CN115385688A - 一种锆钛酸锶钡基介电陶瓷材料及其制备方法 - Google Patents

一种锆钛酸锶钡基介电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN115385688A
CN115385688A CN202211154669.7A CN202211154669A CN115385688A CN 115385688 A CN115385688 A CN 115385688A CN 202211154669 A CN202211154669 A CN 202211154669A CN 115385688 A CN115385688 A CN 115385688A
Authority
CN
China
Prior art keywords
dielectric ceramic
ceramic material
ball milling
zirconate titanate
barium strontium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211154669.7A
Other languages
English (en)
Other versions
CN115385688B (zh
Inventor
孟彬
林武
平鑫宇
房聪聪
张涵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202211154669.7A priority Critical patent/CN115385688B/zh
Publication of CN115385688A publication Critical patent/CN115385688A/zh
Application granted granted Critical
Publication of CN115385688B publication Critical patent/CN115385688B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开一种锆钛酸锶钡基介电陶瓷材料及其制备方法,属于介电陶瓷制备技术领域。本发明所述方法为了降低BSTZ的烧结温度,拓宽BSTZ介电陶瓷的工作温度范围,在BSTZ中加入Bi(Li0.5Ta0.5)O3(BLT);制备方法为:按照设计的化学计量比分别称量BaCO3、SrCO3、TiO2、ZrO2、Bi2O3、Li2CO3、Ta2O5;采用湿法球磨混合均匀,经过干燥、预烧、二次球磨、研磨、过筛得到均匀的粉体;将粉末压制成型,然后进行烧结得到介电陶瓷材料;本发明所述方法在该锆钛酸锶钡基体内加入锂钽酸铋(BLT),可以降低样品的烧结温度,节约了烧结成本;随着BLT的加入,样品在宽温域内体现出稳定的介电常数,拓宽了该无铅介电陶瓷的使用温度范围。

Description

一种锆钛酸锶钡基介电陶瓷材料及其制备方法
技术领域
本发明涉及一种锆钛酸锶钡基介电陶瓷材料及其制备方法,属于陶瓷材料制备技术领域。
背景技术
电容器是电子电路的重要器件,近年来电子工业的快速发展对电容器材料提出了更高的要求。目前,电介质电容器材料主要可以分为陶瓷和聚合物两大类,聚合物材料的储能密度较高,但其熔点低,在高温下介电性能迅速下降。陶瓷电容器具有较好的介电性能与温度稳定性,更适用于高温高压等极端坏境。
钛酸钡是一种优异的无铅介电、铁电陶瓷材料,但由于其在不同的温度范围存在着相变,介电常数因相变波动较大。目前通常采用元素掺杂来改变钛酸钡的相变温度,减小其介电常数的波动。通过在钛酸钡中加入Sr2+,调节Sr2+和Ba2+之间的比例可以改变钛酸钡的居里温度点,从而调节钛酸钡介电陶瓷的使用温度。但是钛酸锶钡(BST)在烧结过程中Ti4+易变价,不利于介电性能的提升,通过在BST中加入Zr4+能够有效抑制Ti4+的变价。
发明内容
本发明的目的在于提供一种锆钛酸锶钡(Ba0.6Sr0.4(Ti0.7Zr0.3)O3)基陶瓷材料,所述的锆钛酸锶钡基介电陶瓷材料化学组成为:(1-x)Ba0.6Sr0.4(Ti0.7Zr0.3)O3-xBi(Li0.5Ta0.5)O3,其中,x=0~0.20,且x≠0,所述介电陶瓷在宽温域内介电常数稳定。
本发明的另一目的在于提供所述锆钛酸锶钡(Ba0.6Sr0.4(Ti0.7Zr0.3)O3)基介电陶瓷材料的制备方法,具体包括以下步骤:
(1)按照Ba0.6Sr0.4(Ti0.7Zr0.3)O3的化学计量比称取BaCO3、SrCO3、TiO2、ZrO2,然后进行球磨,烘干后于1300~1350℃煅烧3~4小时合成得到BSTZ粉体;按照Bi(Li0.5Ta0.5)O3的化学计量比称量Bi2O3、Li2CO3、Ta2O5,然后进行球磨,烘干后于750~850℃煅烧3~4小时,合成得到BLT粉体。
(2)将步骤(1)得到的粉体分别研磨、过筛;按照(1-x)Ba0.6Sr0.4(Ti0.7Zr0.3)O3-xBi(Li0.5Ta0.5)O3的化学计量比分别称量BSTZ粉体和BLT粉体,再进行二次球磨;球磨参数与一次球磨参数相同。
(3)将混合的粉末烘干后在模具中进行压制,烧结得到Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷材料材料。
优选的,本发明步骤(1)中混合球磨中以无水乙醇和氧化锆小球作为球磨介质,无水乙醇、氧化锆小球和原料的质量比为(4~4.5):(4~4.5):1,其中,球磨转速为300~400转/分钟,球磨时间为16~18小时。
优选的,本发明所述球磨完成后烘干条件为:将湿料取出在80~100℃烘干10~12小时。
优选的,本发明步骤(2)中所述的过筛是过60~120目筛。
优选的,本发明步骤(3)中压制成型的条件为:114~151MPa单轴压力下保压6~10min。
优选的,本发明步骤(3)中烧结条件为:在试样周围敷设一层与样品相同成分的陶瓷前驱体粉末,采用埋烧的方式,以5~6℃/min的升温速率加热至烧结温度1100~1500℃保温8~10小时,冷却降温后得到该Ba0.6Sr0.4(Ti0.7Zr0.3)O3基陶瓷材料。
本发明的原理:锆钛酸锶钡(BSTZ)的烧结温度达到1500℃,烧结难度大;因此,在Ba0.6Sr0.4(Ti0.7Zr0.3)O3中加入Bi(Li0.5Ta0.5)O3(BLT),可以使Ba0.6Sr0.4(Ti0.7Zr0.3)O3的烧结温度降低到1200℃左右,同时使Ba0.6Sr0.4(Ti0.7Zr0.3)O3介电常数在宽温域内表现出温度稳定性,满足容温变化率(∣∆C/C25°C∣≤15%)在±15%以内;本发明通过掺入BLT来改善Ba0.6Sr0.4(Ti0.7Zr0.3)O3的烧结性能与介电性能。
本发明的有益效果:
(1)本发明制备的Ba0.6Sr0.4(Ti0.7Zr0.3)O3介电陶瓷,通过Bi(Li0.5Ta0.5)O3的掺入,使得Ba0.6Sr0.4(Ti0.7Zr0.3)O3的烧结温度从1500℃下降到1150℃,节约了烧结成本。
(2)本发明制备的Ba0.6Sr0.4(Ti0.7Zr0.3)O3介电陶瓷,通过掺入Bi(Li0.5Ta0.5)O3,Ba0.6Sr0.4(Ti0.7Zr0.3)O3的介电常数在宽温度(-100~350℃)范围内保持稳定,满足容温变化率±15%(∣∆C/C25°C∣≤15%);拓宽了该锆钛酸锶钡介电陶瓷的使用温度范围,有望作为介电陶瓷材料应用于高温陶瓷电容器。
附图说明
图1为该锆钛酸锶钡基介电陶瓷材料烧结后的XRD图谱。
图2为该锆钛酸锶钡基介电陶瓷材料烧结后表面形貌图,其中,a、b、c、d分别对应对比实施例1、实施例1、实施例2和实施例3。
图3为该锆钛酸锶钡基介电陶瓷材料晶粒尺寸统计图,其中,a、b、c、d分别对应对比实施例1、实施例1、实施例2和实施例3。
图4为该锆钛酸锶钡基介电陶瓷材料的介电温谱,其中,a、b、c、d分别对应对比实施例1、实施例1、实施例2和实施例3。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
对比实施例1
一种在宽温域内介电常数稳定的锆钛酸锶钡介电陶瓷材料Ba0.6Sr0.4(Ti0.7Zr0.3)O3(BSTZ)的制备方法,具体步骤如下:
(1)将纯度在99%以上BaCO3、SrCO3、TiO2、ZrO2按Ba0.6Sr0.4(Ti0.7Zr0.3)O3化学计量比称量,加入无水乙醇和氧化锆小球;无水乙醇、氧化锆小球和混料的质量比为4:4:1,在行星式球磨机中球磨16小时得到混合均匀的湿料,将湿料取出后在80℃干燥箱烘干12小时,得到干粉。
(2)将得到的干粉于1300℃煅烧4小时;再经过16小时的二次球磨,球磨参数与一次球磨相同,球磨完成后取出湿料在80℃干燥12小时。
(3)将混合均匀的干粉研磨后,过120目筛,接着在151MPa单轴压力下将粉末压成直径10mm、厚度1~1.3mm的陶瓷圆片。
(4)将陶瓷圆片置于刚玉坩埚后,四周敷设一层成分相同的干粉,在空气气氛下,以5˚/分钟升温到1500℃保温8小时,后随炉冷却,得到BSTZ陶瓷。
实施例1
一种在宽温域内介电常数稳定的锆钛酸锶钡基介电陶瓷材料材料0.90Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.10Bi(Li0.5Ta0.5)O3(简写0.90BSTZ-0.10BLT)的制备方法,具体步骤如下:
(1)将纯度在99%以上BaCO3、SrCO3、TiO2、ZrO2、Bi2O3、Li2CO3、Ta2O5分别按Ba0.6Sr0.4(Ti0.7Zr0.3)O3和Bi(Li0.5Ta0.5)O3化学计量比称量,加入无水乙醇和氧化锆小球。无水乙醇、氧化锆小球和混料的质量比为4:4:1,在行星式球磨机中球磨16小时得到混合均匀的湿料,将湿料取出后在80℃干燥箱烘干12小时,得到干粉;Ba0.6Sr0.4(Ti0.7Zr0.3)O3干粉于1300℃煅烧4小时,Bi(Li0.5Ta0.5)O3干粉于800℃煅烧4小时,煅烧完成后。
(2)按0.90Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.10Bi(Li0.5Ta0.5)O3化学计量比分别称量BSTZ、BLT,加入无水乙醇和氧化锆小球进行二次球磨;无水乙醇、氧化锆小球和混料的质量比为4:4:1,在行星式球磨机中球磨16小时得到混合均匀的湿料,将湿料取出后在80℃干燥箱烘干12小时。
(3)将混合均匀的干粉研磨后,过120目筛,接着在151MPa单轴压力下将粉末压成直径10mm、厚度1.3mm的陶瓷圆片。
(4)将陶瓷圆片置于刚玉坩埚后,四周敷设一层成分相同的干粉,在空气气氛下,以5˚/分钟升温到1300℃保温8小时,后随炉冷却,得到0.90BSTZ-0.10BLT陶瓷。
实施例2
一种在宽温域内介电常数稳定的锆钛酸锶钡基介电陶瓷材料材料0.85Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.15Bi(li0.5Ta0.5)O3(0.85BSTZ-0.15BLT)的制备方法,具体步骤如下:
(1)将纯度在99%以上BaCO3、SrCO3、TiO2、ZrO2、Bi2O3、Li2CO3、Ta2O5分别按Ba0.6Sr0.4(Ti0.7Zr0.3)O3、Bi(Li0.5Ta0.5)O3化学计量比称量,加入无水乙醇和氧化锆小球。无水乙醇、氧化锆小球和混料的质量比为4:4:1,在行星式球磨机中球磨16小时得到混合均匀的湿料,将湿料取出后在100℃干燥箱烘干10小时,得到干粉;Ba0.6Sr0.4(Ti0.7Zr0.3)O3干粉于1350℃煅烧3小时,Bi(Li0.5Ta0.5)O3干粉于850℃煅烧3小时,煅烧完成后。
(2)按0.85Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.15Bi(Li0.5Ta0.5)O3化学式计量比分别称量BSTZ、BLT,加入无水乙醇和氧化锆小球进行二次球磨;无水乙醇、氧化锆小球和混料的质量比为4:4:1,在行星式球磨机中球磨16小时得到混合均匀的湿料;将湿料取出后在80℃干燥箱烘干12小时。
(3)将混合均匀的干粉研磨后,过120目筛,接着在114MPa单轴压力下将粉末压成直径10mm、厚度1mm的陶瓷圆片。
(4)将陶瓷圆片置于刚玉坩埚后,四周敷设一层成分相同的干粉,在空气气氛下,以5˚/分钟升温到1200℃保温8小时,后随炉冷却,得到0.85BSTZ-0.15BLT陶瓷。
实施例3
一种在宽温域内介电常数稳定的锆钛酸锶钡基介电陶瓷材料材料0.80Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.20Bi(Li0.5Ta0.5)O3(0.80BSTZ-0.20BLT)的制备方法,具体步骤如下:
(1)将纯度在99%以上BaCO3、SrCO3、TiO2、ZrO2、Bi2O3、Li2CO3、Ta2O5分别按Ba0.6Sr0.4(Ti0.7Zr0.3)O3、Bi(Li0.5Ta0.5)O3化学计量比称量,加入无水乙醇和氧化锆小球。无水乙醇、氧化锆小球和混料的质量比为4:4:1,在行星式球磨机中球磨16小时得到混合均匀的湿料,将湿料取出后在80℃干燥箱烘干12小时,得到干粉;Ba0.6Sr0.4(Ti0.7Zr0.3)O3干粉于1300℃煅烧4小时,Bi(Li0.5Ta0.5)O3干粉于800℃煅烧4小时,煅烧完成后。
(2)按0.80Ba0.6Sr0.4(Ti0.7Zr0.3)O3-0.20Bi(Li0.5Ta0.5)O3化学式计量比分别称量BSTZ、BLT,加入无水乙醇和氧化锆小球进行二次球磨;无水乙醇、氧化锆小球和混料的质量比为4:4:1,在行星式球磨机中球磨16小时得到混合均匀的湿料。湿料取出后在80℃干燥箱烘干12小时。
(3)将混合均匀的干粉研磨后,过120目筛,接着在114MPa单轴压力下将粉末压成直径10mm,厚度1.2mm的陶瓷圆片。
(4)将陶瓷圆片置于刚玉坩埚后,四周敷设一层成分相同的干粉,在空气气氛下,以5˚/分钟升温到1150℃保温8小时,后随炉冷却,得到0.80BSTZ-0.20BLT陶瓷。
结果分析:
图1为实施例1~4四组样品常规烧结后的XRD图谱;由图1可以看出,所有实施例均为纯的立方相钙钛矿结构。
图2(a~d)分别为实施例1~4四组样品常规烧结后的表面形貌图;由图2可以看出,四组样品的晶粒晶界界限明显,表面存在少量的气孔。
图3(a~d)分别为实施例1~4四组样品常规烧结后的晶粒尺寸分布统计图;由图3可以看出,BSTZ的平均晶粒尺寸为2.67μm,0.90BSTZ-0.10BLT的平均晶粒尺寸为1.74μm;由此可以看出,掺入BLT使得样品平均晶粒尺寸减小的同时烧结温度也下降。
图4(a~d)分别为实施例1~4四组样品在打磨光滑表面,涂敷银浆烧制成银电极后测试的介电温谱图;由图4可以看出BSTZ的介电常数在测试温度范围内(-100~350℃)从3600变化到270,0.80BSTZ-0.20BLT样品在500kHz条件下,在测试温度范围(-100~350℃)内介电常数在158~160之间变化,表现出温度稳定性。
表1为四组样品在100kHz下以25℃为基准温度的容温变化率
Figure DEST_PATH_IMAGE001
由表1可以看出随着BLT的掺入,陶瓷样品的工作温度范围不断增加,0.85BSTZ-0.15BLT和0.80BSTZ-0.20BLT样品的工作温度达到350℃,满足国际电子工业协会(EIA)标准中X9R(-55~200℃)型陶瓷电容器的使用温度要求。

Claims (7)

1.一种锆钛酸锶钡基介电陶瓷材料,其特征在于:所述的锆钛酸锶钡基介电陶瓷材料化学组成为:(1-x)Ba0.6Sr0.4(Ti0.7Zr0.3)O3-xBi(Li0.5Ta0.5)O3,其中,x=0~0.20,且x≠0,所述介电陶瓷在宽温域内介电常数稳定。
2.权利要求1所述锆钛酸锶钡基介电陶瓷材料的制备方法,其特征在于:具体包括以下步骤:
(1)按照Ba0.6Sr0.4(Ti0.7Zr0.3)O3的化学计量比称取BaCO3、SrCO3、TiO2、ZrO2,然后进行球磨,烘干后于1300~1350℃煅烧3~4小时合成得到BSTZ粉体;按照Bi(Li0.5Ta0.5)O3的化学计量比称量Bi2O3、Li2CO3、Ta2O5,然后进行球磨,烘干后于750~850℃煅烧3~4小时,合成得到BLT粉体;
(2)将步骤(1)得到的粉体分别研磨、过筛;按照(1-x)Ba0.6Sr0.4(Ti0.7Zr0.3)O3-xBi(Li0.5Ta0.5)O3的化学计量比分别称量BSTZ粉体和BLT粉体,再进行二次球磨;球磨参数与第一次球磨相同;
(3)将混合的粉末烘干后在模具中进行压制,烧结得到Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷材料材料。
3.根据权利要求2所述锆钛酸锶钡基介电陶瓷材料的制备方法,其特征在于:步骤(1)或(2)中混合球磨中以无水乙醇和氧化锆小球作为球磨介质,无水乙醇、氧化锆小球和原料的质量比为(4~4.5):(4~4.5):1,其中,球磨转速为300~400转/分钟,球磨时间为16~18小时。
4.根据权利要求3所述锆钛酸锶钡基介电陶瓷材料的制备方法,其特征在于:球磨完成后烘干条件为:将湿料取出在80~100℃烘干10~12小时。
5.根据权利要求1或4所述锆钛酸锶钡基介电陶瓷材料的制备方法,其特征在于:步骤(2)中所述的过筛是过60~120目筛。
6.根据权利要求5所述锆钛酸锶钡基介电陶瓷材料的制备方法,其特征在于:步骤(3)中压制成型的条件为:114~151MPa单轴压力下保压6~10min。
7.根据权利要求6所述锆钛酸锶钡基介电陶瓷材料的制备方法,其特征在于:步骤(3)中烧结条件为:在试样周围敷设一层与样品成分相同的陶瓷前驱体粉末,采用埋烧的方式,以5~6℃/min的升温速率加热至烧结温度1100~1500℃保温8~10小时,冷却降温后得到该Ba0.6Sr0.4(Ti0.7Zr0.3)O3基陶瓷材料。
CN202211154669.7A 2022-09-22 2022-09-22 一种锆钛酸锶钡基介电陶瓷材料及其制备方法 Active CN115385688B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211154669.7A CN115385688B (zh) 2022-09-22 2022-09-22 一种锆钛酸锶钡基介电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211154669.7A CN115385688B (zh) 2022-09-22 2022-09-22 一种锆钛酸锶钡基介电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115385688A true CN115385688A (zh) 2022-11-25
CN115385688B CN115385688B (zh) 2023-03-14

Family

ID=84125794

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211154669.7A Active CN115385688B (zh) 2022-09-22 2022-09-22 一种锆钛酸锶钡基介电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115385688B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444266A (zh) * 2023-04-03 2023-07-18 昆明理工大学 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038760A (ja) * 1989-06-06 1991-01-16 Matsushita Electric Ind Co Ltd 電圧依存性非直線抵抗体磁器組成物およびバリスタの製造方法
CN101024574A (zh) * 2007-01-30 2007-08-29 合肥工业大学 铋基钙钛矿替代的铌酸钾钠系无铅压电陶瓷及其制备方法
CN107778004A (zh) * 2017-11-15 2018-03-09 广东工业大学 一种锆钛酸锶钡陶瓷及其制备方法和应用
CN111763084A (zh) * 2020-07-10 2020-10-13 广东工业大学 一种高电卡效应的掺锰钛酸锶钡陶瓷及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038760A (ja) * 1989-06-06 1991-01-16 Matsushita Electric Ind Co Ltd 電圧依存性非直線抵抗体磁器組成物およびバリスタの製造方法
CN101024574A (zh) * 2007-01-30 2007-08-29 合肥工业大学 铋基钙钛矿替代的铌酸钾钠系无铅压电陶瓷及其制备方法
CN107778004A (zh) * 2017-11-15 2018-03-09 广东工业大学 一种锆钛酸锶钡陶瓷及其制备方法和应用
CN111763084A (zh) * 2020-07-10 2020-10-13 广东工业大学 一种高电卡效应的掺锰钛酸锶钡陶瓷及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444266A (zh) * 2023-04-03 2023-07-18 昆明理工大学 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法
CN116444266B (zh) * 2023-04-03 2023-11-21 昆明理工大学 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法

Also Published As

Publication number Publication date
CN115385688B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
CN101805185B (zh) 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法
CN103601488A (zh) 一种调控陶瓷电介质微观结构及介电性能的方法
CN110015894B (zh) 一种高温下介电稳定的钛酸铋钠基陶瓷及其制备方法和应用
CN110330332B (zh) 一种无烧结助剂低温烧结压电陶瓷材料及其制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN106588006B (zh) 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷
CN115385688B (zh) 一种锆钛酸锶钡基介电陶瓷材料及其制备方法
CN103011805B (zh) 一种BaTiO3 基无铅X8R 型陶瓷电容器介质材料及其制备方法
KR101732422B1 (ko) 유전체 제조용 소결 전구체 분말 및 이의 제조 방법
CN109516799B (zh) 一种具有高温度稳定性的高介陶瓷电容器材料及其制备方法
CN105399405B (zh) 一种低介微波铁电陶瓷及其制备方法
CN113666738A (zh) 一种钛酸钡基x9r型多层陶瓷电容器用介质材料及制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
KR20040038747A (ko) 유전체 세라믹용 원료 분말의 제조 방법, 유전체 세라믹및 적층 세라믹 커패시터
CN115417670B (zh) 一种在b位进行高熵化设计的高介电常数陶瓷及其制备方法
CN115477538A (zh) 一种两步烧结制备铌酸钾钠基压电陶瓷的方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN116444266B (zh) 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法
CN110304916B (zh) 一种抗还原BaTiO3基介质陶瓷及制备方法
Lee et al. Effects of ceramic processing parameters on the microstructure and dielectric properties of (Ba 1-x Ca x)(Ti 0.99-y′ Zr y Mn 0.01) O 3 sintered in a reducing atmosphere
CN106145932A (zh) 一种高介电常数的多层陶瓷电容器介质材料及其制备方法
JP4017220B2 (ja) スパッタリング用BaxSr1−xTiO3−yターゲット材
CN116924796B (zh) 一种abo3型低介电损耗陶瓷及其制备方法
JP2580374B2 (ja) 複合ペロブスカイト型誘電体磁器粉末の製造方法
CN115286386B (zh) 一种非化学计量Nb5+的铌钽锆铁酸钾钠铋陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant