:
Sr1-1.5xLuxTiO3 式I;
式I中:x的取值范围为0<x≤0.02。
优选的,所述x的取值为0.0025、0.005、0.0075、0.01、0.0125、0.015、0.0175或0.02。
优选的,所述Lu掺杂SrTiO3基巨介电陶瓷材料在室温1kHz的测试频率下介电常数为26261~101067,介电损耗范围为0.11~0.49;在室温1MHz测试频率下介电常数为10746~32584,介电损耗为0.05~0.24。
本发明提供了一种Lu掺杂SrTiO3基巨介电陶瓷材料的制备方法,首先按照式I(见上文)中的化学计量比,将SrCO3、TiO2和Lu2O3进行一次球磨一次球磨,将所得一次球磨料干燥后煅烧,得到煅烧粉;将所述煅烧粉进行二次球磨后依次进行过筛和干燥,得到二次球磨料;将所述二次球磨料、粘结剂和水混合后依次进行陈腐、造粒和干压成型,得到陶瓷坯体;将所述陶瓷坯体依次进行排胶和烧结,得到Lu掺杂SrTiO3基巨介电陶瓷材料;所述烧结在空气气氛中进行。本发明利用Lu3+非等价掺杂SrTiO3产生锶空位(V″Sr)、氧空位以及自由电子(e′),陶瓷内部的Ti4+得到一个电子被还原成Ti3+,这些缺陷偶极子更倾向于形成稳定的缺陷簇例如:/>和/>缺陷簇的存在会钉扎自由移动的电子,从而提升极化率来达到巨介电效应。
本发明在烧结时不需要保护气氛,普通空气气氛下烧结即可获得Lu掺杂SrTiO3基巨介电陶瓷材料,该陶瓷材料介电常数的频率、温度稳定性良好,满足电子元器件小型化和储能器件对电介质材料的需求;并且,本发明中稀土Lu的掺杂量较少,能降低生产成本;本发明涉及的制备方法简单,重复性好,成品率高,成本较低,便于商业化生产。
实施例结果表明,当x=0.01时,在室温、1kHz的测试频率下,所得Lu掺杂SrTiO3基巨介电陶瓷材料的介电常数为101067,在室温、1MHz的测试频率下的介电常数为32584。
附图说明
图1为空气气氛下1500℃烧结6h所得Sr1-1.5xLuxTiO3(0<x≤0.02)陶瓷材料的XRD图,其中:(a)10°~90°,(b)SrTiO3(110)衍射峰的放大图;
图2为空气气氛下1500℃烧结6h所得Sr1-1.5xLuxTiO3(0<x≤0.02)陶瓷材料的表面形貌图以及相对密度和平均粒径测试结果,其中:(a)x=0、(b)x=0.005、(c)x=0.01、(d)x=0.015、(e)x=0.02和(f)相对密度与平均晶粒尺寸;
图3为空气气氛下1500℃烧结6h所得Sr1-1.5xLuxTiO3(0<x≤0.02)陶瓷材料的介电性能,其中:(a)介电性能随频率的变化,(b)室温1KHz测试条件下介电性能随Lu3+掺杂浓度的变化,(c)介电性能随温度的变化和(d)介电常数的温度系数。
具体实施方式
本发明提供了一种Lu掺杂SrTiO3基巨介电陶瓷材料的制备方法,包括以下步骤:
(1)按照式I中的化学计量比,将SrCO3、TiO2和Lu2O3进行一次球磨,将所得一次球磨料干燥后煅烧,得到煅烧粉;
Sr1-1.5xLuxTiO3式I;
式I中:x的取值范围为0<x≤0.02;
(2)将所述煅烧粉进行二次球磨后依次进行过筛和干燥,得到二次球磨料;
(3)将所述二次球磨料、粘结剂和水混合后依次进行陈腐、造粒和干压成型,得到陶瓷坯体;
(4)将所述陶瓷坯体依次进行排胶和烧结,得到Lu掺杂SrTiO3基巨介电陶瓷材料;所述烧结在空气气氛中进行。
本发明按照式I中的化学计量比,将SrCO3、TiO2和Lu2O3进行一次球磨,将所得一次球磨料干燥后煅烧,得到煅烧粉。在本发明中,所述SrCO3的纯度优选为99%以上,所述TiO2的纯度优选为99%以上,所述Lu2O3的纯度优选为99.99%以上;所述一次球磨的条件优选包括:球磨转速为300~450rpm,优选为350~400rpm,球磨时间为4~8h,优选为5~6h,球磨介质为去离子水;所述球磨的装置优选为行星式球磨机,所述球磨采用的球磨罐优选为聚四氟乙烯球磨罐;本发明对所述干燥的条件没有特殊要求,在烘箱中烘干即可。
在本发明中,所述煅烧的温度优选为1100~1350℃,更优选为1150~1300℃,进一步优选为1200℃,所述煅烧的保温时间优选为3~5h,更优选为4h;升温至所述煅烧的温度的升温速率优选为3~7℃/min,更优选为5℃/min。在本发明的具体实施例中,优选将干燥后的一次球磨料置于氧化铝坩埚中,然后,在马弗炉中进行煅烧。
得到煅烧粉后,本发明将所述煅烧粉进行二次球磨后依次进行过筛和干燥,得到二次球磨料。在本发明中,所述二次球磨的条件优选包括:球磨转速为300~450rpm,优选为350~400rpm,球磨时间为4~8h,优选为5~6h,球磨介质为去离子水;所述过筛用筛网的目数优选为500目;本发明对所述干燥的条件没有特殊要求,在烘箱中烘干即可。得到二次球磨料后,本发明将所述二次球磨料、粘结剂和水混合后依次进行陈腐、造粒和干压成型,得到陶瓷坯体。在本发明中,所述粘结剂优选为聚乙烯醇溶液,所述聚乙烯醇溶液的质量浓度优选为4~8%,更优选为4~6%;所述粘结剂的用量优选为所述煅烧粉质量的1~2%,所述水的用量优选为所述煅烧粉质量的0.5~1%;所述水优选为去离子水;所述陈腐的时间优选为8~24h;本发明对所述造粒没有特殊要求,采用本领域熟知的条件即可;所述干压成型的压力优选为10~20MPa,更优选为15MPa;所述陶瓷坯体的直径优选为8~15mm,更优选为10mm,厚度优选为1~2mm。
得到破陶瓷坯体后,本发明将所述陶瓷坯体依次进行排胶和烧结,得到所述Lu掺杂SrTiO3基巨介电陶瓷材料;所述烧结在空气气氛中进行。在本发明中,所述排胶的温度优选为550~650℃,更优选为600℃,保温时间优选为2~3h;所述烧结的温度优选为1425~1525℃,更优选为1500℃,所述烧结的保温时间优选为6~8h,更优选为6~7h,进一步优选为6h;升温至所述烧结的温度的程序优选为:先以8~12℃/min的速率升温至400~600℃,优选为500℃,之后以4~6℃/min的速率升温至烧结的温度;所述排胶和烧结均优选在马弗炉中进行。
本发明还提供了上述方案所述制备方法制备得到的Lu掺杂SrTiO3基巨介电陶瓷材料,化学式如式I所示:
Sr1-1.5xLuxTiO3式I;
式I中:x的取值范围为0<x≤0.02。
在本发明中,所述x的取值优选为0.0025、0.005、0.0075、0.01、0.0125、0.015、0.0175或0.02,更优选为0.01。本发明通过使用Lu3+掺杂SrTiO3,在陶瓷内部形成一定数量稳定的缺陷簇,增大极化率,从而使Sr1-1.5xLuxTiO3(0<x≤0.02)具有巨介电效应。
在本发明中,所述Lu掺杂SrTiO3基巨介电陶瓷材料在室温1kHz的测试频率下介电常数为26261~101067,介电损耗范围为0.11~0.49;在室温1MHz测试频率下介电常数为10746~32584,介电损耗为0.05~0.24。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
步骤1:以SrCO3(99%)、TiO2(99%)和Lu2O3(99.99%)为起始原料,按照化学式Sr1-1.5xLuxTiO3(x=0.0025)称取原料总质量为30g,将称取的原料以去离子水为球磨介质加入到聚四氟乙烯球磨罐中,并在行星式球磨机上以转速为300rpm混合球磨8h后放入烘箱烘干。
步骤2:将步骤1中烘干的粉体装入氧化铝坩埚,在马弗炉中以5℃/min的升温速率升温至1200℃保温4h合成粉体,并使用与步骤1相同的工艺进行二次球磨、过500目筛后烘干。
步骤3:在步骤2所得粉体中加入4wt%的PVA溶液0.5g、去离子水0.2g陈腐、造粒,干压成型,干压成型压力为15MPa,成型得到的陶瓷坯体直径为10mm、厚度2mm。将陶瓷坯体置于马弗炉中升温至600℃保温2h排胶。
步骤4:将步骤3所得陶瓷坯体置于马弗炉中以10℃/min升温速度升温到500℃,之后按5℃/min升温至1500℃,保温6h,得到Lu掺杂SrTiO3基巨介电陶瓷材料。
将烧结得到陶瓷片两面抛光并涂上银电极,置于马弗炉中升温至550℃保温15min烧电极。介电性能测试使用安捷伦4294A阻抗分析仪。室温、测试频率1KHz下陶瓷材料的介电常数为20261,介电损耗为0.50。
实施例2
其它条件和实施例1相同,仅x的取值为0.005。
将烧结得到的陶瓷片两面抛光并涂上银电极,置于马弗炉中升温至550℃保温15min烧电极。介电性能测试使用安捷伦4294A阻抗分析仪。室温、测试频率1KHz下介电常数为88538,介电损耗为0.11。
实施例3
其它条件和实施例1相同,仅x的取值为0.0075。
将烧结得到的陶瓷片两面抛光并涂上银电极,置于马弗炉中升温至550℃保温15min烧电极。介电性能测试使用安捷伦4294A阻抗分析仪。室温、测试频率1KHz下介电常数为88381,介电损耗为0.18。
实施例4
其它条件和实施例1相同,仅x的取值为0.01。
将烧结得到的陶瓷片两面抛光并涂上银电极,置于马弗炉中升温至550℃保温15min烧电极。介电性能测试使用安捷伦4294A阻抗分析仪。室温、测试频率1KHz下介电常数为101067,介电损耗为0.16。
实施例5
其它条件和实施例1相同,仅x的取值为0.0125。
将烧结得到的陶瓷片两面抛光并涂上银电极,置于马弗炉中升温至550℃保温15min烧电极。介电性能测试使用安捷伦4294A阻抗分析仪。室温、测试频率1KHz下介电常数为74066,介电损耗为0.17。
实施例6
其它条件和实施例1相同,仅x的取值为0.015。
将烧结得到的陶瓷片两面抛光并涂上银电极,置于马弗炉中升温至550℃保温15min烧电极。介电性能测试使用安捷伦4294A阻抗分析仪。室温、测试频率1KHz下介电常数为79199,介电损耗为0.19。
实施例7
其它条件和实施例1相同,仅x的取值为0.0175。
将烧结得到的陶瓷片两面抛光并涂上银电极,置于马弗炉中升温至550℃保温15min烧电极。介电性能测试使用安捷伦4294A阻抗分析仪。室温、测试频率1KHz下介电常数为63176,介电损耗为0.17。
实施例8
其它条件和实施例1相同,仅x的取值为0.02。
将烧结得到的陶瓷片两面抛光并涂上银电极,置于马弗炉中升温至550℃保温15min烧电极。介电性能测试使用安捷伦4294A阻抗分析仪。室温、测试频率1KHz下介电常数为55064,介电损耗为0.26。
实施例9
其它条件和实施例1相同,仅x的取值为0.01,并将烧结温度改为1475℃。
将烧结得到的陶瓷片两面抛光并涂上银电极,置于马弗炉中升温至550℃保温15min烧电极。介电性能测试使用安捷伦4294A阻抗分析仪。室温、测试频率1KHz下介电常数为78790,介电损耗为0.16。
实施例10
其它条件和实施例1相同,仅x的取值为0.01,并将烧结温度改为1525℃。
将烧结得到的陶瓷片两面抛光并涂上银电极,置于马弗炉中升温至550℃保温15min烧电极。介电性能测试使用安捷伦4294A阻抗分析仪。室温、测试频率1KHz下介电常数为94724,介电损耗为0.18。
对比例1
其他条件和实施例1相同,仅按照化学式Sr1-xLuxTiO3(x=0.01)称取原料,总质量为30g。
将烧结得到的陶瓷片两面抛光并涂上银电极,置于马弗炉中升温至550℃保温15min烧电极。介电性能测试使用安捷伦4294A阻抗分析仪。室温、测试频率1KHz下介电常数为8706,介电损耗为0.17。
性能测试:
1、将实施例1~10以及对比例1所得陶瓷材料的介电性能测试数据汇总于表1中,具体如下:
表1实施例1~10以及对比例1制备的样品的介电性能表
根据表1中的数据可以看出,本发明实施例1~10,在空气氛围下烧结所得陶瓷材料均具有巨介电常数,并且x=0.01,烧结温度为1500℃时,所得陶瓷材料的室温、测试频率1KHz下的介电常数达到101067,介电损耗为0.16;而对比例1中改变了原料的化学计量比,所得陶瓷材料介电常数较低,无法满足巨介电陶瓷材料的要求。
2、实施例1~8所得陶瓷材料的测试与表征
图1为空气气氛下1500℃烧结6h所得Sr1-1.5xLuxTiO3(0<x≤0.02)陶瓷材料的XRD图,(a)10°~90°,(b)SrTiO3(110)衍射峰的放大图;图1中(a)的结果表明,本发明制备的Sr1-1.5xLuxTiO3(0<x≤0.02)陶瓷材料主晶相都是SrTiO3相,但当掺杂量超过0.01时产生少量第二相Lu2Ti2O7。图1中(b)的结果表明,当x=0.005时,(110)衍射峰首先向高角度移动,随着掺杂量x超过0.01时,衍射峰逐渐向较低角度移动。衍射峰的位移与部分Lu3+进入SrTiO3晶格取代不同位点引起的晶格参数变化有关。衍射峰首先向高角度移动,表明Lu3+优先取代Sr2+位,导致晶格参数减小。衍射峰向低角度移动表明,Lu3+取代Ti4+位导致晶格参数增加。
图2为空气气氛下1500℃烧结6h所得Sr1-1.5xLuxTiO3(0<x≤0.02)陶瓷材料的表面形貌图以及相对密度和平均粒径测试结果,其中:(a)x=0、(b)x=0.005、(c)x=0.01、(d)x=0.015、(e)x=0.02、(f)相对密度与平均晶粒尺寸;图2中的结果表明,随着Lu3+掺杂量从0增加到0.01,平均晶粒尺寸从2.94μm增加到12.29μm,这主要是由于氧空位的存在,增强了晶粒中物质的传递,促进了晶界的移动,导致晶粒尺寸增大。然而,当掺杂量从0.01增加到0.02时,晶粒尺寸从12.29μm逐渐减小到3.79μm,这是由于二次相Lu2Ti2O7的产生会降低晶界的迁移率,从而抑制晶粒长大。此外,随着Lu3+掺杂量的增加,相对密度和平均晶粒尺寸的变化趋势相似。在x=0.01时相对密度最大,达到98.24%,这可以归因于其具有最大的晶粒尺寸。
图3为空气气氛下1500℃烧结6h所得Sr1-1.5xLuxTiO3(0<x≤0.02)陶瓷材料的介电性能,(a)介电性能随频率的变化,(b)室温1KHz测试条件下介电性能随Lu3+掺杂浓度的变化,(c)介电性能随温度的变化,(d)介电常数的温度系数。图3中(a)的结果表明,本发明制备的Sr1-1.5xLuxTiO3(0<x≤0.02)陶瓷材料的介电常数和介电损耗频率稳定性良好。图3中(b)的结果表明,本发明制备的Sr1-1.5xLuxTiO3(0<x≤0.02)陶瓷材料的介电常数随着掺杂量的增加而上升,当x=0.01时达到最大值为101067,随后逐渐下降。介电损耗随着掺杂量的增加而逐渐上升。图3中(c)的结果表明,本发明制备的Sr1-1.5xLuxTiO3(0<x≤0.02)陶瓷材料的介电常数和介电损耗温度稳定性良好。图3中(d)的结果表明,当x=0.01时介电常数的温度稳定性最佳。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种Lu掺杂SrTiO3基巨介电陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)按照式I中的化学计量比,将SrCO3、TiO2和Lu2O3进行一次球磨,将所得一次球磨料干燥后煅烧,得到煅烧粉;
Sr1-1.5xLuxTiO3式I;
式I中:x的取值范围为0<x≤0.02;
(2)将所述煅烧粉二次球磨后依次进行过筛和干燥,得到二次球磨料;
(3)将所述二次球磨料、粘结剂和水混合后依次进行陈腐、造粒和干压成型,得到陶瓷坯体;
(4)将所述陶瓷坯体依次进行排胶和烧结,得到所述Lu掺杂SrTiO3基巨介电陶瓷材料;所述烧结在空气气氛中进行。
2.根据权利要求1所述的制备方法,其特征在于,所述一次球磨和二次球磨的条件独立地的包括:球磨转速为300~450rpm,球磨时间为4~8h,球磨介质为去离子水。
3.根据权利要求1所述的制备方法,其特征在于,所述煅烧的温度为1100~1350℃,保温时间为3~5h;升温至所述煅烧的温度的升温速率为3~7℃/min。
4.根据权利要求1所述的制备方法,其特征在于,所述粘结剂为聚乙烯醇溶液,所述聚乙烯醇溶液的质量浓度为4~8%;所述粘结剂的用量为所述煅烧粉质量的1~2%,所述水的用量为所述煅烧粉质量的0.5~1%。
5.根据权利要求1所述的制备方法,其特征在于,所述干压成型的压力为10~20MPa;所述陶瓷坯体的直径为8~15mm,厚度为1~2mm。
6.根据权利要求1所述的制备方法,其特征在于,所述排胶的温度为550~650℃,保温时间为2~3h。
7.根据权利要求1所述的制备方法,其特征在于,所述烧结的温度为1425~1525℃,保温时间为6~8h;升温至所述烧结的温度的程序为:先以8~12℃/min的速率升温至400~600℃,之后以4~6℃/min的速率升温至烧结的温度。
8.权利要求1~7任意一项所述制备方法制备得到的Lu掺杂SrTiO3基巨介电陶瓷材料,其特征在于,化学式如式I所示:
Sr1-1.5xLuxTiO3式I;
式I中:x的取值范围为0<x≤0.02。
9.根据权利要求8所述的Lu掺杂SrTiO3基巨介电陶瓷材料,其特征在于,所述x的取值为0.0025、0.005、0.0075、0.01、0.0125、0.015、0.0175或0.02。
10.根据权利要求8所述的Lu掺杂SrTiO3基巨介电陶瓷材料,其特征在于,所述Lu掺杂SrTiO3基巨介电陶瓷材料在室温1kHz的测试频率下介电常数为26261~101067,介电损耗范围为0.11~0.49;在室温1MHz测试频率下介电常数为10746~32584,介电损耗为0.05~0.24。
CN202310876655.4A 2023-07-17 2023-07-17 一种Lu掺杂钛酸锶基巨介电陶瓷材料及其制备方法 Pending CN116854463A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310876655.4A CN116854463A (zh) 2023-07-17 2023-07-17 一种Lu掺杂钛酸锶基巨介电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310876655.4A CN116854463A (zh) 2023-07-17 2023-07-17 一种Lu掺杂钛酸锶基巨介电陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN116854463A true CN116854463A (zh) 2023-10-10

Family

ID=88231934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310876655.4A Pending CN116854463A (zh) 2023-07-17 2023-07-17 一种Lu掺杂钛酸锶基巨介电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116854463A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485018A (zh) * 2006-07-01 2009-07-15 于利奇研究中心有限公司 用于高温燃料电池阳极的陶瓷材料组合
KR20110100776A (ko) * 2010-03-05 2011-09-15 윤석우 자이언트 유전율을 가지는 산화구리를 첨가한 저온 소결 유전체 세라믹의 조성물
CN103755339A (zh) * 2014-01-21 2014-04-30 武汉理工大学 一种巨介电常数低介电损耗SrTiO3陶瓷材料的制备方法
CN109650878A (zh) * 2019-01-10 2019-04-19 陕西科技大学 一种无铅宽频下巨介电低损耗高绝缘电阻陶瓷材料及其制备方法
CN113831121A (zh) * 2021-09-25 2021-12-24 天津理工大学 一种高击穿场强的复相巨介电陶瓷材料及其制备方法
CN114940616A (zh) * 2022-04-08 2022-08-26 桂林理工大学 一种稀土改性的钛酸锶巨介电陶瓷材料及其制备方法
CN116082039A (zh) * 2022-12-22 2023-05-09 哈尔滨工业大学 一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485018A (zh) * 2006-07-01 2009-07-15 于利奇研究中心有限公司 用于高温燃料电池阳极的陶瓷材料组合
KR20110100776A (ko) * 2010-03-05 2011-09-15 윤석우 자이언트 유전율을 가지는 산화구리를 첨가한 저온 소결 유전체 세라믹의 조성물
CN103755339A (zh) * 2014-01-21 2014-04-30 武汉理工大学 一种巨介电常数低介电损耗SrTiO3陶瓷材料的制备方法
CN109650878A (zh) * 2019-01-10 2019-04-19 陕西科技大学 一种无铅宽频下巨介电低损耗高绝缘电阻陶瓷材料及其制备方法
CN113831121A (zh) * 2021-09-25 2021-12-24 天津理工大学 一种高击穿场强的复相巨介电陶瓷材料及其制备方法
CN114940616A (zh) * 2022-04-08 2022-08-26 桂林理工大学 一种稀土改性的钛酸锶巨介电陶瓷材料及其制备方法
CN116082039A (zh) * 2022-12-22 2023-05-09 哈尔滨工业大学 一种不等价离子掺杂的高发射率低热导功能复合陶瓷或涂层制备的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘康: ""钛酸锶基巨介电陶瓷的制备和性能分析"", 《中国优秀硕士学位论文 工程科技Ⅰ辑》, no. 02, 15 February 2023 (2023-02-15), pages 015 - 1670 *

Similar Documents

Publication Publication Date Title
CN109942292B (zh) 一种钛酸铋钠基透明陶瓷材料及其制备方法和应用
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN105948737B (zh) 一种CaTiO3基线性储能介质陶瓷材料及其制备方法
Jiayu et al. Effects of rare earth oxides on dielectric properties of Y2Ti2O7 series ceramics
CN107244912B (zh) 一种新型bczt基储能陶瓷材料及其制备方法和应用
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
KR102599848B1 (ko) 도핑된 페로브스카이트 바륨 스타네이트 재료 및 이의 제조 방법과 응용
CN114436645A (zh) 一种掺杂稀土元素的钛酸钡巨介电陶瓷材料及其制备方法
CN107188557B (zh) 一种微波介质陶瓷材料及其制备方法
CN109516799B (zh) 一种具有高温度稳定性的高介陶瓷电容器材料及其制备方法
KR101732422B1 (ko) 유전체 제조용 소결 전구체 분말 및 이의 제조 방법
CN114436643A (zh) 一种巨介电常数、低介电损耗陶瓷及其制备方法
CN112430084A (zh) 一种高耐电场强度、高储能密度的nbt-bt基驰豫铁电陶瓷薄膜材料及其制备方法
CN111825451B (zh) 稀土元素Tm掺杂的铌酸银反铁电陶瓷材料及其制备方法
CN116854463A (zh) 一种Lu掺杂钛酸锶基巨介电陶瓷材料及其制备方法
CN103172365B (zh) 一种微波介质陶瓷材料的制备方法
CN109354495A (zh) 镁锆铌锑系微波介质陶瓷及制备方法和应用
CN107311656B (zh) 具有巨负电卡效应的反铁电陶瓷材料、其制备方法与用途
CN110304915A (zh) 一种高击穿强度低介电常数的微波介质陶瓷材料及其制备方法
CN117401970A (zh) 一种Ta、Al共掺杂钛酸锶基巨介电陶瓷材料及其制备方法
CN115010493B (zh) 一种高熵焦绿石介电陶瓷材料及其制备方法与应用
CN109231977A (zh) 一种高温稳定介质陶瓷材料及其制备方法
CN115974545B (zh) 一种陶瓷材料及其制备方法和应用
US11958781B2 (en) Potassium sodium bismuth niobate tantalate zirconate ferrite ceramics with non-stoichiometric Nb5+ and preparation method therefor
CN113698203B (zh) 一种钇和铪共掺杂的铌酸银无铅反铁电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination