CN115074708B - 一种热致相变多层薄膜及其制备方法 - Google Patents

一种热致相变多层薄膜及其制备方法 Download PDF

Info

Publication number
CN115074708B
CN115074708B CN202210707939.6A CN202210707939A CN115074708B CN 115074708 B CN115074708 B CN 115074708B CN 202210707939 A CN202210707939 A CN 202210707939A CN 115074708 B CN115074708 B CN 115074708B
Authority
CN
China
Prior art keywords
film
sol
tio
coating
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210707939.6A
Other languages
English (en)
Other versions
CN115074708A (zh
Inventor
丁小明
庄欠玉
宋晓辉
李宗谦
张玉波
李艳丽
陈永金
白秉禾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aviation Materials Guochuang Qingdao High Speed Railway Materials Research Institute Co ltd
Sichuan Engineering Technical College
Original Assignee
Aviation Materials Guochuang Qingdao High Speed Railway Materials Research Institute Co ltd
Sichuan Engineering Technical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aviation Materials Guochuang Qingdao High Speed Railway Materials Research Institute Co ltd, Sichuan Engineering Technical College filed Critical Aviation Materials Guochuang Qingdao High Speed Railway Materials Research Institute Co ltd
Priority to CN202210707939.6A priority Critical patent/CN115074708B/zh
Publication of CN115074708A publication Critical patent/CN115074708A/zh
Application granted granted Critical
Publication of CN115074708B publication Critical patent/CN115074708B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了提供一种热致相变多层薄膜及其制备方法,所述多层薄膜由TiO2薄膜和VO2薄膜组成,VO2薄膜沉积在TiO2薄膜上。制备方法是将钛酸丁酯加入乙酸与无水乙醇的混合液中,搅拌得到Ti溶胶,涂敷在基底上;将双氧水稀释,将V2O5粉体缓慢加入到双氧水中并保持搅拌,待溶胶搅拌至澄清后,水浴加热至55~65℃,得到钒溶胶;对TiO2薄膜进行紫外光催化处理使其转变为亲水性;在紫外光激发后的TiO2薄膜上涂敷V溶胶,500~580℃下热处理1~2小时,得到热致相变多层薄膜。本发明通过复合TiO2薄膜提高了VO2薄膜的透光率,并实现制备工艺的无毒环保和高效简便。

Description

一种热致相变多层薄膜及其制备方法
技术领域
本发明属于相变材料领域,具体涉及一种热致相变多层薄膜材料及其制备方法。
背景技术
VO2是一种半导体相变材料,在相变时表现出光透射及反射率突变,电阻率、磁化率等突变性能。VO2具有四种构型,即VO2(M)、VO2(R)型,以及两种亚稳态VO2(A)、VO2(B)型。当温度低于68℃时,为单斜晶的畸变金红石型VO2(M);当温度高于68℃时,则转变为四方晶的金红石型VO2(R)。
将VO2制备成为薄膜时,其在低温半导体时透过红外光,在高温金属相时反射红外光,因此这种薄膜材料运用在建筑物窗玻璃上能起到自动调节室外太阳辐射能流和室内因热传递、对流、辐射损耗的能量,避免室内过热或过冷。但目前VO2薄膜在智能窗的大面积应用因可见光透过率较低受到限制。因此,提高VO2薄膜的透光率是扩展其应用的关键。
VO2薄膜的制备多采用溶胶-凝胶法和磁控溅射法制备。目前溶胶凝胶法多采用还原V2O5为溶胶原料,该溶胶多采用V2O5熔融水淬法获得,过程中产生毒性颗粒,刺激人的鼻腔和咽喉,不能长期应用。而磁控溅射法成本高,等离子体不稳定,靶材利用率低。
发明内容
本发明的目的在于针对现有技术的不足,提供一种热致相变多层薄膜及其制备方法,以提高VO2薄膜的透光率,并实现制备工艺的无毒环保和高效简便。
本发明提供的热致相变多层薄膜,由TiO2薄膜和VO2薄膜组成,VO2薄膜沉积在TiO2薄膜上。
本发明提供的热致相变多层薄膜的制备方法,包括以下步骤:
(1)将钛酸丁酯加入乙酸与无水乙醇的混合液中,搅拌得到Ti溶胶;将Ti溶胶涂敷在基底上,自然晾干;
(2)将双氧水稀释,将V2O5粉体缓慢加入双氧水中搅拌至澄清后,水浴加热至55~65℃,持续搅拌得到深棕色V(钒)溶胶;
(3)对TiO2薄膜进行紫外光催化处理,使其在紫外光下转变为亲水性。TiO2具有亲油性;紫外光催化处理能够避免在涂层V溶胶(亲水性)时,因接触角太大(超过60°)而无法有效成膜;
(4)在紫外光激发后的TiO2薄膜上涂敷V溶胶,然后在N2气保护,500~580℃下保温1~2小时进行热处理,得到热致相变多层薄膜。
进一步地,步骤(1)中乙酸与乙醇的体积用量比为4ml~8ml乙酸:100ml无水乙醇;钛酸丁酯与无水乙醇的体积用量比为5~10ml钛酸丁酯:100ml无水乙醇。
进一步地,步骤(1)中将Ti溶胶涂敷在基底上自然晾干后,放置在马弗炉升温到500~580℃保温热处理1~2小时,然后取出自然冷却,得到TiO2薄膜。
进一步地,步骤(2)中将双氧水稀释至8~10%(体积百分数);V2O5:双氧水的质量体积比=(0.5~1g):100ml。
进一步地,步骤(3)中,将TiO2薄膜置于254nm紫外光下进行紫外光催化处理1~2h。
进一步地,步骤(4)中升温速率控制为5~10℃/min。
进一步地,步骤(1)和(4)中采用旋转涂膜仪进行涂膜,最好涂膜两遍,并通过控制旋转涂膜仪的转速来控制膜的厚度。
进一步地,旋转涂膜法依靠离心力的作用将溶胶“铺平”。如利用匀胶机吸附基片,基片上铺满溶胶,转盘转动起来以后离心作用使溶胶从基片上甩出,即均匀旋涂在基片上,成为凝胶薄膜。选取转速为2.0×103rad/min,旋涂初始阶段依靠匀胶机本身无级变速时转速较慢的阶段,再上升至2.0×103rad/min,旋涂15~20s,取膜后烘干,反复成膜两次,保持薄膜厚度均匀。
进一步地,步骤(2)中在双氧水中添加掺杂元素的盐制备掺杂元素的V溶胶,所述掺杂元素为W元素或Mo元素。如在双氧水添加(NH4)5H5[H(WO4)6]·H2O来掺杂W元素。掺杂W元素能够使VO2薄膜相变滞后温宽急剧降低。且由于含W元素或者含Mo元素的溶胶与掺杂溶胶的界面反应,使滞后温宽变得更加收窄。
在本发明的技术方案中,使用溶胶-凝胶法制备钒溶胶和钛溶胶,再分别热处理固化使之成膜。溶胶-凝胶法制备薄膜是通过易于水解的金属化合物和某种溶剂或水发生水解、缩合化学反应,形成稳定的透明溶胶体系,然后再将溶胶均匀沉积在基底上,溶胶经陈化胶粒间缓慢聚合,失去流动性溶剂后,形成三维网络结构凝胶最后经过热处理固化成薄膜材料。
与现有技术相比,本发明具有以下有益效果:
1.本发明方法通过在TiO2薄膜上沉积VO2薄膜,提高VO2薄膜的透光率,并将TiO2薄膜进行紫外光催化处理,提高其亲水性,从而更好地涂覆钒溶胶,使TiO2薄膜与VO2薄膜结合更为紧密。
2.本发明通过双氧水制备钒溶胶,操作简单,溶胶制备价格低廉,无毒,易于掌握,易于实现工业化生产。
附图说明
图1为实施例2制备的复合薄膜的SEM图。
图2为实施例1制备的复合薄膜在可见光区的高低温透过率谱图。
图3为实施例2制备的复合薄膜在可见光区的高低温透过率谱图。
图4是对比例2制备的复合薄膜在可见光区的高低温透过率谱图。
图5为实施例2和对比例1制备的复合薄膜可见光激发对比度(常态为室温,激发态为加热到80℃)。
图6为实施例2和对比例2制备的复合薄膜可见光激发对比度(常态为室温,激发态为加热到80℃)。
图7为实施例3和对比例2制备的复合薄膜可见光激发对比度(常态为室温,激发态为加热到80℃)。
具体实施方式
下面通过实施例对本发明做进一步说明。有必要指出,以下实施例只用于对本发明作进一步说明,不能理解为对本发明保护范围的限制,所属领域技术人员根据上述发明内容,对本发明做出一些非本质的改进和调整进行具体实施,仍属于发明保护的范围。
实施例1:
(1)溶胶凝胶法制备TiO2溶胶。将4ml乙酸与100ml无水乙醇混合,再将8ml钛酸丁酯缓慢滴加入混合液中,搅拌2小时后,得到透明澄清Ti溶胶。将洗涤干燥后的基底进行旋转涂膜两遍,自然晾干,然后放置在马弗炉中,升温到520℃,热处理1小时,取出空冷,即得到TiO2薄膜。
(2)制备V溶胶。将双氧水稀释至10%,再按照V2O5:双氧水H2O2(10%)=0.5g:100ml的比例,将V2O5粉体缓慢加入到10%的双氧水中并保持一定速度不断搅拌,待溶胶搅拌澄清后,水浴加热到60℃,持续搅拌得到深棕色V溶胶。
(3)TiO2薄膜紫外光处理。对TiO2薄膜进行紫外光催化处理。在254nm紫外光催化下,将TiO2薄膜光催化处理1小时,使TiO2的水接触角低于15°,由亲油性变为亲水性。
(4)涂覆V溶胶。将紫外光激发后TiO2薄膜放置在旋转涂膜仪上进行旋转涂V溶胶两遍。对所得复合薄膜进行热处理,条件为:N2气保护,升温到500℃,保温2小时,升温速率控制为8℃/min,随炉冷却。
实施例2
(1)溶胶凝胶法制备TiO2溶胶。将5ml乙酸与100ml无水乙醇混合,再将7ml钛酸丁酯缓慢滴加入混合液中,搅拌2小时后,得到透明澄清Ti溶胶。将洗涤干燥后的基底进行旋转涂膜两遍,自然晾干,然后放置在马弗炉中,升温到510℃,热处理1小时,取出空冷,即得到TiO2薄膜。
(2)制备V溶胶。将双氧水稀释至10%,再按照V2O5:H2O2(10%)=0.5g:100ml的比例,将V2O5粉体缓慢加入到10%的双氧水中并保持一定速度不断搅拌,待溶胶搅拌澄清后,水浴加热到55℃,持续搅拌得到深棕色V溶胶。
(3)TiO2薄膜紫外光处理。对TiO2薄膜进行紫外光催化处理,在254nm紫外光催化下,将TiO2薄膜光催化处理1小时,使TiO2的水接触角低于15°,由亲油性变为亲水性。
(4)涂覆V溶胶。将紫外光激发后TiO2薄膜放置在旋转涂膜仪上进行旋转涂,V溶胶两遍;对所得复合薄膜进行热处理,条件为:N2气保护,升温到550℃,保温2小时,升温速率控制为6℃/min,随炉冷却。
实施例3
(1)溶胶凝胶法制备TiO2溶胶。将8ml乙酸与100ml无水乙醇混合,再将8ml钛酸丁酯缓慢滴加入混合液中,搅拌2小时后,得到透明澄清Ti溶胶。将洗涤干燥后的基底进行旋转涂膜两遍,自然晾干,然后放置在马弗炉中,升温到550℃,热处理1小时,取出空冷,即得到TiO2薄膜。
(2)制备V溶胶。将双氧水稀释至10%,再将分子式为(NH4)5H5[H(WO4)6]·H2O的钨酸铵晶体0.5g溶入10%双氧水中,再按照V2O5:H2O2(10%)=1g:100ml的比例,将V2O5粉体缓慢加入到10%双氧水钨酸铵溶液中,低速磁力搅拌,待溶胶搅拌澄清后,水浴加热到55℃,持续搅拌得到深棕色掺W的V溶胶。
(3)TiO2薄膜紫外光处理。对TiO2薄膜进行紫外光催化处理,在254nm紫外光催化下,将TiO2薄膜光催化处理1小时,使TiO2的水接触角低于15°,由亲油性变为亲水性。
(4)涂覆V溶胶。将紫外光激发后TiO2薄膜放置在旋转涂膜仪上进行旋转涂覆掺W的V溶胶两遍。对复合薄膜进行热处理,条件为:N2气保护,升温到550℃,保温2小时,升温速率控制为6℃/min,随炉冷却。复合薄膜的SEM图如图1,说明双层薄膜的表面形态是均匀而较为致密的。
对比例1
(1)制备V溶胶。将双氧水稀释至10%,再按照V2O5:H2O2(10%)=0.5g:100ml的比例,将V2O5粉体缓慢加入到10%的双氧水中并保持一定速度不断搅拌,待溶胶搅拌澄清后,水浴加热到55℃,持续搅拌得到深棕色V溶胶。
(2)将V溶胶直接涂覆在基底上,使用旋转涂膜法,晾干。
(3)将样品放置在马弗炉中,升温到550℃,热处理2小时,随炉冷却,即得到VO2薄膜。
对比例2
(1)制备V溶胶。将双氧水稀释至10%,再将分子式为(NH4)5H5[H(WO4)6]·H2O的钨酸铵晶体0.5g溶入10%双氧水中,再按照V2O5:H2O2(10%)=1g:100ml的比例,将V2O5粉体缓慢加入到10%H2O2钨酸铵溶液中,低速磁力搅拌,待溶胶搅拌澄清后,水浴加热到55℃,持续搅拌得到深棕色V溶胶。
(2)将V溶胶直接涂覆在Ti溶胶薄膜上,可以使用旋转涂膜法。晾干。
(3)将样品放置在马弗炉中,升温到550℃,热处理1-2小时,随炉冷却,即得到VO2薄膜。
使用德国耶拿Specord 200紫外可见分光光度计分析薄膜在可见光区的常温透过率,以及在高温下(80℃)的透过率。光谱波长范围在400nm~1100nm。结果如图2~4。
对比例2和实施例3制备的薄膜的可见光激发对比度(常态为室温,激发态为加热到80℃)如图4所示。
可以看出,随可见光波长变大并进入红外波段,低温半导体态复合VO2薄膜的光透过率呈上升趋势,最高值在1100nm处,接近50%;而高温金属态复合VO2薄膜的透过率随波长增长呈先上升再下降趋势,且在波长为700nm处达到最高值。高低温透过率变化最大能达到10%左右。当波长大于约800nm时,高温的透过率明显低于常温透过率。复合层薄膜与单层VO2薄膜的可见光高低温透过率相对比,复合薄膜的可见光透过率无论在激发态或者常温态都更高。

Claims (4)

1.一种提高VO2 薄膜的透光率的方法,其特征在于,通过在TiO2 薄膜上沉积VO2薄膜,提高VO2薄膜的透光率,包括以下步骤:
(1)将钛酸丁酯加入乙酸与无水乙醇的混合液中,搅拌得到Ti溶胶;将Ti溶胶涂覆在基底上,自然晾干,放置在马弗炉升温到500~580℃保温热处理1~2小时,然后取出自然冷却,得到TiO2薄膜;其中,乙酸与乙醇的体积用量比为4ml~8ml乙酸:100ml无水乙醇;钛酸丁酯与无水乙醇的体积用量比为5~10ml钛酸丁酯:100ml无水乙醇;
(2)将双氧水稀释至体积浓度为8~10%,按照V2O5:双氧水=(0.5~1g):100ml的比例加入V2O5,将V2O5粉体加入到双氧水中搅拌至溶胶澄清后,然后水浴加热至55~65℃,持续搅拌得到深棕色钒溶胶;
(3)将TiO2薄膜置于254nm紫外光下进行紫外光催化处理1~2h,使其转变为亲水性;
(4)在紫外光处理后的TiO2薄膜上涂敷钒溶胶,然后在N2气保护,控制升温速率控制为5~10℃/min,升温至500~580℃下保温1~2小时进行热处理,得到热致相变多层复合薄膜。
2.根据权利要求1所述方法,其特征在于,步骤(1)和(4)中分别采用旋转涂膜仪进行涂膜,并涂膜两遍;通过控制旋转涂膜仪的转速来控制膜的厚度。
3.根据权利要求2所述方法,其特征在于,选用旋转涂膜过程中控制旋转速度为2.0×103rad/min,每次旋涂15~20s,每次涂膜后取膜烘干,在进行下一次涂膜,保持薄膜厚度均匀。
4.根据权利要求1所述方法,其特征在于,步骤(2)中在双氧水中添加掺杂元素的盐制备掺杂元素的V溶胶,制备掺杂元素的复合薄膜,所述掺杂元素为W元素或Mo元素。
CN202210707939.6A 2022-06-21 2022-06-21 一种热致相变多层薄膜及其制备方法 Active CN115074708B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210707939.6A CN115074708B (zh) 2022-06-21 2022-06-21 一种热致相变多层薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210707939.6A CN115074708B (zh) 2022-06-21 2022-06-21 一种热致相变多层薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN115074708A CN115074708A (zh) 2022-09-20
CN115074708B true CN115074708B (zh) 2024-07-12

Family

ID=83253993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210707939.6A Active CN115074708B (zh) 2022-06-21 2022-06-21 一种热致相变多层薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN115074708B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383114A (zh) * 2011-11-14 2012-03-21 中国科学院上海硅酸盐研究所 二氧化钒薄膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050059010A (ko) * 2005-04-27 2005-06-17 송건화 이산화바나듐 막을 구비한 정온 온도스위치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383114A (zh) * 2011-11-14 2012-03-21 中国科学院上海硅酸盐研究所 二氧化钒薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TiO_2中间层对基于溶胶凝胶法制备的VO_2薄膜光学特性的影响(英文);张玉波;黄婉霞;宋林伟;颜家振;施奇武;张阳;;无机材料学报;20130228(第02期);229-234 *

Also Published As

Publication number Publication date
CN115074708A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
Ivanova et al. Formation and investigation of sol–gel TiO2–V2O5 system
US7255847B2 (en) Method for making single-phase anatase titanium oxide
CN101805134B (zh) 二氧化钒薄膜的镀膜液和薄膜的制备方法及应用
CN1844001B (zh) 一种具有光催化自洁净功能的TiO2/PI杂化膜及其制备方法
CN103289683A (zh) 一种SiO2包覆的CdS量子点纳米复合薄膜的制备方法
CN110436508B (zh) 一种片状纳米氧化铜的制备方法及其应用
CN105779975B (zh) 水溶液溶胶凝胶法制备多孔二氧化钒薄膜
CN103936071B (zh) 金红石相二氧化钒纳米粉体及其制备方法和用途
CN103691647B (zh) 一种具有尖晶石结构的太阳能选择吸收薄膜的制备方法
Chen et al. Sol–gel preparation of thick titania coatings aided by organic binder materials
CN105439458A (zh) 二氧化钒控温膜制备方法及二氧化钒控温膜
CN100393819C (zh) 纳米悬浮液形式的陶瓷着色剂
CN115074708B (zh) 一种热致相变多层薄膜及其制备方法
Samadi et al. Synthesis, characterization, and application of Nd, Zr–TiO 2/SiO 2 nanocomposite thin films as visible light active photocatalyst
CN1680021A (zh) 酞菁敏化二氧化钛纳米粉体的水热在位制备方法
CN102503163A (zh) 一种在可见光下具有超亲水特性二氧化钛膜的制备方法
US20080311390A1 (en) Sol-gel coating methods and thin film coated substrates therefrom
CN111394069B (zh) 一种二氧化硅包覆亚磷酸镁辐射制冷材料及其制备方法
CN111952475A (zh) 一种含有银纳米颗粒的钙钛矿发光二极管器件的制备方法
KR102426899B1 (ko) 습식 공정을 이용한 고효율 태양열 흡수체 박막 및 그 제조방법
US20120058887A1 (en) Method for making single-phase anatase titanium oxide
CN104195534B (zh) 二氧化钛自洁薄膜的制备方法
CN108483939B (zh) 一种有效调制太阳光透射率的电致变色薄膜及其制备方法
Kuznetsova et al. Study on the influence of heat treatment on the crystallographic phases of nanostructured TiO2 films
CN109987635B (zh) 一种具有热致变色性能的三氧化钨/二氧化钒的复合粉末及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant