CN114914318B - 钛酸钡@介孔二氧化钛异质结二维薄膜及其制备方法和应用 - Google Patents

钛酸钡@介孔二氧化钛异质结二维薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN114914318B
CN114914318B CN202210474885.3A CN202210474885A CN114914318B CN 114914318 B CN114914318 B CN 114914318B CN 202210474885 A CN202210474885 A CN 202210474885A CN 114914318 B CN114914318 B CN 114914318B
Authority
CN
China
Prior art keywords
film
barium titanate
titanium dioxide
solution
mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210474885.3A
Other languages
English (en)
Other versions
CN114914318A (zh
Inventor
方晓生
苏莉
李自清
曹发
刘欣亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202210474885.3A priority Critical patent/CN114914318B/zh
Publication of CN114914318A publication Critical patent/CN114914318A/zh
Application granted granted Critical
Publication of CN114914318B publication Critical patent/CN114914318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

本发明属于半导体材料技术领域,具体为钛酸钡@介孔二氧化钛异质结二维薄膜及其制备方法和应用。本发明的异质结二维薄膜的制备方法包括:利用溶胶凝胶法制备四方相钛酸钡薄膜;利用溶胶凝胶法制备介孔二氧化钛溶胶溶液;用旋涂法制备钛酸钡@介孔二氧化钛异质结二维薄膜;高温焙烧以除去杂质并晶化;制得的钛酸钡@介孔二氧化钛异质结二维薄膜具有优异光响应性,可用于构建高性能紫外光电探测器件。本发明制备方法简便安全、成本低、产量高;构建的紫外光电探测器件在310 nm的入射光照时的响应度可达8.53*10‑3 AW‑1,探测率达5.8*1010 Jones,是mTO紫外光电探测器的17倍。

Description

钛酸钡@介孔二氧化钛异质结二维薄膜及其制备方法和应用
技术领域
本发明属于半导体材料技术领域,具体涉及钛酸钡@介孔二氧化钛异质结二维薄膜及其制备方法和在紫外光电探测器件中的应用。
背景技术
近年来,紫外光电探测技术已被广泛应用于民事和军事领域诸如生物医疗分析、环境检测、火灾报警、紫外光制导、紫外光告警、紫外光通讯等领域。紫外光探测器展出的巨大市场应用前景引起了研究人员的广泛关注,并促使各国研究机构对其投入大量资金支持。目前,典型的紫外光电探测器由半导体材料特别是宽禁带的半导体作为光电材料,两端设计电极构成。光电性能基于半导体的光电效应,载流子的有效利用率代表着材料将光能转化为电能的能力。光生载流子快速的分离和有效的输运是提升光电探测器性能的重要机制。
二氧化钛(TiO2)优异的化学惰性、低毒性和光电导特性使TiO2基UV PD成为目前最有前途、安全可靠的光电探测器之一。目前,研究人员主要集中于设计TiO2的p-n 结以促进光生载流子的分离。例如,徐及其同事利用阳极氧化工艺制备p-CuZnS/n-TiO2构建纤维状UV PD,该器件在 0 V偏压下显示出自驱动特性(Adv. Mater. 2018, 30, 1803165)。郑等人随后研究报道了一种无机-有机p-n异质结TiO2/P3HT(Adv. Funct. Mater. 2020, 30,2001604),尽管这种光电探测器表现出自供电特性,但仍需修饰Au纳米粒子对其进行改性,以进一步提高响应度和选择性。利用p-n结构建的紫外光电探测器已取得了诸多有益进展。然而,p-n 结等传统异质结通常存在微观形貌不可控、界面结晶质量差等问题,必造成载流子的输运路径受限、有效利用率降低,导致紫外光电探测器的响应度、探测率、稳定性等性能的下降。因此,如何设计开发新型优质的界面结构以改善光生载流子的输运路径、提升载流子有效利用率、优化光电性能和探测稳定性仍然是器件紫外光电探测器亟待解决的问题。
前期大量研究表明功能性TiO2介孔材料独特微观结构有利于电荷载流子的产生和收集,可以有效抑制电子-空穴的复合。目前,功能性介孔TiO2的研究主要集中于光电能量转换的设计。例如,Giordano等人证明太阳能电池中的Li掺杂介孔TiO2电极表现出超强的电荷特性,可以减少电子陷阱状态(Nat. Commun., 2016, 7, 10379.),从而实现更快的电荷传输。然而,却鲜有基于TiO2介孔薄膜构建紫外光电探测的研究。一方面,薄膜型UV PD中耗尽层的形成对响应时间和电导率具有很大的影响。另一方面,高结晶光电材料是实现高性能UV PD的另一个关键因素。基材的表面特性对介孔排列和结晶度起着关键作用。因此,选取晶格适配基底设计制备高结晶性TiO2介孔薄膜,以此调控促进界面载流子分离,提高紫外光电探测性能是TiO2基UV PD亟待解决的难题。
发明内容
本发明的目的在于提供一种性能优异的钛酸钡@介孔二氧化钛异质结二维薄膜及其制备方法和在紫外光电探测器件中的应用。
本发明利用界面组装策略,通过旋涂和原位退火工艺在BaTiO3薄膜表面组装TiO2介孔薄膜(记为BTO@mTO),通过铁电薄膜的本征自极化引入稳定的内建电场,耗尽层可以通过铁电相BaTiO3薄膜的内置电场来调节,即在界面处形成内建电场可调控光生载流子的分离效率和输运能力,实现具有自驱动功能的高性能紫外光电探测系统。
本发明提供的钛酸钡@介孔二氧化钛异质结二维薄膜的制备方法,具体步骤如下:
(1)利用溶胶凝胶法制备四方相钛酸钡薄膜;
(1.1)将异丙醇、醋酸、钛醇盐,按照一定体积比例混合均匀,将表面活性剂按照一定的质量比例添加至混合溶液中,室温搅拌至形成透明溶液;
(1.2)一定质量的金属钡盐溶解于去离子水中形成均匀透明溶液,然后逐滴加入到步骤(1.1)得到的透明混合溶液中,室温搅拌,直至为澄清透明溶液,得到钛酸钡溶胶溶液;
(1.3)量取一定体积步骤(1.2)钛酸钡溶胶溶液,利用旋涂法,调控旋涂转速和时间在清洁干燥的基底表面旋涂一层厚度均匀的钛酸钡凝胶薄膜;
(1.4)将步骤(1.3)制备得到的钛酸钡凝胶薄膜置于马弗炉,空气气氛中在不同焙烧温度条件下钛酸钡薄膜晶化,并除去薄膜中的表面活性剂和杂质,制备得到高结晶性的四方相钛酸钡薄膜;
(2)利用溶胶凝胶法制备介孔二氧化钛溶胶溶液;
(2.1)将无水乙醇和两种强酸按一定体积比例混合均匀,其中强酸需要逐滴加入,并不断搅拌,得到混合溶剂;
(2.2)将表面活性剂按照一定摩尔比例加入步骤(2.1)的混合溶剂中,然后置于油浴加热,并不断搅拌,反应一定时间,得到澄清透明溶液;
(2.3)将钛醇盐按一定的摩尔比例逐滴加入步骤(2.2)的混合溶液中,油浴加热,并不断搅拌,反应一定时间,获得澄清透明二氧化钛溶胶溶液;
(3)用旋涂法制备钛酸钡@介孔二氧化钛异质结二维薄膜;
量取一定体积步骤(2.3)中制备的二氧化钛溶胶溶液,利用旋涂工艺,调控旋涂转速和时间,在步骤(1.4)制得的钛酸钡薄膜上旋涂一层厚度均匀的二氧化钛凝胶薄膜层;
(4)高温晶化处理
将步骤(3)制备得到的样品置于马弗炉中,空气气氛下,调节升温速率,通过焙烧以除去薄膜中表面活性剂和杂质,并晶化二氧化钛薄膜,制得钛酸钡/介孔二氧化钛二维纳米薄膜,记为BaTiO3@mTiO2,简记为BTO@mTO。
进一步地:
步骤(1.1)中,所述异丙醇、醋酸、醇钛盐按体积比例范围为20 : 7 :6 -40 : 2 :1((20-40):(7 -2):(6 -1);表面活性剂与异丙醇的质量比范围1 :(50-200);表面活性剂种类包括:PVP,CTAB等;
步骤(1.2)中,所述金属钡盐与醇钛盐按化学计量摩尔比例1:(0.8-1.2)(优选1;1)添加,去离子水与步骤(1.1)中异丙醇的体积比例为1:(3.5-4.5(优选1:4),其中,金属钡盐的种类为醋酸钡或硝酸钡;
步骤(1.3)中,所述的钛酸钡溶胶溶液的旋涂转速范围为1500 rpm-5000 rpm,旋涂时间范围为:10 s-60 s;钛酸钡凝胶薄膜的厚度为100 nm -200 nm。基底材料包括:石英、云母;
步骤(1.4)中,所述的钛酸钡凝胶薄膜热处理过程中,控制升温速率为:1 ℃/min-10 ℃/min,焙烧温度范围为300℃-1000℃。
步骤(2.1)中,所述混合液中无水乙醇与的体积比例范围为:10:1*10-4:1*10-5-10:1:0.1(10:(1*10-4-1):(1*10-5-0.1));强酸的种类为:盐酸、硫酸、硝酸;
步骤(2.2)中,表面活性剂可选用P123、 F127或 PVP等,表面活性剂与步骤(2.1)中无水乙醇的质量比例范围:1:10-1:100(1:(10-100));油浴温度为25 ℃-80 ℃,反应时间30 min-240 min;
步骤(2.3)中,添加的钛醇盐摩尔比例范围为:1*10-3 mol至1*10-2 mol;油浴温度范围为25 ℃-80 ℃,反应时间范围:120 min-1000 min。
步骤(3)中,所述二氧化钛溶胶溶液量取体积范围10μL -500μL,旋涂的速率范围为:1000 rpm-5000 rpm;二氧化钛凝胶薄膜层厚度为100 nm -200 nm。
步骤(4)中,所述二氧化钛凝胶薄膜热处理过程中,控制升温速率为:1 ℃/min-10℃/min,焙烧温度为250℃-700℃。二氧化钛薄膜和钛酸钡薄膜退火晶化过程种,通过调控升温速率和退火温度,一方面调控无机材料形核和晶体生长速率的目的,以达到微观形貌保持程度的调节。另一方面,防止过快的升温速率使薄膜表面吸附的杂质火表面活性剂无法去除干净,阻止其在晶体表面聚集进一步破坏表面晶体结构。此外,程序退火温度区间以达到薄膜逐步晶化,实现薄膜晶相的精准调控。
本发明还提供BTO@mTO二维纳米薄膜的应用,例如构建高性能紫外光电探测器件,应用于紫外强度探测等领域。
具体地,利用银、金、铂、铟等金属作为紫外光电探测器的电极材料,通过点涂、热蒸镀等技术,电极材料制备于BTO@mTO薄膜表面,构建不同类型的电极结构,得到MSM型的紫外光电探测器件,并利用Keithley 4200 半导体表征系统来测量BTO@mTOUV PD的 I-V 和I-t 特性以表征探测器的光电特性,测试偏压范围为0 V-10 V。
有益效果
(1)本发明制备方法,简便安全、成本低、产量高;
(2)利用本发明制备得到的BTO@mTO薄膜构建紫外光电探测器,可在310 nm的入射光照是的响应度可达8.53 * 10-3 AW-1,探测率可达5.8*1010 Jones,比是mTO紫外光电探测器的17倍;
(3)本发明制备的BTO@mTO紫外光电探测器展现出优异的探测性能,一方面,更高有序度的介孔结构能够吸收更多的紫外辐射,提高光电转化能力。另一方面,四方相的BaTiO3与锐钛矿相TiO2在(101)晶体取向的晶格匹配而获得高结晶性的二氧化钛薄膜,这将有利于界面载流子的输运。此外,铁电性BaTiO3薄膜的能够有效调控界面电荷浓度,促进载流子的快速分离,以此提升紫外光电探测器的响应度和探测率。
附图说明
图1是实施例1制备的mTO薄膜的表面扫描电镜图(SEM 图)。
图2是实施例2制备的BTO薄膜的表面扫描电镜图(SEM 图)。
图3是实施例2制备的BTO@mTO薄膜。其中,(a)为截面界面SEM图,(b)为所对应的mTO表面扫描电镜图。
图4是实施例1和实施例2制备的mTO和BTO@mTO薄膜的XRD图。
图5是实施例3制备的mTO薄膜紫外光电探测器光电性能:I-V曲线。
图6实施例3制备的BTO@mTO薄膜紫外光电探测器光电性能:I-V曲线。
图7是实施例4构建的mTO和BTO@mTO薄膜紫外光电探测器光电性能:探测率曲线。其中,(a)为响应度曲线,(b)为探测率曲线。
图8为实施例5制备的P123-mTO薄膜形貌和光电性能;其中,(a)为薄膜表面扫描电镜图(SEM 图),(b)为紫外光电探测器光电性能:I-V曲线。
图9实施例5制备的TO薄膜形貌和光电性能;其中,(a)为薄膜表面扫描电镜图(SEM图),(b)为紫外光电探测器光电性能:I-V曲线。
图10是实施例1、实施例2、实施例3、实施例5、实施例6的制备的二氧化钛的薄膜的外吸收光谱谱图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实验所需的药品如下所示:
醋酸钡(Ba(CH3COOH)2)(分析纯)、醋酸(CH3COOH)(分析纯)、异丙醇钛(Ti{OCH(CH32}4)(分析纯)、聚乙烯吡咯烷酮((C6H9NO)n)(分析纯)、两亲性三嵌段共聚物F127(HO·(C2H4O)m·(C3H6O)n·H)(分析纯), 两亲性三嵌段共聚物P123(HO·(C2H4O)m·(C3H6O)n·H)(分析纯)购自自aladdin试剂公司;乙醇(C2H6O)(分析纯)、盐酸(分析纯)和硫酸(分析纯)购自中国国药集团上海试剂公司。
实施例1,二氧化钛介孔薄膜mTO的制备:
(1)将无水乙醇溶液与HCl、H2SO4按体积比例10:0.4:0.03混合(无水乙醇体积为10mL),其中,按照先HCl后H2SO4的顺序逐滴加入到无水乙醇溶液中,并不断搅拌至形成均匀混合溶液,随后加入一定质量的表面活性剂F127,F127:无水乙醇的质量比例:1:40;混合物置于40 ℃油浴中,不断搅拌至表面活性剂完全溶解,形成均匀透明混合溶液;此条件下反应2小时,反应结束后,反应液自然冷却至室温;
(2)以0.003 mol异丙醇钛作为钛源,逐滴加入步骤(1)中的混合溶液中,反应液于油浴中,不断搅拌反应600 min;反应结束后,反应液自然冷却至室温,获得澄清透明的二氧化钛前驱液;
(3)量取100μL的步骤(2)获得的二氧化钛前驱液,点滴于石英衬底,调控旋涂速率为2500rpm,获得厚度均匀的二氧化钛(TiO2)凝胶薄膜;
(4)将步骤(3)获得的TiO2凝胶薄膜置于马弗炉中原位热处理,升温速率3℃/min,空气气氛,450℃退火3小时,以除去凝胶薄膜中的表面活性剂和杂质,TiO2晶化,制备得TiO2介孔薄膜(mTO)。
本实施例制备得到的mTO薄膜如图1所示的扫描电镜图(SEM图),薄膜表面平整、厚度均匀,孔径清晰、短程有序的介孔结构。图4所示的mTO薄膜XRD图,特征衍射峰归属于锐钛矿相二氧化钛(JCPDS No. 21-1272)。
实施例2,BaTiO3薄膜的制备:
(1)异丙醇与醋酸、异丙醇钛按照体积比例20:5:4混合为均匀混合溶剂,一定质量的表面活性剂PVP分散溶解于混合溶剂(PVP与异丙醇的质量比范围1 : 120),不断搅拌获得溶液1;
(2)金属钡盐与异丙醇钛按化学计量摩尔比例1:1添加,去离子水与步骤(1)中异丙醇的体积比例为1:4,不断搅拌获得溶液2;
(3)溶液2在不断搅拌的条件下逐滴滴加至溶液1中,室温搅拌反应60 min,获得均匀澄清透明的钛酸钡溶胶溶液(BaTiO3,BTO溶液);
(4)量取一定体积步骤(3)获得的BTO溶胶溶液(BaTiO3前驱液量取体积范围10-500,单位:μL),点滴于石英衬底,调控旋涂速率为3000rpm,获得厚度均匀的钛酸钡凝胶薄膜(BTO薄膜);
(5)将(4)获得的BaTiO3凝胶薄膜置于马弗炉中原位热处理,升温速率5℃/min,空气气氛,700 ℃退火2小时,以除去凝胶薄膜中的表面活性剂和杂质,BaTiO3晶化,制备得BaTiO3薄膜(BTO薄膜)。
本实施例制备的BaTiO3薄膜如图2所示的SEM图所示,薄膜表面平整,厚度均匀。图4所示的mTO薄膜XRD图,特征衍射峰归属于四方相钛酸钡(JCPDS No. 05-0626),该晶相的BaTiO3呈现铁电特性。
实施例3,BaTiO3复合mTiO2(BTO@mTO)薄膜的制备:
(1)量取100μL的实施例1步骤(2)制备的TiO2溶胶溶液,点滴于实施例2制备的BaTiO3薄膜表面,调控旋涂速率为2500 rpm,获得厚度均匀的二氧化钛(TiO2)凝胶薄膜;
(2)将步骤(2)获得的复合凝胶薄膜置于马弗炉中原位热处理,升温速率3 ℃/min,空气气氛,450℃退火3小时,以除去凝胶薄膜中的表面活性剂和杂质,TiO2晶化,制备得BaTiO3复合TiO2介孔薄膜(BTO@mTO)。
本实施例制备的BTO@mTO薄膜如图3截面SEM图和表面SEM图所示,薄膜厚度均匀,表面平整,孔结构清晰且保持短程有序介孔结构。图4所示的BTO@mTO薄膜XRD图,特征衍射峰主要为锐钛矿相二氧化钛,钛酸钡相的特征衍射峰较弱的主要归因于薄膜厚度过薄,并且薄膜表面钡二氧化钛全覆盖,因而未能收集更强的衍射信息。但是,因为二氧化钛结晶温度远低于钛酸钡,因此钛酸钡依旧保持四方相晶相。
实施例4,实施例1制备的mTO薄膜和实施例3制备的BTO@mTO薄膜作为紫外光电探测的光电材料,利用银浆作为电极材料,通过掩模版点涂于BTO@mTO薄膜表面,70℃热台加热除去银浆中有机溶剂,固化电极。紫外光电探测器利用Keithley 4200半导体表针系统来测量样品的I-V,I-t特性以表征探测器光电特性,测试光谱范围:270 nm-420 nm,测试偏压范围1V-3V。
图5所示为mTO薄膜紫外光电探测器的I-V曲线,其在320 nm光照条件下的最佳光电流为0.47 μA。相较于mTO薄膜,BTO@mTO薄膜紫外光电探测器在320 nm光照条件下的最佳光电流可提高至3.94 μA(如图6所示)。
图7所示为两个紫外光电探测器的响应度和探测率曲线。BTO@mTO薄膜紫外光电探测器的响应度提升至8.53 * 10-3 AW-1,探测率提升至5.8*1010 Jones,即表明在铁电相BaTiO3调控下,有效优化改善TiO2基紫外光电探测器的探测性能。
实施例5,二氧化钛介孔薄膜P123-mTO的制备:
为了进一步研究介孔结构的有序性对构建的介孔薄膜紫外光电探测器的性能影响,本研究进一步调控表面活性剂分子量,以此调控TiO2薄膜的介孔结构和有序性。
(1)将无水乙醇溶液与HCl、H2SO4按体积比例10:0.4:0.03混合(无水乙醇体积为10mL),其中,按照先HCl后H2SO4的顺序逐滴加入到无水乙醇溶液中,并不断搅拌至形成均匀混合溶液,随后加入一定质量的表面活性剂P123,P123:无水乙醇的质量比例:1:40;混合物置于40 ℃油浴中,不断搅拌至表面活性剂完全溶解,形成均匀透明混合溶液;此条件下反应2小时,反应结束后,反应液自然冷却至室温;
(2)以0.003 mol异丙醇钛作为钛源,逐滴加入步骤(1)中的混合溶液中,反应液于油浴中,不断搅拌反应600 min;反应结束后,反应液自然冷却至室温,获得澄清透明的二氧化钛前驱液;
(3)量取100μL的步骤(2)获得的二氧化钛前驱液,点滴于石英衬底,调控旋涂速率为2500rpm,获得厚度均匀的二氧化钛(TiO2)凝胶薄膜;
(4)将步骤(3)获得的TiO2凝胶薄膜置于马弗炉中原位热处理,升温速率3℃/min,空气气氛,450℃退火3小时,以除去凝胶薄膜中的表面活性剂和杂质,TiO2晶化,制备得TiO2介孔薄膜(P123-mTO)。
本实施例制备得到的P123-mTO薄膜如图8a所示的扫描电镜图(SEM图),薄膜表面平整、厚度均匀,孔径清晰、但是介孔结构有序程度低于表面活性剂F127制备的介孔薄膜mTO。表面活性剂F127与P123相比较,F127具有更高的亲疏性而在非水体系中具有更高的各向异性,由此介孔结构清晰规整,有序程度更高。图8b所示的P123-mTO薄膜紫外光电探测器的I-V曲线。P123-mTO薄膜在320 nm光照条件下的最佳光电流仅为17.7 pA,这表明介孔结构的有序程度越高,则介孔薄膜的光电性能得到提升。
实施例6,非介孔二氧化钛薄膜TO的制备:
本发明进一步调控TiO2薄膜表面结构和形貌,以此研究TiO2薄膜的表明形貌和结构对构建的TiO2基薄膜紫外光电探测器的性能影响。
(1)将无水乙醇溶液与HCl、H2SO4按体积比例10:0.4:0.03混合(无水乙醇体积为10mL),其中,按照先HCl后H2SO4的顺序逐滴加入到无水乙醇溶液中,并不断搅拌至形成均匀混合溶液,不添加表面活性剂(造孔剂),混合溶剂置于40 ℃油浴反应2小时,不断搅拌形成均匀透明混合溶液,应结束后,反应液自然冷却至室温;
(2)以0.003 mol异丙醇钛作为钛源,逐滴加入步骤(1)中的混合溶液中,反应液于油浴中,不断搅拌反应600 min;反应结束后,反应液自然冷却至室温,获得澄清透明的二氧化钛前驱液;
(3)量取100μL的步骤(2)获得的二氧化钛前驱液,点滴于石英衬底,调控旋涂速率为2500rpm,获得厚度均匀的二氧化钛(TiO2)凝胶薄膜;
(4)将步骤(3)获得的TiO2凝胶薄膜置于马弗炉中原位热处理,升温速率3℃/min,空气气氛,450℃退火3小时,以除去凝胶薄膜中的表面活性剂和杂质,TiO2晶化,制备得TiO2介孔薄膜(mTO)。
本实施例制备得到的无孔TO薄膜如图9a示的扫描电镜图(SEM图),薄膜表面平整,光滑致密,无明显介孔结构。图9b所示的TO薄膜紫外光电探测器的I-V曲线。P123-mTO薄膜在320 nm光照条件下的最佳光电流仅为1.04 nA。如图10 所示的薄膜的紫外吸收光谱谱图,介孔二氧化钛薄膜对紫外吸收的强度明显强于非介孔二氧化钛薄膜。因此,相较于非介孔结构,介孔结构能够吸收更多的紫外光辐射,并且能够有效提高光电转换。

Claims (10)

1.一种钛酸钡@介孔二氧化钛异质结二维薄膜的制备方法,其特征在于,具体步骤如下:
(1)利用溶胶凝胶法制备四方相钛酸钡薄膜;
(1.1)将异丙醇、醋酸、钛醇盐混合均匀,将表面活性剂添加至混合溶液中,室温搅拌至形成透明溶液;
(1.2)将金属钡盐溶解于去离子水中形成均匀透明溶液,然后逐滴加入到步骤(1.1)得到的透明混合溶液中,室温搅拌,直至为澄清透明溶液,得到钛酸钡溶胶溶液;
(1.3)将步骤(1.2)钛酸钡溶胶溶液,利用旋涂法,在清洁干燥的基底表面旋涂一层厚度均匀的钛酸钡凝胶薄膜;
(1.4)将步骤(1.3)制备得到的钛酸钡凝胶薄膜置于马弗炉中,空气气氛下高温焙烧,使钛酸钡薄膜晶化,并除去薄膜中的表面活性剂和杂质,得到高结晶性的四方相钛酸钡薄膜;
(2)利用溶胶凝胶法制备介孔二氧化钛溶胶溶液;
(2.1)将无水乙醇和两种不同的强酸混合均匀,其中强酸为逐滴加入,并不断搅拌,得到混合溶剂;
(2.2)将表面活性剂按照摩尔比例加入步骤(2.1)的混合溶剂中,然后置于油浴加热,并不断搅拌,反应,得到澄清透明溶液;
(2.3)将钛醇盐按摩尔比例逐滴加入步骤(2.2)的混合溶液中,油浴加热,并不断搅拌,反应,获得澄清透明二氧化钛溶胶溶液;
(3)用旋涂法制备钛酸钡@介孔二氧化钛异质结二维薄膜;
量取步骤(2.3)中制备的二氧化钛溶胶溶液,利用旋涂工艺,调控旋涂转速和时间,在步骤(1.4)制得的钛酸钡薄膜上旋涂一层厚度均匀的二氧化钛凝胶薄膜层;
(4)高温晶化处理
将步骤(3)制备得到的样品置于马弗炉中,空气气氛下,调节升温速率,通过焙烧以除去薄膜中表面活性剂和杂质,并晶化二氧化钛薄膜,制得钛酸钡@介孔二氧化钛异质结二维薄膜,记为BaTiO3@mTiO2
2.根据权利要求1所述的制备方法,其特征在于:
步骤(1.1)中,所述异丙醇、醋酸、钛醇盐按体积比例为(20-40):(7 -2):(6 -1)混合;所述表面活性剂与异丙醇的质量比范围1 :(50-200);表面活性剂选自PVP、CTAB;
步骤(1.2)中,所述金属钡盐与钛醇盐按化学计量摩尔比例1:(0.8-1.2)添加,去离子水与步骤(1.1)中异丙醇的体积比例为1:(3.5-4.5),其中,所述金属钡盐为醋酸钡或硝酸钡。
3.根据权利要求2所述的制备方法,其特征在于:
步骤(1.3)中,所述旋涂的转速为1500 rpm-5000 rpm,旋涂时间为:10 s-60 s;钛酸钡凝胶薄膜的厚度为100 nm -200 nm;
步骤(1.4)中,所述焙烧温度为300℃-1000℃,控制升温速率为1 ℃/min-10 ℃/min。
4.根据权利要求3所述的制备方法,其特征在于,步骤(2.1)中,所述混合液中,无水乙醇与两种不同的强酸的体积比例为:10:(1*10-4-1):(1*10-5-0.1);所述强酸选自盐酸、硫酸、硝酸。
5. 根据权利要求4所述的制备方法,其特征在于,步骤(2.2)中,所述表面活性即选自P123、 F127或 PVP,表面活性剂与步骤(2.1)中无水乙醇的质量比例为1:(10-100);油浴温度为25 ℃-80 ℃,反应时间30 min-240 min。
6. 根据权利要求5所述的制备方法,其特征在于,步骤(2.3)中,添加的钛醇盐摩尔比例为:1*10-3 mol至1*10-2 mol;油浴温度为25 ℃-80 ℃,反应时间为120 min-1000 min。
7. 根据权利要求6所述的制备方法,其特征在于,步骤(3)中,所述二氧化钛溶胶溶液体积为10μL -500μL,旋涂速率为1000 rpm-5000 rpm;二氧化钛凝胶薄膜层厚度为100 nm-200 nm。
8. 根据权利要求7所述的制备方法,其特征在于,步骤(4)中,所述焙烧温度为250℃-700℃;控制升温速率为1 ℃/min-10 ℃/min。
9.由权利要求1-8之一所述制备方法得到的钛酸钡@介孔二氧化钛异质结二维薄膜。
10.如权利要求9所述的钛酸钡@介孔二氧化钛异质结二维薄膜在构建高性能紫外光电探测器件中的应用。
CN202210474885.3A 2022-04-29 2022-04-29 钛酸钡@介孔二氧化钛异质结二维薄膜及其制备方法和应用 Active CN114914318B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210474885.3A CN114914318B (zh) 2022-04-29 2022-04-29 钛酸钡@介孔二氧化钛异质结二维薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210474885.3A CN114914318B (zh) 2022-04-29 2022-04-29 钛酸钡@介孔二氧化钛异质结二维薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114914318A CN114914318A (zh) 2022-08-16
CN114914318B true CN114914318B (zh) 2023-09-22

Family

ID=82763889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210474885.3A Active CN114914318B (zh) 2022-04-29 2022-04-29 钛酸钡@介孔二氧化钛异质结二维薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114914318B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635320A (zh) * 2009-06-01 2010-01-27 河南大学 一种二氧化钛介孔薄膜紫外光电探测原型器件的制作方法
CN102509743A (zh) * 2012-01-04 2012-06-20 吉林大学 基于二氧化钛/钛酸锶异质结的紫外光探测器及制备方法
CN107591481A (zh) * 2017-03-29 2018-01-16 中国科学院深圳先进技术研究院 掺杂钛酸钡的有机金属卤化物钙钛矿薄膜制备方法
JP2018152404A (ja) * 2017-03-10 2018-09-27 住友金属鉱山株式会社 チタン酸バリウム膜形成用組成物
CN111533551A (zh) * 2020-05-08 2020-08-14 中国科学院电工研究所 一种ybco超导薄膜及其制备方法
CN111755535A (zh) * 2020-07-07 2020-10-09 佛山科学技术学院 一种介孔二氧化钛薄膜电极材料、制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105854868A (zh) * 2016-03-30 2016-08-17 盐城工学院 一种溶胶-凝胶法制备钼掺杂二氧化钛薄膜的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635320A (zh) * 2009-06-01 2010-01-27 河南大学 一种二氧化钛介孔薄膜紫外光电探测原型器件的制作方法
CN102509743A (zh) * 2012-01-04 2012-06-20 吉林大学 基于二氧化钛/钛酸锶异质结的紫外光探测器及制备方法
JP2018152404A (ja) * 2017-03-10 2018-09-27 住友金属鉱山株式会社 チタン酸バリウム膜形成用組成物
CN107591481A (zh) * 2017-03-29 2018-01-16 中国科学院深圳先进技术研究院 掺杂钛酸钡的有机金属卤化物钙钛矿薄膜制备方法
CN111533551A (zh) * 2020-05-08 2020-08-14 中国科学院电工研究所 一种ybco超导薄膜及其制备方法
CN111755535A (zh) * 2020-07-07 2020-10-09 佛山科学技术学院 一种介孔二氧化钛薄膜电极材料、制备方法及其应用

Also Published As

Publication number Publication date
CN114914318A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
CN105304747B (zh) 基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及其制备方法
CN108336233B (zh) 一种蓝黑色钙钛矿薄膜的制备方法及其应用
CN106449979B (zh) 通过双氨基有机物制备热稳定钙钛矿CsPbI3的方法
CN113130765B (zh) 一种基于无机CsPbI2Br粉末的钙钛矿太阳能电池及其制备方法
CN106571425A (zh) 一种基于ZnO‑钙钛矿结构的紫外‑可见可调光电探测器及其制备方法
KR20150073821A (ko) 고효율 무/유기 하이브리드 태양전지용 전구물질
CN113130762B (zh) 太阳能电池的吸光层材料、三元阳离子钙钛矿太阳能电池及其制备方法
CN110844936A (zh) 一种三硫化二锑纳米棒阵列的制备方法及基于其的太阳电池
CN110828673B (zh) 一种引入硫化物添加剂制备高效钙钛矿太阳能电池的方法
CN114188434A (zh) TiO2/BiFeO3/BiOI三元纳米异质结光电极及制备方法和应用
Mei et al. Hollow TiO2 spheres as mesoporous layer for better efficiency and stability of perovskite solar cells
Su et al. Tailoring the interface assembly of mesoporous TiO 2 on BTO film toward high-performance UV photodetectors
CN107331774B (zh) 一种新型钙钛矿太阳能电池结构和制备方法
CN110335947B (zh) 一种pct铁电可调控钙钛矿太阳能电池及其制备方法
CN111525036A (zh) 一种自驱动钙钛矿光电探测器及其制备方法
CN114914318B (zh) 钛酸钡@介孔二氧化钛异质结二维薄膜及其制备方法和应用
Navazani et al. Fabrication of high efficiency, low-temperature planar perovskite solar cells via scalable double-step crystal engineering deposition method fully out of glove box
CN114388695A (zh) 钙钛矿薄膜及其前驱组合物、制备方法、半导体元件
CN109904328B (zh) 一种平面型钙钛矿太阳能电池的制备方法
CN111162181A (zh) 一种铪掺杂氧化锌的光电探测器及其制备方法
CN112234144A (zh) 一种钙钛矿微晶膜的制备方法及太阳能电池器件
CN114790614A (zh) 钛酸钡@二氧化钛复合纳米纤维薄膜的静电纺丝制备方法
CN109935695B (zh) 一种SrGeO3作为电子传输层制备钙钛矿太阳能电池的方法
CN114649482A (zh) 基于籽晶诱导生长钙钛矿薄膜的反式太阳能电池制备方法
CN107369729B (zh) 一种纳米有序互穿全氧化物异质结薄膜太阳电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant