CN106588006B - 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷 - Google Patents

一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷 Download PDF

Info

Publication number
CN106588006B
CN106588006B CN201611159230.8A CN201611159230A CN106588006B CN 106588006 B CN106588006 B CN 106588006B CN 201611159230 A CN201611159230 A CN 201611159230A CN 106588006 B CN106588006 B CN 106588006B
Authority
CN
China
Prior art keywords
preparation
dielectric
strontium titanate
mixture
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611159230.8A
Other languages
English (en)
Other versions
CN106588006A (zh
Inventor
陈艳平
李强
杨晓峰
李启寿
唐贤臣
谢金华
蔡勇军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Materials of CAEP
Original Assignee
Institute of Materials of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Materials of CAEP filed Critical Institute of Materials of CAEP
Priority to CN201611159230.8A priority Critical patent/CN106588006B/zh
Publication of CN106588006A publication Critical patent/CN106588006A/zh
Application granted granted Critical
Publication of CN106588006B publication Critical patent/CN106588006B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷,目的在于解决现有介电陶瓷材料,介电常数越高,耐电强度越低,且其温度稳定性和电场稳定性也越差的问题。本发明从ABO3型钙钛矿晶体结构、介电微观机制出发,优化了高介电性能钛酸锶钡陶瓷的成分设计,通过改进原料粉末的制备方法、陶瓷试样的显微组织调控与性能优化,实现了制备的原料粉末均质、细晶,具备了较高的烧结活性。本发明提供兼具高的介电常数、低的介质损耗的BST介电陶瓷及其制备方法,其制备工艺简单,成本较低,周期短,适合大批量生产,能够满足工业化应用的需求,其提供的材料能够用于高功率微波器件系统中,满足实际应用需要,具有较为广阔的应用前景。

Description

一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电 陶瓷
技术领域
本发明涉及材料领域,尤其是高性能介电材料领域,具体为一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷。本发明属于无机材料介电陶瓷及其制备领域,其提供了一种高介电性能、低介质损耗的钛酸锶钡介电陶瓷及其制备方法,具有较高的应用价值。
背景技术
陶瓷介质材料通常可分为两类:一类是线性材料,另一类是非线性介质材料。线性介质材料具有高的耐电强度,但其介电常数较低,一般不超过300。而非线性介质材料,虽然具有高的介电常数(可以在1000以上),但很难同时兼顾高介电常数和高的耐电强度。对于同一个陶瓷介质体系而言,往往介电常数越高,它的耐电强度越低,且其温度稳定性和电场稳定性也越差。
因此,如何在提高陶瓷介质介电常数的同时,提高耐电强度,并保持良好的温度和电场稳定性,是发展高性能陶瓷介质材料的技术关键。
为此,本发明提供一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷。
发明内容
本发明的发明目的在于:针对现有的介电陶瓷材料,介电常数越高,它的耐电强度越低,且其温度稳定性和电场稳定性也越差的问题,提供一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷。本发明从ABO3型钙钛矿晶体结构、介电微观机制出发,优化了高介电性能钛酸锶钡陶瓷的成分设计,通过改进原料粉末的制备方法、陶瓷试样的显微组织调控与性能优化,实现了制备的原料粉末均质、细晶,具备了较高的烧结活性;制备的陶瓷晶粒细、致密度高,在满足较高的介电常数的同时,具备较低的介质损耗,可应用于高功率微波器件系统,具有极好的应用前景。
为了实现上述目的,本发明采用如下技术方案:
一种高介电性能钛酸锶钡,其化学分子式为:(Ba1-aSra)1-x-yCaxBiyZrbTi1-bO3,其中0.3≤a≤0.4,0<b≤0.05,0<x≤0.08,0<y≤0.1。
其常温介电常数≥4000,介质损耗≤0.5%。
前述高介电性能钛酸锶钡的制备方法,包括如下步骤:按钛酸锶钡(Ba1-aSra)1-x- yCaxBiyZrbTi1-bO3的化学计量比,分别称取BaCO3、SrCO3、TiO2、ZrO2、CaO、Bi2O3原料,将称取的原料混合,得第一混合物,并向第一混合物中加入第一混合物质量5~8wt%的聚乙烯醇缩丁醛作为分散剂,得到第二混合物;将第二混合物进行湿法球磨,并将球磨后的浆料烘干后,得到第三混合物;将第三混合物在大气气氛下于1000~1250℃保温2~4小时,制得钛酸锶钡原料。
将第一混合物进行湿法球磨时,以氧化锆小球、无水乙醇为球磨介质,原料、氧化锆小球、无水乙醇、聚乙烯醇缩丁醛的质量比为1:(4.0~6.0):(6~8)(0.05~0.08),球磨时间为36~48小时。
采用前述高介电性能钛酸锶钡制备的介电陶瓷,采用包括如下步骤的方法制备而成:将钛酸锶钡原料粉碎、过筛,得到第四粉末;向第四粉末中加入粘结剂,得到第五混合物;将第五混合物进行造粒、陈化、过筛后,再经模压、等静压成型,得到钛酸锶钡胚体;将得到的钛酸锶钡胚体在大气气氛下于1380~1520℃烧结,即得钛酸锶钡介电陶瓷。
所述粘结剂为质量浓度2~10wt%的聚乙烯醇溶液,所述粘接剂的加入量为钛酸锶钡原料质量的3~10%。
将第五混合物进行造粒、陈化,造粒时间为0.5~4小时,陈化为24~48小时。
模压压力为20~50MPa,冷等静压压力为200~280MPa。
将得到的钛酸锶钡胚体在大气气氛下于1380~1520℃烧结,烧结条件如下:以2~5℃/min的速度升温,当升温至120℃时保温1~3h,然后升温至400~700℃,保温2~4h,然后升温至1380~1520℃保温2.5~4.5h,然后以1~8℃/min的速度降温至300~500℃,然后随炉冷却至室温,即得钛酸锶钡介电陶瓷。
前述钛酸锶钡介电陶瓷在高功率微波器件中的应用。
针对前述问题,本发明提供一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷。本发明从ABO3型钙钛矿晶体结构、介电微观机制出发,优化了高介电性能钛酸锶钡陶瓷的成分设计,通过改进原料粉末的制备方法、陶瓷试样的显微组织调控与性能优化,实现了制备的原料粉末均质、细晶,具备了较高的烧结活性;制备的陶瓷晶粒细、致密度高,在满足较高的介电常数的同时,具备较低的介质损耗,可应用于高功率微波器件系统。
本发明提供的高介电性能钛酸锶钡的化学分子式为(Ba1-aSra)1-x-yCaxBiyZrbTi1- bO3,其中0.3≤a≤0.4,0<b≤0.05,0<x≤0.08,0<y≤0.1。经实际测定,本发明的BST介电陶瓷致密度达到理论密度的99%以上,晶粒细、均匀性好,在满足较高的介电常数(≥4000@1、10、100、200KHz,即该材料在1、10、100、200KHz条件下的介电常数在4000以上)的同时,具备较低的介质损耗(≤0.5%@1、10、100、200KHz,即该材料在1、10、100、200KHz条件下的介质损耗在0.5%以下),可满足高功率微波器件系统应用的要求。实验结果表明,本发明的BST介电陶瓷兼具高介电性能、低介质损耗,且晶粒细、均匀性好、致密度高,电性能优良,能满足高功率微波器件系统的使用要求。
进一步,本发明还提供该高介电性能钛酸锶钡的制备方法及其介电陶瓷的制备方法,其中一个具体的操作步骤如下。
(1)按照化学计量比,称取原料BaCO3、SrCO3、TiO2、ZrO2、CaO、Bi2O3,得到原料混合物,向原料混合物中加入原料混合物质量5~8wt%的聚乙烯醇缩丁醛作为分散剂,以氧化锆小球、无水乙醇为球磨介质,在氧化锆罐内湿法球磨混合均匀;将球磨后的浆料在大气气氛烘干后,再在大气气氛下于1000~1250℃保温2~4小时制得钛酸锶钡原料粉末,然后对所得原料粉末进行研磨、过60目筛,得到(Ba1-aSra)1-x-yCaxBiyZrbTi1-bO3原料粉末。
(2)将所得的(Ba1-aSra)1-x-yCaxBiyZrbTi1-bO3原料粉末加入粘接剂,经造粒、陈化、过筛,再采用模压、等静压成型,得到钛酸锶钡胚体。
(3)将制备的钛酸锶钡胚体在大气气氛下于1380~1520℃烧结,制得所述兼具高介电性能、低介质损耗钛酸锶钡介电陶瓷。
较佳地,在步骤(1)中,过60目筛得到(Ba1-aSra)1-x-yCaxBiyZrbTi1-bO3原料粉末。
作为优选,所述粘接剂为质量浓度为2~5%的聚乙烯醇溶液,所述粘接剂加入量可为(Ba1-aSra)1-x-yCaxBiyZrbTi1-bO3粉末质量的3~6%。
在实验室条件下,步骤2中,造粒、陈化、过筛工艺参数可以为:采用玛瑙研钵作为造粒容器,按(Ba1-aSra)1-x-yCaxBiyZrbTi1-bO3原料粉末与粘接剂的质量比例为1:5~10%,造粒时间0.5~4小时,陈化24~48小时,过20目筛,得到筛下物,用于胚体压制。作为优选,模压压力为20~50MPa,冷等静压压力为200~280MPa。
作为优选,本发明在烧结时,优选采用程序升温,具体操作如下:以2~5℃/min的速度升温,当升温至120℃时保温1~3h,然后升温至400~700℃,保温2~4h,然后升温至1380~1520℃保温2.5~4.5h,然后以1~8℃/min的速度降温至300~500℃,然后随炉冷却至室温,得到烧结态钛酸锶钡介电陶瓷。
将烧结好的样品研磨加工至需要的尺寸,采用无水乙醇超声清洗,采用质量浓度为10%的HF溶液作为腐蚀液,将样品刻蚀30~60秒,然后在其表面蒸镀一层金膜,在场发射扫描电镜下观察其显微组织形貌;采用X-射线衍射方法采集制备的(Ba1-aSra)1-x- yCaxBiyZrbTi1-bO3原料粉末、陶瓷试样的XRD图谱;采用丝网印刷在试样表面涂覆银浆,在180℃保温10~15分钟烘干,在800℃保温30分钟,然后采用阻抗仪检测BST介电陶瓷在不同频率下的介电常数、介质损耗。
图1为本发明的示例高介电常数、低介质损耗BST介电陶瓷的XRD图谱。由图1可见:(Ba1-aSra)1-x-yCaxBiyZrbTi1-bO3原料粉末、陶瓷试样中均未发现杂质相的衍射峰,均得到纯BST钙钛矿相。
图2为本发明的示例高介电常数、低介质损耗BST介电陶瓷经表面磨抛、化学腐蚀后的扫描电镜照片。由图2可见,BST陶瓷晶粒尺寸小;组织均匀致密、孔隙含量少。
图3为本发明的示例高介电常数、低介质损耗BST介电陶瓷在常温下不同测试频率下的介电常数、介质损耗。由图3可见,介电常数大于4000的同时,其介电损耗小于5%。
综上所述,本发明提供兼具高的介电常数、低的介质损耗的BST介电陶瓷及其制备方法,其制备工艺简单,无需特殊设备,成本较低,周期短,适合大批量生产,能够满足工业化应用的需求,其提供的材料能够用于高功率微波器件系统中,满足实际应用需要,具有较为广阔的应用前景。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1为实施例1制备的高介电常数、低介质损耗BST介电陶瓷的XRD图谱。
图2为实施例1制备的高介电常数、低介质损耗BST介电陶瓷经表面磨抛、化学腐蚀后的扫描电镜照片。
图3为实施例1制备的高介电常数、低介质损耗BST介电陶瓷在常温下不同测试频率下的介电常数、介质损耗。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
下面进一步例举实施例详细说明本发明。同样地,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的所述内容做出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的参数,如温度、压力、时间、浓度、百分比含量等也仅是合适范围中的一个示例。即本领域技术人员可以通过本文的说明作合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
1)称取化学纯的BaCO3(115.25g)、SrCO3(46.31g)、TiO2(79.80g)、ZrO2(6.35g)、CaO(2.30g)、Bi2O3(11.65g)原料,加入15.66g聚乙烯醇缩丁醛作为分散剂,采用湿法球磨混合均匀。湿法球磨的工艺参数为:原料、氧化锆小球、无水乙醇以及聚乙烯醇缩丁醛的质量比为1:5:6:0.06,球磨时间为40小时。
2)将步骤1)球磨后的浆料在大气气氛烘干后,在大气气氛下于1150℃保温3小时制得钛酸锶钡原料粉末。
3)然后对步骤2所得原料粉末进行研磨、过60目筛,得到(Ba1-aSra)1-x- yCaxBiyZrbTi1-bO3原料粉末235g。
4)向步骤3)所得的(Ba1-aSra)1-x-yCaxBiyZrbTi1-bO3原料粉末加入质量浓度为3%的聚乙烯醇溶液9.4g作为粘接剂;经造粒、陈化、过筛,再采用模压、等静压成型,得到钛酸锶钡胚体。造粒、陈化、过筛工艺参数如下:采用玛瑙研钵作为造粒容器,按(Ba1-aSra)1-x- yCaxBiyZrbTi1-bO3原料粉末与粘接剂的质量比例为1:0.05,造粒时间1.5小时,陈化36小时,过20目筛,得到筛下物,用于胚体压制。
其中,胚体压制工艺参数为:模压压力为25MPa,冷等静压压力为270MPa。
5)将步骤4制备的钛酸锶钡胚体以4℃/min的速度升温,当升温至120℃时保温2h,然后升温至600℃,保温3h,然后升温至1450℃保温3h,然后以6℃/min的速度降温至300℃,然后随炉冷却至室温,得到烧结态钛酸锶钡介电陶瓷。
将烧结好的样品研磨加工至需要的尺寸,采用无水乙醇超声清洗,采用质量浓度为10%的HF溶液作为腐蚀液,将样品刻蚀20秒,然后在其表面蒸镀一层金膜,在场发射扫描电镜下观察其显微组织形貌;采用X射线衍射方法采集制备的(Ba1-aSra)1-x-yCaxBiyZrbTi1- bO3原料粉末、陶瓷试样的XRD图谱;采用丝网印刷在试样表面涂覆银浆,在180℃保温10分钟烘干,在800℃保温30分钟,然后采用阻抗仪检测BST介电陶瓷在不同频率下的介电常数、介质损耗。
图1为本实施例制备的高介电常数、低介质损耗BST介电陶瓷的XRD图谱。由图1可见:(Ba1-aSra)1-x-yCaxBiyZrbTi1-bO3原料粉末、陶瓷试样中均未发现杂质相的衍射峰,均得到纯BST钙钛矿相。
图2为本实施例制备的高介电常数、低介质损耗BST介电陶瓷经表面磨抛、化学腐蚀后的扫描电镜照片。由图2可见,BST陶瓷晶粒尺寸小;组织均匀致密、孔隙含量少。
图3为本实施例制备的高介电常数、低介质损耗BST介电陶瓷在常温下不同测试频率下的介电常数、介质损耗。由图3可见,介电常数大于4000的同时,其介电损耗小于5%。
实施例2
称取化学纯的BaCO3(108.84g)、SrCO3(43.73g)、TiO2(79.80g)、ZrO2(6.35g)、CaO(2.30g)、Bi2O3(23.30g)原料,加入15.66g聚乙烯醇缩丁醛作为分散剂,采用湿法球磨混合均匀。湿法球磨的工艺参数为:原料、氧化锆小球、无水乙醇以及聚乙烯醇缩丁醛的质量比为1:5:6:0.06,球磨时间为40小时。
2)将步骤1)球磨后的浆料在大气气氛烘干后,在大气气氛下于1150℃保温3小时制得钛酸锶钡原料粉末。
3)然后对步骤2所得原料粉末进行研磨、过60目筛,得到(Ba1-aSra)1-x- yCaxBiyZrbTi1-bO3原料粉末235g。
4)向步骤3)所得的(Ba1-aSra)1-x-yCaxBiyZrbTi1-bO3原料粉末加入质量浓度为3%的聚乙烯醇溶液9.4g作为粘接剂;经造粒、陈化、过筛,再采用模压、等静压成型,得到钛酸锶钡胚体。造粒、陈化、过筛工艺参数如下:采用玛瑙研钵作为造粒容器,按(Ba1-aSra)1-x- yCaxBiyZrbTi1-bO3原料粉末与粘接剂的质量比例为1:0.05,造粒时间1.5小时,陈化36小时,过20目筛,得到筛下物,用于胚体压制。
其中,胚体压制工艺参数为:模压压力为25MPa,冷等静压压力为270MPa。
5)将步骤4制备的钛酸锶钡胚体以4℃/min的速度升温,当升温至120℃时保温2h,然后升温至600℃,保温3h,然后升温至1380℃保温3h,然后以6℃/min的速度降温至300℃,然后随炉冷却至室温,得到烧结态钛酸锶钡介电陶瓷。
将烧结好的样品研磨加工至需要的尺寸,采用无水乙醇超声清洗,采用质量浓度为10%的HF溶液作为腐蚀液,将样品刻蚀20秒,然后在其表面蒸镀一层金膜,在场发射扫描电镜下观察其显微组织形貌;采用X射线衍射方法采集制备的(Ba1-aSra)1-x-yCaxBiyZrbTi1- bO3原料粉末、陶瓷试样的XRD图谱;采用丝网印刷在试样表面涂覆银浆,在180℃保温10分钟烘干,在800℃保温30分钟,然后采用阻抗仪检测BST介电陶瓷在不同频率下的介电常数、介质损耗。
本实施例与实施例1采用的制备工艺参数相比,在陶瓷氧化物成分内适当增加Bi2O3比例,陶瓷的烧结温度明显降低,制备得到的样品同样满足介电常数大于4000、介质损耗小于5%的要求。
综上所述,采用本发明制备的BST介电陶瓷具有介电常数高(>4000)、介质损耗低(小于5%)的特点。显微组织致密、均匀,晶粒尺寸小,气孔少,可满足高功率微波器件系统应用要求。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (8)

1.一种高介电性能钛酸锶钡介电陶瓷的制备方法,其特征在于,其化学分子式为:(Ba1-aSra)1-x-yCaxBiyZrbTi1-bO3,其中0.3≤a≤0.4,0<b≤0.05,0<x≤0.08,0<y≤0.1,其常温介电常数≥4000,介质损耗≤0.5%;其制备方法包括如下步骤:按钛酸锶钡(Ba1-aSra)1-x-yCaxBiyZrbTi1-bO3的化学计量比,分别称取BaCO3、SrCO3、TiO2、ZrO2、CaO、Bi2O3原料,将称取的原料混合,得第一混合物,并向第一混合物中加入第一混合物质量5~8wt%的聚乙烯醇缩丁醛作为分散剂,得到第二混合物;将第二混合物进行湿法球磨,并将球磨后的浆料烘干后,得到第三混合物;将第三混合物在大气气氛下于1000~1250℃保温2~4小时,制得钛酸锶钡原料;将钛酸锶钡原料粉碎、过筛,得到第四粉末;向第四粉末中加入粘结剂,得到第五混合物;将第五混合物进行造粒、陈化、过筛后,再经模压、等静压成型,得到钛酸锶钡坯体 ;将得到的钛酸锶钡坯体 在大气气氛下于1380~1520℃烧结,即得钛酸锶钡介电陶瓷。
2.根据权利要求1所述的制备方法,其特征在于,将第一混合物进行湿法球磨时,以氧化锆小球、无水乙醇为球磨介质,原料、氧化锆小球、无水乙醇、聚乙烯醇缩丁醛的质量比为1:(4.0~6.0):(6~8): (0.05~0.08),球磨时间为36~48小时。
3.一种介电陶瓷,其特征在于,采用权利要求1中所述制备方法制备。
4.根据权利要求3所述介电陶瓷,其特征在于,所述粘结剂为质量浓度2~10wt%的聚乙烯醇溶液,所述粘结剂的加入量为钛酸锶钡原料质量的3~10%。
5.根据权利要求3所述介电陶瓷,其特征在于,将第五混合物进行造粒、陈化,造粒时间为0.5~4小时,陈化为24~48小时。
6.根据权利要求3-5任一项所述介电陶瓷,其特征在于,模压压力为20~50MPa,冷等静压压力为200~280MPa。
7.根据权利要求3-5任一项所述介电陶瓷,其特征在于,将得到的钛酸锶钡坯体 在大气气氛下于1380~1520℃烧结,烧结条件如下:以2~5℃/min的速度升温,当升温至120℃时保温1~3h,然后升温至400~700℃,保温2~4h,然后升温至1380~1520℃保温2.5~4.5h,然后以1~8℃/min的速度降温至300~500℃,然后随炉冷却至室温,即得钛酸锶钡介电陶瓷。
8.前述权利要求3-5任一项所述钛酸锶钡介电陶瓷在高功率微波器件中的应用。
CN201611159230.8A 2016-12-15 2016-12-15 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷 Active CN106588006B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611159230.8A CN106588006B (zh) 2016-12-15 2016-12-15 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611159230.8A CN106588006B (zh) 2016-12-15 2016-12-15 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷

Publications (2)

Publication Number Publication Date
CN106588006A CN106588006A (zh) 2017-04-26
CN106588006B true CN106588006B (zh) 2019-11-12

Family

ID=58802824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611159230.8A Active CN106588006B (zh) 2016-12-15 2016-12-15 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷

Country Status (1)

Country Link
CN (1) CN106588006B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324339A (zh) * 2018-10-30 2019-02-12 中国工程物理研究院核物理与化学研究所 一种反应堆退役不锈钢材料中Sr-90分析装置和方法
CN111763082B (zh) * 2019-04-01 2021-08-31 中国科学院上海硅酸盐研究所 一种钛酸锶钡基介质陶瓷材料及其制备方法和应用
CN111925187A (zh) * 2020-07-03 2020-11-13 成都宏科电子科技有限公司 一种无铅高压中温烧结的锶铋钛基介质材料及制备方法
CN112876240B (zh) * 2021-02-10 2022-03-08 同济大学 一种陶瓷材料及其制备方法和用途
CN112941614A (zh) * 2021-03-16 2021-06-11 西北工业大学 一种大电致应变钛酸锶钡铁电晶体浮区生长方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900002516B1 (ko) * 1985-12-30 1990-04-16 다이요유덴 가부시끼가이샤 유전체 자기조성물
CN101648807A (zh) * 2009-09-14 2010-02-17 桂林理工大学 锆钛酸钡钙基压电陶瓷及其制备方法
CN103708826A (zh) * 2013-12-25 2014-04-09 中国科学院上海硅酸盐研究所 低介电损耗钛酸锶钡热释电陶瓷及其制备方法
CN105777115A (zh) * 2016-03-16 2016-07-20 江苏省陶瓷研究所有限公司 一种制备多元协同掺杂钛酸锶钡制备高性能陶瓷电容器材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900002516B1 (ko) * 1985-12-30 1990-04-16 다이요유덴 가부시끼가이샤 유전체 자기조성물
CN101648807A (zh) * 2009-09-14 2010-02-17 桂林理工大学 锆钛酸钡钙基压电陶瓷及其制备方法
CN103708826A (zh) * 2013-12-25 2014-04-09 中国科学院上海硅酸盐研究所 低介电损耗钛酸锶钡热释电陶瓷及其制备方法
CN105777115A (zh) * 2016-03-16 2016-07-20 江苏省陶瓷研究所有限公司 一种制备多元协同掺杂钛酸锶钡制备高性能陶瓷电容器材料的方法

Also Published As

Publication number Publication date
CN106588006A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN106588006B (zh) 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷
TWI402872B (zh) 電介質瓷器及疊層陶瓷電容器以及它們的製造方法
Wang et al. (Bi1/2Na1/2) TiO3–Ba (Cu1/2W1/2) O3 Lead‐Free Piezoelectric Ceramics
KR101156015B1 (ko) 적층 세라믹 콘덴서 및 그 제조방법
Shende et al. Strontium zirconate and strontium titanate ceramics for high‐voltage applications: synthesis, processing, and dielectric properties
CN108275998A (zh) 三元系psn-pzt压电陶瓷片及其制备方法
JP2013028478A (ja) 誘電体磁器組成物、および電子部品
CN105801112A (zh) Nd、Al共掺杂取代Ba0.4Sr0.6TiO3巨介电陶瓷及其制备方法
CN109608194A (zh) 一种锆钛酸铅厚膜陶瓷及其制备方法和应用
JP2004043279A (ja) 均一性及び絶縁抵抗性が増大された誘電体組成物、その製造方法及びこれを用いた積層セラミックコンデンサ
Jwala et al. Influence of B-site modification by hetrovalent (Nb5+) and isovalent (Zr4+) dopants in BaTiO3 on its dielectric and electrical properties synthesized by novel sol gel route
CN106187189B (zh) 一种储能微波介质陶瓷材料及其制备方法
CN105399405B (zh) 一种低介微波铁电陶瓷及其制备方法
CN111018516A (zh) 钛酸钡基高储能密度电子陶瓷及其制备方法
KR101905143B1 (ko) 비강유전 고유전체 및 그 제조방법
JP2016175824A (ja) 圧電デバイス
KR20030059189A (ko) 유전성 바륨 티타네이트 입자의 제조
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
WO2020209039A1 (ja) 誘電性無機組成物
Xue et al. The dielectric and ferroelectric properties of (Ba 0. 5 Sr 0. 5) TiO3-doped (Bi 0. 5 Na 0. 5) TiO3 lead-free ceramics
CN106518058A (zh) 一种由钛酸铋钾和氧化锌构成的无铅复合铁电陶瓷及制备
CN116425543A (zh) 作为电介质材料的具有高储能和充放电性能的b位高熵陶瓷及制备方法
CN114804870B (zh) 一种无铅反铁电高储能密度陶瓷材料及其制备方法
CN115385688A (zh) 一种锆钛酸锶钡基介电陶瓷材料及其制备方法
Chou et al. Preparation and dielectric properties of B2O3–Li2O-doped BaZr0. 35Ti0. 65O3 ceramics sintered at a low temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant