CN114436645A - 一种掺杂稀土元素的钛酸钡巨介电陶瓷材料及其制备方法 - Google Patents

一种掺杂稀土元素的钛酸钡巨介电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114436645A
CN114436645A CN202111454503.2A CN202111454503A CN114436645A CN 114436645 A CN114436645 A CN 114436645A CN 202111454503 A CN202111454503 A CN 202111454503A CN 114436645 A CN114436645 A CN 114436645A
Authority
CN
China
Prior art keywords
rare earth
ball milling
ceramic material
source
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111454503.2A
Other languages
English (en)
Other versions
CN114436645B (zh
Inventor
刘来君
蒙应知
杨曌
刘康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Fenghua Advanced Tech Holding Co Ltd
Guilin University of Technology
Original Assignee
Guangdong Fenghua Advanced Tech Holding Co Ltd
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Fenghua Advanced Tech Holding Co Ltd, Guilin University of Technology filed Critical Guangdong Fenghua Advanced Tech Holding Co Ltd
Publication of CN114436645A publication Critical patent/CN114436645A/zh
Application granted granted Critical
Publication of CN114436645B publication Critical patent/CN114436645B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种掺杂稀土元素的钛酸钡巨介电陶瓷材料及其制备方法,属于巨介电陶瓷材料技术领域。本发明采用传统固相反应法制备,按化学通式Ba1‑xRexTiO3,0.01≤x≤0.03称取相应的钡源、钛源和Re源,其中Re为La、Ce、Pr、Nd、Sm、Gd、Dy、Ho和Er中的一种或两种,球磨后干燥,空气煅烧,第二次球磨,加入PVA水溶液制粒,压成圆片。圆片烧结后在氮气环境下退火2‑5h,然后将样品抛光,在两面被上银电极得到最终样品。本发明的巨介电陶瓷材料在1kHz下,室温介电常数大于100000,介电损耗小于0.05,在一定温度范围具有较高的介电稳定性,能应用于单层陶瓷电容器领域。

Description

一种掺杂稀土元素的钛酸钡巨介电陶瓷材料及其制备方法
技术领域
本发明涉及巨介电材料技术领域,具体涉及一种掺杂稀土元素的钛酸钡巨介电陶瓷材料及其制备方法。
背景技术
为了满足电子器件微型化和高能量密度存储的快速发展,巨介电材料的研究成为非常关的问题。巨介电材料通常是指掺杂的BaTiO3、SrTiO3和TiO2,以及CaCu3Ti4O12和NiO2等。但是这些体系都存在各自的缺陷,如CaCu3Ti4O12和NiO2基巨介电材料的损耗非常高(<0.1),TiO2基体巨介电材料的击穿场强较低,而掺杂的BaTiO3基巨介电材料由于在-90℃~120℃之间存在相变点导致极强的温度依赖性,而掺杂SrTiO3基巨介电材料的介电常数较低,这些都是急需解决的问题。
BaTiO3陶瓷因具有优良的介电性能而备受关注,但是作为巨介电材料仍然存在许多不足,最大的缺陷是其介电常数具有极强的温度依赖性。虽然在居里点附近具有较大的介电常数(大于103)和较低的损耗(<0.015),但是在居里点会发生铁电相变(由四方相转化为立方相),这使得介电常数急剧下降,这一不足严重阻碍了其在巨介电领域的应用。巨介电经过几十年的发展取得了很大的突破,特别是Hu课题组[W.B.Hu,Y.Liu,R.L.Withers,T.J.Frankcombe,L.Noren,A.Sanshall,M.Kitchin,P.Smith,B.Gong,H.Chen,J.Schiemer,F.Brink,J.Wong-Leung,Electron-pinned defect-dipoles for high-performancecolossal permittivity materials,Nat.Mater.12(2013)821-826]提出的电子钉扎-缺陷偶极子理论为寻找新的巨介电材料提供了强大的理论基础。本发明公开了通过以BaTiO3为基体,A位掺杂不同的稀土元素并通过固相法合成出陶瓷样品,在低于烧结温度300℃下氮气退火,最终获得具有优异的介电性能和良好的温度稳定性的巨介电陶瓷。
发明内容
本发明的发明目的在于:针对上述存在的问题,提供一种掺杂稀土元素的钛酸钡巨介电陶瓷材料及其制备方法,本发明的巨介电陶瓷材料在-55~250℃温度范围内,介电常数大于100000,介电损耗小于0.05,这一介电性能优于以往绝大多数巨介电材料。
为了实现上述目的,本发明采用的技术方案如下:
本发明还提供掺杂稀土的钛酸钡巨介电陶瓷材料的制备方法,所述制备方法包括以下步骤:
(1)按化学通式Ba1-xRexTiO3,0.01≤x≤0.03称取相应的钡源、钛源和和稀土氧化物源,其中Re为La、Ce、Pr、Nd、Sm、Gd、Dy、Ho或Er中的一种,进行球磨,干燥,得到混合粉体A;
(2)将混合粉体A在空气中煅烧,温度为800-1200℃,煅烧后再进行第二次球磨,得到混合粉体B;
(3)向混合粉体B中加入PVA水溶液制粒,然后压成生片;
(4)将生片进行烧结处理,首先以1.5-5.0℃/min的升温速率升温到530-580℃后保温5-8h,然后以4-8℃/min的升温速率升温到1350-1450℃,在空气中烧结6-10h,然后烧结得到的样品在氮气环境中1000-1300℃退火2-5h;
(5)然后将样品抛光,在两面被上银电极得到最终样品。
优选地,所述钡源为BaCO3、Ba(OH)2或Ba(NO3)2,所述钛源为TiO2,稀土氧化物源分别为La2O3、CeO2、Pr6O11、Nd2O3、Sm2O3、Gd2O3、Dy2O3、Ho2O3、Er2O3,其中CeO2还可以用Ce(NO3)3代替。
优选地,步骤(1)所述的球磨为,以无水乙醇为分散剂,氧化锆球为球磨介质,球磨时间为5-8小时,步骤(2)中的球磨条件与步骤(1)相同。
优选地,步骤(1)中所述的PVA水溶液的质量分数为3-8%。
优选地,所述生片的是在120-550MPa的压力下压成圆片或方片。
通过上述方法制备得到的掺杂稀土元素的钛酸钡巨介电陶瓷材料,在1kHz下,室温介电常数大于100000,介电损耗小于0.05;在-55~250℃温度范围内,介电常数大于100000,介电损耗小于0.05。
本发明受到电子钉扎缺陷偶极子理论的启发,通过在BaTiO3基设计施-受主掺杂获得优良的巨介电性能。本发明与已有公开的研究结果相比,最大的不同是本发明以稀土元素充当施主的角色,而受主则是Ti3+,不仅如此,氮气环境下退火会增加受主的含量,增强电子钉扎缺陷偶极子效应。通过这种设计BaTiO3基陶瓷获得了优良的巨介电性能。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
本发明以BaTiO3为基体,A位掺杂1-3%的稀土元素,并通过固相法合成出陶瓷样品,在低于烧结温度300℃附近采用氮气退火,最终获得具有良好巨介电性能的材料Ba1- xRexTiO3,其中x的取值范围为0.01≤x≤0.03,该材料在1kHz下,室温介电常数大于80000,介电损耗小于0.05,并且具有良好的频率稳定性。在-55-250℃温度范围内具有良好的温度稳定性,且介电常数大于100000,介电损耗小于0.05,能应用于单层陶瓷电容器材料。
附图说明
图1为实施例1-9制备得到的材料的XRD图对比图。
图2为实施例1、10、19、28、29的得到材料的XRD谱图对比图。
图3为实施例1、10、19、28、29制备得到的材料的拉曼光谱图。
图4为实施例1-9制备得到的材料的频谱图。
图5为实施例1-9制备得到的材料的介电性能比较图。
图6为实施例1、10、19、28、29制备得到的材料的频谱图。
图7为实施例1、10、19制备得到的材料的介电温谱图。
图8为实施例1-9制备得到的材料在1kHz下、-55-380℃温度范围内的介电温谱图。
具体实施方式
为了更清楚地表达本发明,以下通过具体实施例对本发明作进一步说明。
实施例1-9
掺杂稀土元素的钛酸钡巨介电陶瓷材料的制备方法,所述制备方法包括以下步骤:
(1)按化学通式Ba0.99Re0.01TiO3,称取相应的钡源BaCO3、钛源TiO2和稀土氧化物源,实施例1-9对应的Re分别为La、Ce、Pr、Nd、Sm、Gd、Dy、Ho和Er,对应添加的稀土氧化物源分别为La2O3、CeO2、Pr6O11、Nd2O3、Sm2O3、Gd2O3、Dy2O3、Ho2O3、Er2O3,然后以无水乙醇为分散剂,氧化锆球为球磨介质,球磨时间为6小时,球磨后干燥,得到混合粉体A;
(2)将混合粉体A在空气中煅烧,温度为1000℃,煅烧后再进行第二次球磨,以无水乙醇为分散剂,氧化锆球为球磨介质,球磨时间为6小时,球磨后干燥,得到混合粉体B;
(3)向混合粉体B中加入质量分数为5%的PVA水溶液制粒,然后在350MPa的压力下压成圆片,得到生片;
(4)将生片进行烧结处理,首先以2.0℃/min的升温速率升温到550℃后保温6h,然后以6℃/min的升温速率升温到1400℃,在空气中烧结8h,然后烧结得到的样品在氮气环境中1100℃退火3h;
(5)然后将样品抛光,在两面被上银电极得到最终样品。
实施例10-18
本实施例与实施例1的不同之处在于掺杂稀土的钛酸钡巨介电陶瓷材料的通式为Ba0.98Re0.02TiO3,相应地其步骤(1)按照该通式进行称量和加相应的稀土氧化物源,其他步骤与实施例1相同。
实施例19-27
本实施例与实施例1的不同之处在于掺杂稀土元素的钛酸钡巨介电陶瓷材料的通式为Ba0.97Re0.03TiO3,相应地其步骤(1)按照该通式进行称量和加相应的稀土氧化物源,其他步骤与实施例1相同。
实施例28
本实施例与实施例1的不同之处在于掺杂稀土元素的钛酸钡巨介电陶瓷材料的通式为Ba0.96Ce0.04TiO3,相应地其步骤(1)按照该通式进行称量,对应添加的稀土氧化物源为CeO2,其他步骤与实施例1相同。
实施例29
本实施例与实施例1的不同之处在于掺杂稀土元素的钛酸钡巨介电陶瓷材料的通式为Ba0.95Ce0.05TiO3,相应地其步骤(1)按照该通式进行称量,对应添加的稀土氧化物源为CeO2,其他步骤与实施例1相同。
实施例30
掺杂铈的钛酸钡巨介电陶瓷材料Ba0.99Ce0.01TiO3的制备方法,所述制备方法包括以下步骤:
(1)按化学通式Ba0.99Ce0.01TiO3称取相应的钡源Ba(OH)2、钛源TiO2和铈源Ce(NO3)3,以无水乙醇为分散剂,氧化锆球为球磨介质,球磨时间为5小时,球磨后干燥,得到混合粉体A;
(2)将混合粉体A在空气中煅烧,温度为800℃,时间为10h,煅烧后再进行第二次球磨,以无水乙醇为分散剂,氧化锆球为球磨介质,球磨时间为5小时,球磨后干燥,得到混合粉体B;
(3)向混合粉体B中加入质量分数为3%的PVA水溶液制粒,然后在120MPa的压力下压成直径为10.0mm、厚度为1.5mm的圆片,得到生片;
(4)将生片进行烧结处理,首先以1.5℃/min的升温速率升温到530℃后保温5h,然后以4℃/min的升温速率升温到1350℃,在空气气氛下烧结10h,然后烧结得到的样品在1000℃氮气环境下退火2h;
(5)然后将样品抛光,在两面被上银电极得到最终样品。
实施例31
掺杂铈的钛酸钡巨介电陶瓷材料Ba0.99Ce0.01TiO3的制备方法,所述制备方法包括以下步骤:
(1)按化学通式Ba0.99Ce0.01TiO3称取相应的钡源Ba(NO3)2、钛源TiO2和铈源CeO2,以无水乙醇为分散剂,氧化锆球为球磨介质,球磨时间为8小时,球磨后干燥,得到混合粉体A;
(2)将混合粉体A在的空气中煅烧,温度为1200℃,时间为5h,煅烧后再进行第二次球磨,以无水乙醇为分散剂,氧化锆球为球磨介质,球磨时间为8小时,球磨后干燥,得到混合粉体B;
(3)向混合粉体B中加入质量分数为8%的PVA水溶液制粒,然后在550MPa的压力下压成边长为10.0mm、厚度为1.5mm的方片,得到生片;
(4)将生片进行烧结处理,首先以5.0℃/min的升温速率升温到580℃后保温8h,然后以8℃/min的升温速率升温到1450℃,在空气气氛下烧结6h,然后烧结得到的样品在1300℃氮气环境下退火5h;
(5)然后将样品抛光,在两面被上银电极得到最终样品。
其他实施例
本实施例与实施例1的不同之处在于掺杂稀土元素的钛酸钡巨介电陶瓷材料的通式见表1,相应地其步骤(1)按照该通式进行称量和加相应的稀土氧化物源,其他步骤与实施例1相同。
表1
Figure BDA0003378939620000061
Figure BDA0003378939620000071
性能测试:
1、微观结构
本发明中实施例的微观结构均通过粉末X-射线衍射仪和Raman光谱仪进行测试,实施例1-9所制备得到的成品材料的XRD谱图对比图见图1,实施例1、10、19、28、29的成品材料的XRD谱图对比图见图2;实施例1、10、19、28、29的成品材料的Raman光谱见图2,由图1可知,实施例1-9均成功制得Ba0.99Re0.01TiO3,所有样品均为纯相,由图2可知,实施例1、10、19、28、29的所有样品均为纯相并且随着Ce掺杂量的增加,样品由四方相向立方相转变;由图3可知,随着Ce掺杂量的增加,295cm-1谱带逐渐减弱,这表明样品四方性逐渐减弱,这和XRD得到的结果一致,在830cm-1出现纯BT没有的谱带,这可能是Ti3+存在造成的,并且随着Ce掺杂量的增加而增强。其他实施例所得样品的XRD谱、Raman光谱与上述规律基本一致,在此省略其相应的图谱。
2、介电性能
参见图4和5,为实施例1-9制备所得样品在常温下,其介电常数和介电损耗与频率的关系图谱,以及对比图,由图4可知,掺杂各稀土元素的材料,在1×105Hz频率范围内,均表现出较好的频率稳定性,图4和图5可知,各材料虽然性能存在一些差异,但均能保持在介电常数大于100000,介电损耗小于0.03。
参见图6,实施例1、10、19、28、29的成品材料的频谱图,意在比较不同的稀土元素掺杂量对材料介电性能的影响,可以看出,随着Ce掺杂量的增加,样品的频率稳定性逐渐减弱,而且损耗逐渐增强。对掺杂其他稀土元素的材料进行测试,也展现了共同的规律,说明掺杂量对频率稳定性有较大的影响。实施例1、10、19制备的陶瓷材料,在1×105Hz频率范围内,介电常数大于100000,具有极小的频率依赖性取得了非常好的性能。
参见图7,为实施例1、10、19制备所得样品分别在频率为0.1kHz,1kHz和10kHz的条件下,其介电常数和介电损耗与温度关系图谱,从而研究稀土掺杂量对性能的影响。由图可知,随着Ce掺杂量的增加,介电常数在0.1kHz下逐渐减小,这可能是由于A位施主掺杂氧空位减小造成的,从图7还可以看出,样品在-55-250℃温度范围内具有稳定的介电性能,实施例1、10、19制备的陶瓷材料,在-55-250℃温度范围内,介电常数大于80000,具有极小的频率依赖性,且介电损耗小于0.05,获得了非常好的性能。
参见图8,为实施例1-9制备得到的材料在1kHz下、-55-380℃温度范围内的介电温谱图,可以看出,在该温度范围内,掺杂了La、Ce、Pr、Nd、Sm、Gd、Dy、Ho和Er的材料,在-55-380℃温度范围内,介电常数大于100000,且介电损耗小于0.05,具有非常好的温度稳定性能。
表1列出了掺杂两种稀土元素的实施例,对所得产品进行性能测试,在1kHz、室温条件下,测得的的介电常数和介电损耗值见表1,说明本发明通过掺杂两种稀土元素,也能获得介电性能良好的陶瓷材料,且经过对温谱图测试,表1中的材料也具有较好的温度稳定性。本领域技术人员在本发明的启示下,还可以作其他的组合,均在本发明保护范围内。
上述说明是针对本发明较佳可行实施例的详细说明,但实施例并非用以限定本发明的专利申请范围,凡本发明所提示的技术精神下所完成的同等变化或修饰变更,均应属于本发明所涵盖专利范围。

Claims (6)

1.一种掺杂稀土元素的钛酸钡巨介电陶瓷材料的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)按化学通式Ba1-xRexTiO3,0.01≤x≤0.03称取相应的钡源、钛源和稀土氧化物源,其中Re为La、Ce、Pr、Nd、Sm、Gd、Dy、Ho和Er中的一种或两种,进行球磨,干燥,得到混合粉体A;
(2)将混合粉体A在空气中煅烧,温度为800-1200℃,煅烧后再进行第二次球磨,得到混合粉体B;
(3)向混合粉体B中加入PVA水溶液制粒,然后压成生片;
(4)将生片进行烧结处理,首先以1.5-5.0℃/min的升温速率升温到530-580℃后保温5-8h,然后以4-8℃/min的升温速率升温到1350-1450℃,在空气中烧结6-10h,然后烧结得到的样品在氮气环境中1000-1300℃退火2-5h;
(5)然后将样品抛光,在两面被上银电极得到最终样品Ba1-xRexTiO3巨介电陶瓷材料。
2.根据权利要求3所述的制备方法,其特征在于:所述钡源为BaCO3、Ba(OH)2或Ba(NO3)2,所述钛源为TiO2,稀土氧化物源分别为La2O3、CeO2、Pr6O11、Nd2O3、Sm2O3、Gd2O3、Dy2O3、Ho2O3、Er2O3,其中CeO2还可以用Ce(NO3)3代替。
3.根据权利要求1所述的制备方法,其特征在于:步骤(1)所述的球磨为,以无水乙醇为分散剂,氧化锆球为球磨介质,球磨时间为5-8小时,步骤(2)中的球磨条件与步骤(1)相同。
4.根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述的PVA水溶液的质量分数为3-8%。
5.根据权利要求1所述的制备方法,其特征在于:所述生片的是在120-550MPa的压力下压成圆片或方片。
6.利用权利要求1-5中任一项所述的制备方法制备得到的掺杂稀土元素的钛酸钡巨介电陶瓷材料。
CN202111454503.2A 2021-08-18 2021-11-28 一种掺杂稀土元素的钛酸钡巨介电陶瓷材料及其制备方法 Active CN114436645B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021109576257 2021-08-18
CN202110957625 2021-08-18

Publications (2)

Publication Number Publication Date
CN114436645A true CN114436645A (zh) 2022-05-06
CN114436645B CN114436645B (zh) 2023-04-07

Family

ID=81364259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111454503.2A Active CN114436645B (zh) 2021-08-18 2021-11-28 一种掺杂稀土元素的钛酸钡巨介电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114436645B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028197A (zh) * 2022-08-12 2022-09-09 南昌大学 一种低频超高介电常数材料及其制备方法
CN116196913A (zh) * 2023-04-18 2023-06-02 西安建筑科技大学 稀土元素掺杂提高钛酸钡纳米颗粒光催化二氧化碳还原性能的方法及应用
CN116332640A (zh) * 2023-03-03 2023-06-27 西安交通大学 一种铌掺杂的钛酸钡/锂掺杂的氧化镍叠层共烧陶瓷材料及制备方法
CN116813330A (zh) * 2023-07-07 2023-09-29 哈尔滨理工大学 一种基于a位缺陷的低损耗高能量转换效率的钛酸钡基无铅储能陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328061A (zh) * 2008-07-30 2008-12-24 吉林化工学院 高介电y5v型三稀土掺杂钛酸钡陶瓷材料及其制备方法
US20090135546A1 (en) * 2007-11-27 2009-05-28 Tsinghua University Nano complex oxide doped dielectric ceramic material, preparation method thereof and multilayer ceramic capacitors made from the same
CN108546115A (zh) * 2018-04-29 2018-09-18 天津大学 一种钛酸钡基低损耗巨介电常数电介质材料及其制备方法
CN108610042A (zh) * 2018-04-27 2018-10-02 天津大学 具有巨介电常数高绝缘特性的介质材料及其制备方法
CN113248253A (zh) * 2021-06-11 2021-08-13 天津大学 一种巨介电常数钛酸锶介质陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090135546A1 (en) * 2007-11-27 2009-05-28 Tsinghua University Nano complex oxide doped dielectric ceramic material, preparation method thereof and multilayer ceramic capacitors made from the same
CN101328061A (zh) * 2008-07-30 2008-12-24 吉林化工学院 高介电y5v型三稀土掺杂钛酸钡陶瓷材料及其制备方法
CN108610042A (zh) * 2018-04-27 2018-10-02 天津大学 具有巨介电常数高绝缘特性的介质材料及其制备方法
CN108546115A (zh) * 2018-04-29 2018-09-18 天津大学 一种钛酸钡基低损耗巨介电常数电介质材料及其制备方法
CN113248253A (zh) * 2021-06-11 2021-08-13 天津大学 一种巨介电常数钛酸锶介质陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘巧丽: "稀土及稀土/锰掺杂钛酸钡陶瓷的结构和介电性质", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028197A (zh) * 2022-08-12 2022-09-09 南昌大学 一种低频超高介电常数材料及其制备方法
CN116332640A (zh) * 2023-03-03 2023-06-27 西安交通大学 一种铌掺杂的钛酸钡/锂掺杂的氧化镍叠层共烧陶瓷材料及制备方法
CN116332640B (zh) * 2023-03-03 2023-12-26 西安交通大学 一种铌掺杂的钛酸钡/锂掺杂的氧化镍叠层共烧陶瓷材料及制备方法
CN116196913A (zh) * 2023-04-18 2023-06-02 西安建筑科技大学 稀土元素掺杂提高钛酸钡纳米颗粒光催化二氧化碳还原性能的方法及应用
CN116813330A (zh) * 2023-07-07 2023-09-29 哈尔滨理工大学 一种基于a位缺陷的低损耗高能量转换效率的钛酸钡基无铅储能陶瓷材料及其制备方法
CN116813330B (zh) * 2023-07-07 2024-04-19 哈尔滨理工大学 一种基于a位缺陷的低损耗高能量转换效率的钛酸钡基无铅储能陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN114436645B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN114436645B (zh) 一种掺杂稀土元素的钛酸钡巨介电陶瓷材料及其制备方法
CN104478431B (zh) 具有高介电常数的离子改性二氧化钛陶瓷材料及制备方法
CN103755339B (zh) 一种巨介电常数低介电损耗SrTiO3陶瓷材料的制备方法
WO2001081269A1 (en) Low temperature sinterable and low loss dielectric ceramic compositions and method thereof
CN105732020B (zh) 一种巨介电、低损耗二氧化钛基复合陶瓷的制备方法
JP2010285336A (ja) 誘電物質用焼結物質およびその製造方法、並びにコア−シェル微細構造を有する誘電物質用焼結物質およびその製造方法
CN111410526A (zh) 一种掺杂钙钛矿锡酸钡材料及其制备方法与应用
CN111763084A (zh) 一种高电卡效应的掺锰钛酸锶钡陶瓷及其制备方法和应用
CN113213923A (zh) 一种铪钛酸铅基反铁电陶瓷材料及其制备方法
Yuan et al. Effects of Ca and Mn additions on the microstructure and dielectric properties of (Bi 0.5 Na 0.5) TiO 3 ceramics
Jiayu et al. Effects of rare earth oxides on dielectric properties of Y2Ti2O7 series ceramics
CN106588006A (zh) 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN107473732B (zh) 一种钛酸锶基高储能密度和低介电损耗陶瓷材料及其制备方法
KR101732422B1 (ko) 유전체 제조용 소결 전구체 분말 및 이의 제조 방법
Ma et al. The energy storage properties of fine-grained Ba0. 8Sr0. 2Zr0. 1Ti0. 9O3 ceramics enhanced by MgO and ZnO-B2O3-SiO2 coatings
CN109650875B (zh) 一种巨介电钛酸铜钙复合陶瓷材料及其制备方法和应用
CN116813335B (zh) 具有宽温区高电卡效应的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法和应用
Feng et al. Microstructures and energy-storage properties of (1− x)(Na 0.5 Bi 0.5) TiO 3–x BaTiO 3 with BaO–B 2 O 3–SiO 2 additions
KR102664215B1 (ko) 고온 유전 특성이 안정한 무연 유전체 세라믹스 조성물 및 그의 제조방법
CN101503293B (zh) 一种掺杂钛酸锶钡高介电性铁电陶瓷材料及其制备方法
CN115798931A (zh) 用于x8r多层陶瓷电容器的介质瓷料及制备方法和应用
CN104725036B (zh) 一种高温低损耗钛酸锶钡基储能陶瓷及其制备方法
CN115385688A (zh) 一种锆钛酸锶钡基介电陶瓷材料及其制备方法
JP7238127B2 (ja) ドープされたペロブスカイト型スズ酸バリウム材料及びその製造方法、並びにその用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant