CN1148258A - 阴极射线管及校正其偏转散焦的方法和含该管的显象系统 - Google Patents

阴极射线管及校正其偏转散焦的方法和含该管的显象系统 Download PDF

Info

Publication number
CN1148258A
CN1148258A CN96108461A CN96108461A CN1148258A CN 1148258 A CN1148258 A CN 1148258A CN 96108461 A CN96108461 A CN 96108461A CN 96108461 A CN96108461 A CN 96108461A CN 1148258 A CN1148258 A CN 1148258A
Authority
CN
China
Prior art keywords
deflection
electron beam
magnetic
field
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96108461A
Other languages
English (en)
Other versions
CN1113384C (zh
Inventor
御园正义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN1148258A publication Critical patent/CN1148258A/zh
Application granted granted Critical
Publication of CN1113384C publication Critical patent/CN1113384C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/701Systems for correcting deviation or convergence of a plurality of beams by means of magnetic fields at least
    • H01J29/707Arrangements intimately associated with parts of the gun and co-operating with external magnetic excitation devices

Landscapes

  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Abstract

一种在包含电子枪的阴极射线管中校正偏转散焦的方法,该电子枪包括多个电极、电子束偏转装置和荧光屏。此方法包括在由电子束偏转装置产生的偏转磁场中设置磁性材料片,由此在电子束路径中形成局部改善的偏转磁场,并与电子束的偏转量对应地校正电子束的偏转散焦。

Description

阴极射线管及校正其偏转散焦的方法和 含该管的显象系统
本发明涉及阴极射线管,特别涉及在阴极射线管中校正偏转散焦的方法,该方法能够改善聚焦特性并由此在整个荧光屏上以及在所有电子束流范围内获得足够的分辨率;特别涉及使用该方法的阴极射线管以及包括该阴极射线管的图像显示系统。
阴极射线管例如图像管或显示管至少包括具有多个电极的电子枪和荧光屏(屏具有荧光膜,下文也称该屏为″荧光膜″简称″屏″它还包括使从电子枪发射的电子束在荧光屏上扫描的偏转装置。
对于这种阴极射线管,已公知的下列技术可在从中央至周边部分的整个荧光屏上获得预期的重现图像。
日本专利公开第平4-52586号披露了发射三极一字形电子束的电子枪,在该电子枪屏蔽帽的底部面上这样设置一对平行平板电极以使其沿平行于该一字形方向位于三根电子束路径的上下并向主透镜方向延伸。
美国专利第4,086,513号和其相应的日本专利公开第昭60-7345号披露了发射三根一字形电子束的电子枪,在该电子枪中,沿平行于一字形方向在三根电子束轨迹的上下设置一对平行平板电极,其方式为从一对构成主透镜的电极之一的端面向荧光屏延伸,从而使电子束在进入偏转磁场之前整形。
日本专利申请公开昭51-61766披露了一种电子枪,在该电子枪两指定的电极间形成静电四极透镜,并且该静电四极透镜的强度与电子束的偏转动态同步地变化,从而在全屏面上得到一致性图像。
日本专利公开第昭53-18866号披露了在构成预聚焦透镜的第二栅极与第三栅极之间的区域配置象散透镜。
美国专利第3,952,224号和其相应的日本专利申请公开第昭51-64368披露了发射三根一字形电子束的电子枪,在该电子枪中第一和第二栅极的所有电子束通孔都为椭圆形,并且对于各束其通孔的椭圆度不同,或者说使中心电子枪的电子束通孔的椭圆度低于侧边电子束通孔的椭圆度。
日本专利申请公开昭60-81736披露了发射三根一字形电子束的电子枪,其中设置在靠近阴极一侧的第三栅极上的狭槽构成非轴向对称的透镜,并通过至少一个非轴向对称透镜使电子束轰击在荧光屏上,其中相对于中心束的狭槽的轴向深度大于相对于侧边束的狭槽轴向深度。
日本专利申请公开昭54-139372披露了具有发射三根一字形电子束的电子枪的彩色阴极射线管,其中将软磁材料放置在偏转磁场的边缘部分以形成沿垂直于各电子束的一字排列方向偏转的枕形磁场,从而抑制由偏转磁场引起的沿垂直于该一字形方向的光晕。
阴极射线管的理想聚焦特性包括在全屏幕上和在整个电子束流范围内的期望分辨率;在小电流情况下无莫尔波纹产生的特性;以及在全屏幕上和在整个电子束流范围内在分辨率上具有的均匀性。设计同时满足多个该聚焦特性的电子枪要求较高的技术。
由本发明人进行的研究表明:具有象散透镜和大直径主透镜的组合的电子枪对于使阴极射线管具有上述聚焦特性是必须的。
可是,在上述现有技术中要求将动态聚焦电压施加在电子枪聚焦电极上,以利用构成象散透镜的电极即在电子枪中的非轴向对称透镜,在全屏幕上获得期望的分辨率。
图80是用于阴极射线管的电子枪的一个实例的总体结构侧视图;图81是沿图80中的箭头方向所示的表示电子枪基本部分的局部剖视图。
这种电子枪具有包括阴极K、第一栅极(G1)1、第二栅极(G2)、第三栅极(G3)3、第四栅极(G4)4、第五栅极(G5)5、第六栅极G6)6和与第六栅极(G6)6连成一体的屏蔽帽100的多个电极。此外第五栅极(G5)5由两个电极51、52构成。
聚焦电压施于第三栅极3与第五栅极5之间,阳极电压仅施加在第六栅极6上,因此,由第三栅极至第六栅极6构成的电子透镜使由阴极K、第一栅极1和第二栅极2组成的所谓三极管部分产生的电子束加速和聚焦,以投射在荧光屏上。
磁场取决于电子枪各电极的长度、电子束通孔的直径等等,并对电子束施加不同的影响。例如,邻近阴极K的第一栅极的电子束通孔的形状对小电流区域的电子束的束点形状产生影响;而第二栅极的电子束通孔的形状对从小电流区域至大电流区域的宽电流区域的电子束束点形状产生影响。
在电子枪中,通过将阳极电压施加在第六栅极6上而在第五栅极5和第六栅极6之间形成主透镜,构成主透镜的第五栅极5和第六栅极6的所有电子束通孔的形状对大电流区域的电子束束点形状产生较大的影响,但与在大电流区域中的影响相比,它对小电流区域的电子束束点形状产生较小的影响。
电子枪第四栅极4的轴向长度对最佳聚焦电压值产生影响,也对在小电流区域与大电流区域之间在最佳聚焦电压上的差异有影响。然而,第五栅极5轴向长度的影响远小于第四栅极4的影响。
因此,为使各电子束特性更优要求优化各电极结构,以最有效地控制电子束的各特性。
在使沿垂直于电子束扫描方向的荫罩孔距较小或增加电子束扫描线密度以提高沿垂直于阴极射线管电子束扫描方向的分辨率的情况下,在电子束扫描线和荫罩之间特别是在小电流电子束区域内产生干涉,因此必须抑制莫尔波纹对比度。然而,现有技术不能解决上述问题。
例如,图82A和82B都是表示电子枪基本部分的示意图,用于根据施加的聚焦电压比较电子枪的两种结构;其中图82A表示固定聚焦电压型电子枪;图82B表示动态聚焦电压型电子枪。
在图82A中示出的固定聚焦电压型电子枪的构造与图80和81所示的构造相同,因此,用相同标记代表相应于图80和81中的部分。
在图82A中示出的固定聚焦电压型电子枪中,将具有相同电位的聚焦电压Uf1施加在构成第五栅极5的电极51和52上。在该图中满足开口半径R5>0.1×开口半径Rs的关系。
另一方面,在图82B示出的动态聚焦电压型电子枪中,将不同的聚焦电压分别施加在构成第五栅极5的电极51和52上。尤其是,动态聚焦电压dUf施加给电极52。
而且在图82B示出的动态聚焦电压型电子枪中,电极52具有延伸进电极51中的部分。与在图82A中示出的结构相比,这种复杂的结构增加了部件的成本并使装配效率很低。
图83A和83B是分别表示施加给图82A和82B所示电子枪的聚焦电压的曲线,其中图83A表示施加给固定聚焦电压型电子枪的聚焦电压;图83B表示施加给动态聚焦电压型电子枪的聚焦电压。
具体地,图83A表示将固定聚焦电压Vf1施加给第三栅极3和第五栅极5(51、52)的情况。
另一方面,图83B表示将固定聚焦电压Vf1施加给第三栅极3和第五栅极5的电极51以及将具有由动态聚焦电压dVf叠加另一固定聚焦电压Vf2的波形的电压施加给第五栅极5的电极52的情况。
结果,图83B所示的动态聚焦电压型电子枪需要用于施加聚焦电压的两个芯柱引线,因此与图83A所示的固定聚焦电压型电子枪相比,它要求芯柱引线之间具有高压的电绝缘。
因此,动态聚焦电压型电子枪要求在TV接收机和终端显示系统中对阴极射线管加电流的插座具有特定的结构,并且在两个固定动态聚焦电压供给电源之外还需要动态聚焦电压发生电路。这引起在为调整两聚焦电压以使各透镜作用相互配合和在调整动态聚焦电压相位以使电子束偏转方面需要花费大量时间的缺点。
特别是对于广泛快速传播所期望的多媒体的使用,需要使显示系统能够在多种偏转频率下工作。这就要求动态焦聚电压发生器用于相应的偏转频率并在相应的频率下调整聚焦电压以使电子束偏转,因而增加了电路成本和制造工序,并随阴极射线管屏幕尺寸和最大偏转角而按指数律地增加。
本发明的目的在于解决现有技术的上述问题,并提供一种阴极射线管中校正偏转散焦的方法,该方法特别在没有动态聚焦的情况下,能够改善聚焦特性并在全屏幕上和在整个电子束流区域内获得期望的分辨率,该方法还能够减少在小电流区域内的莫尔波纹并依靠单一固定电压而无需考虑偏转频率就可运作;以及提供使用该方法的阴极射线管和包括该阴极射线管的图像显示系统。
本发明的另一个目的是解决现有技术的上述问题,并提供一种校正阴极射线管的偏转散焦的方法,该方法特别在低动态聚焦电压下能够改善聚焦特性并在全屏幕上和在整个电子束流区域内获得期望的分辨率;以及提供使用该方法的阴极射线管和包括该阴极射线管的图像显示系统。
在阴极射线管中,最大偏转角(下方简称为″偏转角″或″偏转量″)基本上在给定范围内,因而随着荧光屏尺寸的扩大,荧光屏与电子枪主透镜之间的距离拉大,其结果是在这种空间中的电子束空间电荷的互斥作用促使聚焦特性降低。
因此,通过提供一种装置可改善阴极射线管的分辨率,该装置用于减少由上述空间电荷互斥所引起的聚焦特性下降,例如在小尺寸荧光层获得小电子束束点。
本发明的再一个目的是提供一种校正阴极射线管偏转散焦的方法,该方法能够减少由在荧光层与电子枪主透镜之间的电子束空间电荷互斥作用引起的聚焦特性的降低;以及提供使用该方法的阴极射线管和包括该阴线管的图像显示系统。
本发明的又一个目的是提供一种校正阴极射线管偏转散焦的方法,该方法能够改善聚焦特性和减少阴极射线管的总长度;以及提供使用该方法的阴极射线管和包括该阴极射线管的图像显示系统。
本发明的另一个目的是提供一种校正阴极射线管偏转散焦的方法,即使对于较宽偏转角的阴极射线管,该方法也能在全屏幕上防止图像均匀性的降低;以及提供使用该方法的阴极射线管和包括该阴极射线管的图像显示系统。
通过扩大偏转角可缩短阴极射线管的总长度。实际TV接收机下文称为″TV机″)的深度由阴极射线管的总长度而定,由于通常将TV机看作家俱,因此希望该深度尽可能短些。当TV机制造商运输大量的TV机时,TV机深度的缩短也有益于运输效率。
为实现上述目的,本发明最佳实施例提供一种至少包括具有多个电极的电子枪、偏转装置和荧光层的阴极射线管,其中阴极射线管还包括在偏转磁场中用于局部改善偏转磁场从而校正电子束偏转散焦的磁极片。
最好借助形成在偏转磁场中的至少一个位于未偏转电子束轨迹各对边、与偏转磁场同步的局部改善的非均匀磁场,根据偏转量进行上述偏转散焦的校正。
还可借助形成在偏转磁场中的位于基本上以未偏转电子束轨迹为中心的位置处并与偏转磁场同步的局部改善的非均匀磁场,根据偏转量进行上述偏转散焦的校正。
最好使上述局部改善的非均匀磁场对电子束有发散或会聚功能,并根据沿电子束扫描方向或沿垂直于扫描方向的偏转量校正偏转散焦。
本发明另一实施例提供一种具有三根一字形电子束的彩色阴极射线管,其中利用形成在偏转磁场中的局部改善的非均匀磁场根据偏转量校正偏转散焦,这种局部改善的非均匀磁场是以这样的方式形成以使在中心电子束和各侧边电子束之间强度不同。
本发明的再一个实施例提供一种具有三根一字形电子束的彩色阴极射线管,其中以下述状态根据偏转量校正偏转散焦,即形成在偏转磁场中的用于各侧边电子束的局部改善的非均匀磁场具有在邻近中心电子束的一侧与远离中心电子束的一侧之间不同的分布。
本发明的又一个实施例提供一种具有三根一字形电子束的彩色阴极射线管,其中在偏转磁场中以下述方式形成局部改善的非均匀磁场,亦即将具有与偏转磁场同步的发散作用的局部改善的非均匀磁场沿垂直于该一字形方向设置在未偏转电子束路径的各侧和将具有与偏转磁场同步的聚焦作用的局部改善的非均匀磁场沿一字形方向设置在未偏转电子束路径的各侧,从而校正沿垂直于一字形方向的方向偏转散焦和校正沿一字形方向的偏转散焦。
最好通过在未偏转电子束路径的各侧处在偏转磁场中形成至少一个局部改善的非均匀磁场,根据偏转量进行本发明的上述偏转散焦的校正,该局部改善的非均匀磁场与偏转磁场的变化同步改变。
在本发明中形成在偏转磁场中用于校正上述偏转散焦的磁路材料最好为软磁材料。
在本发明中形成在偏转磁场中用于校正上述偏转散焦的磁路材料还最好为具有50或以上的相对磁导率的软磁材料。
附图是构成说明书整体的一部分,并要结合该图面说明进行阅读,在附图中,相同的参考标号代表相类似的部分;其中:
图1A和1B分别是示意剖面图和磁场分布图,展示了根据本发明的校正阴极线管偏转散焦方法的第一实施例;
图2A和2B分别是示意剖面图和磁场分布图,展示了根据本发明的校正阴极射线管偏转散焦方法的第二实施例;
图3A至3D是展示根据本发明的校正阴极射线管偏转散焦方法的第四实施例的示意图,其中图3A和3C是剖视图,图3B和3D是磁场分布图;
图4A至4D是展示根据本发明的校正阴极射线管偏转散焦方法的第五实施例的示意图,其中图4A和4C是剖视图,图4B和4D是磁场分布图;
图5是本发明阴极射线管第一实施例的示意剖面图;
图6是本发明阴极射线管的基本部分的示意剖面图,表示阴极射线管的工作状态。
图7是与图6类似但未配置偏转散焦校正磁极片的阴极射线管的基本部分的示意剖面图,表示与现有技术相比,在本发明阴极射线管中形成局部改善的非均匀磁场的偏转散焦校正磁极片作用;
图8A和8B分别是本发明阴极射线管的基本部分的顶视剖面图和侧视剖面图,表示阴极射线管的另一种工作状态;
图9是与图8A和8B类似但未配置偏转散焦校正磁极片的阴极射线管的基本部分的示意剖面图,表示与现有技术相比,在本发明阴极射线管中对形成局部改善的非均匀磁场的偏转散焦校正磁极片作用;
图10A和10B是表示在具有100°以上的偏转角的阴极射线管中偏转磁场的轴向偏转磁场分布的示意图,其中图10A为偏转磁场分布,图10B表示出位置关系;
图11A和11B是表示在具有100°以下的偏转角的阴极射线管中偏转磁场的轴向偏转磁场分布的示图,其中图11A为偏转磁场分布图11B表示位置关系;
图12是表示为在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的本发明偏转散焦磁极片的构形实例的透视图,
图13A是用于本发明阴极射线管的一个电子枪例的基本部分的剖视图;
图13B是表示用于本发明阴极射线管的磁极片和屏蔽帽组件的分解透视图;
图13C是表示磁极片细节的前视图;
图14是表示用于本发明阴极射线管的一个电子枪例的示意图
图15A和15B是分别详细表示在用于本发明三根一字形电子束式彩色阴极射线管中的偏转散焦校正磁极片构形实例中的沿垂直与水平方向的散焦校正磁力线的示意图;
图16A和16B是分别详细表示在用于本发明三根一字形电子束式彩色阴极射线管中的另一偏转散焦校正磁极片构形实例中的沿垂直与水平方向的散焦校正磁力线的示意图;
图17A和17B是分别详细表示在用于本发明三根一字形电子束式彩色阴极射线管中的再一偏转散焦校正磁极片的构形实例中的沿垂直与水平方向的散焦校正磁力线的示意图;
图18是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片的构形实例的示意图;
图19是详细表示用于本发明三根一字形电子束式彩色阴极射线管的又一个偏转散焦校正磁极片的构形实例的示意图;
图20是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片的构形实例的示意图;
图21是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片的构形实例的示意图;
图22是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转聚焦校正磁极片的构形实例的示意图;
图23是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片的构形实例的示意图;
图24A和24B分别是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形例的前视图和侧视图;
图25A和25B分别是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形例的前视图和侧视图;
图26A和26B分别是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形例的前视图和侧视图;
图27A和27B分别是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形例的前视图和侧视图;
图28A和28B分别是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形例的前视图和后视图;
图29A和29B分别是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形例的前视图和侧视图;
图30A是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形例的示意图;
图31是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的示意图;
图32是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的示意图;
图33是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转聚焦校正磁极片构形实例的示意图;
图34是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的示意图;
图35A和35B分别是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的前视图和侧视图;
图36是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转聚焦校正磁极片构形实例的示意图;
图37A和37B分别是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的前视图和侧视图;
图38是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实磊意图;
图39是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的示意图;
图40是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的示意图;
图41是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的示意图;
图42是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的示意图;
图43是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的示意图;
图44A和44B分别是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的前视图和侧视图;
图45A和45B分别是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的前视图和侧视图;
图46A和46B分别是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的前视图和侧视图;
图47A和47B分别是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的前视图和侧视图;
图48A和48B分别是详细表示用于本发明三根一字形电子束式彩色阴极射线管的再一个偏转散焦校正磁极片构形实例的前视图和侧视图;
图49A和49C分别是用于采用本发明的阴极射线管的单根电子束式电子枪的构形实例的主透镜部分的剖面图、前视图和透视图
图50A至50C分别是用于采用本发明的阴极射线管的单根电子束式电子枪的另一构形实例的主透镜部分的剖面图、前视图和透视图;
图51是电子枪基本部分的视图,表示在阳极直径大于在图49至49C和图50A至59C中示出的构成主透镜的电极之中的聚焦电极直径的情况下的电子束轨迹;
图52是表示电子枪基本部分和在阳极直径大于在图49A至49和图50A至50C中所示的构成主透镜的电极之中的聚焦电极直径的情况下的电子束轨迹的示意图;
图53是表示将本发明用于单根电子束式电子枪的阴极射线管中的又一基本部分的构形例的视图;
图54是表示将本发明用于单根电子束式电子枪的阴极射线管中的又一构形实例的基本部分的视图;
图55是表示将本发明用于单根电子束式电子枪的阴极射线管中的又一构形实例的基本部分的视图;
图56是表示将本发明用于单根电子束式电子枪的阴及射线管中的又一构形实例的基本部分的视图;
图57是用于本发明的阴极射线管的三根一字形电子枪的局部剖视图;
图58是表示用于本发明的阴极射线管的另一个三根一字形电子枪的整个外观的视图;
图59是表示在主透镜和荧光层之间空间电荷互斥是如何对电子束产生影响的视图;
图60是表示在从主透镜至荧光屏的距离和在荧光屏上电子束束点直径之间关系的示意图;
图61是表示在本发明阴极射线管的第一实施例中的有尺寸实例的示意剖面图;
图63A和63B分别是本发明图像显示系统的前视图和侧视图;
图63C和63D分别是现有技术的图像显示系统的前视图和侧视图;
图64是表示在偏转量(偏转角)和偏转散焦量之间关系的曲线
图65是表示在偏转量和偏转散焦校正量之间关系的曲线;
图66是表示将电子束聚焦在荧光屏上的视图;
图67是表示形成在构成阴极射线管的荧光屏的屏盘部分上的扫描线的视图;
图68A至68C分别是偏转散焦校正磁极片的构形实例的前视图剖视图和分解透视图;
图69是一字形电子枪和荫罩式彩色阴极射线管的示意剖面图
图70是表示在通过在荧光屏中央聚焦为圆点的电子束激发周边的荧光粉的情况下的电子束束点的视图;
图71是表示阴极射线管的偏转磁场分布的视图;
图72是表示电子束束点形状畸变的电子枪的电子光学系统的示意图;
图73是表示用于抑制图72所示的在荧光屏周边部分的图像质量下降的装置的视图;
图74是表示在使用如图73所示的透镜系统的情况下,在荧光屏上的电子束束点形状的示意图;
图75是沿水平方向(X-X)增加预聚焦透镜的透镜强度来代替使用非轴向对称的主透镜的电子枪的电子光学系统的示意图;
图76是在图75所示的构形附加光晕抑制部分的的电子枪电子光学系统的示意图;
图77是表示在采用如图76所示的透镜系统的场合下,在荧光屏上的电子束束点形状的示意图;
图78是展示小电流区域内电子束轨迹的电子枪的电子光学示意图;
图79是在荧光屏的垂直方向(Y-Y)增加在预聚焦透镜中发散透镜一侧的透镜强度的情况下,电子枪的电子光学示意图;
图80是用于阴极射线管的一个电子枪例的整体结构的侧视图
图81是沿图80中的箭头方向所看的电子枪的基本部分的局部剖视图;
图82A和82B是用于根据施加的聚焦电压比较电子枪结构的电子枪基本部分的剖示图,其中图82A示出固定聚焦电压型,图82B示出动态聚焦电压型;
图83A和83B是分别表示施加给如图82A和82B所示的电子枪的聚焦电压的曲线;和
图84A、84B至89A、89B中的各对分别是表示用于本发明具有三根一字形电子束式的彩色阴极射线管的偏转散焦校正磁极片和磁极片支架的组合实施例的前视图和剖面图。
本发明校正偏转散焦的方法、使用该方法的阴极射线管和包括该阴极射线管的图像显示系统具有以下优点:(1)通常,在阴极射线管中随着偏转量的增加,偏转散焦量迅速增加。按照本发明,通过在偏转磁场中设置磁性部件可以校正偏转散焦,该磁性部件用于形成局部改善的非均匀磁场,当电子束被偏转磁场偏转和改变轨迹时,该局部改善的非均匀磁场具有对电子束可变的会聚和发散作用。(2)图64是表示偏转量(偏转角)和偏转散焦量之间关系的曲线;图65是表示偏转量和偏转散焦校正量之间关系的曲线。
如图64所示,随着电子束偏转角的增大,电子束偏转散焦量增加。按照本发明,通过在偏转磁场中形成的局部改善的非均匀磁场可校正随偏转量迅速增加的偏转散焦,如图65所示,当通过偏转磁场使电子束偏转并改善其轨迹时,该局部改善的非均匀磁场能随偏转量增加偏转散焦的校正量。(3)作为在通过偏转磁场使电子束偏转并改变其轨迹时,具有能随偏转量恰当地增加对电子束会聚或发散作用的局部改善的非均匀磁场的一个实例,可将沿偏转方向对称或非对称分布的局部改善的非均匀磁场设置在未偏转电子束路径的相对各侧。
随着电子束远离未偏转电子束的路径,对电子束的会聚或发散作用量增加。
应指出:在本发明中的用语″局部改善的非均匀磁场″表示磁通密度具有一定的分布。
穿过设置在未偏转电子束路径对侧并具有与偏转磁场同步的作用于电子束上的发散作用的各磁场的偏转电子束的状态,与未偏转电子束的状态比较如下:即当电子束在局部改善的非均匀磁场中穿行时,穿过远离未偏转电子束路径部分的电子束发散,束群也远离未偏转电子束的轨迹。
在远离未偏转电子束轨迹一侧,轨迹的变化率也较大。这是由于在远离未偏转电子束轨迹的位置处相互交链的校正磁通量增加的缘故。交链磁通量增加的缘由是因为磁力线之间的间隔变窄(磁场强度增加)和/或含交链磁场的区域变宽。
通常,从阴极射线管电子枪主透镜至荧光屏的距离是在荧光屏周边部分大于荧光屏中央部分,因而在偏转磁场对电子束无聚焦或发散作用时,在屏幕中央电子束的最佳聚焦就会引起在屏幕周边部分处电子束的过聚焦。
按照本发明,通过在偏转磁场中形成能够随偏转量的增加而同步地增加发散作用,从而如图65所示随偏转量校正偏转聚焦的局部改善的非均匀磁场,可以减少在屏幕周边部分处电子束的过聚焦。
按照本发明,在偏转磁场具有对电子束的聚焦作用时,在偏转磁场中形成能够进一步增加发散作用强度的局部改善的非均匀磁场,以便随偏转量的增加而同步地增加的局部改善的非均匀磁场的发散作用,可克服偏转磁场聚焦作用的增加,由此就校正了包括因阴极射线管的几何结构而在屏幕周边部分产生的电子束过聚焦的偏转散焦。(4)图66是电子束在荧光屏上聚焦的示意图。在该图中,参考标号103代表聚焦电极、104代表阳极、13代表荧光膜、38代表主透镜
图67是表示形成在构成阴极射线管的荧光屏屏盘部分上的扫描线的视图。在该图中,参考标号14代表屏盘部分、60代表扫描轨迹。
在大多数情况下,进行阴极射线管的偏转以使如图67所示使电子束线性扫描。线性扫描轨迹60称为扫描线。
在沿扫描方向(X-X)和沿垂直于扫描方向(Y-Y)的方向之间的偏转磁场常常不同。在大量受到形成在偏转磁场中的局部改善的非均匀磁场作用之前,电子束也要受到由构成电子枪的多个电极中至少之一在扫描方向和垂直于扫描方向的方向之间存在差异的聚焦作用。
是加强沿扫描方向的偏转散焦校正还是加强沿垂直于扫描方向的方向的偏转散焦校正也取决于阴极射线管的应用。而且,有关取决于扫描方向、校正内容、和校正量的偏转散焦校正的技术装置通常是相互独立的并且所需成本不同;然而本发明仅利用一个技术装置就可同时解决这些问题。(5)在基本上以未偏转电子束路径为中心的位置处形成具有与偏转磁场同步的聚焦作用的局部改善的非均匀磁场的情况下,被偏转并穿过远离未偏转电子束路径的电子束与未偏转电子束比较如下:即当电子束在局部改善的非均匀磁场中穿行时,穿过远离未偏转电子束路径部位的电子束的聚焦量大于未偏转电子束的聚焦量,束群也远离未偏转电子束路径。
在远离未偏转电子束路径的一侧,轨迹的变化率较小。这是由于在远离未偏转电子束路径的位置处相互交链的校正磁通量增加的缘故。交链磁通量增加的缘由是因为在磁力线之间的间隔变宽磁场强度增加)和/或含交链磁场的区域变窄。
在偏转磁场具有对电子束的发散作用时,通过在偏转磁场中形成能够随偏转量的增加而同步地增加聚焦作用、从而减少位于荧光屏周边部分的电子束过聚焦的局部改善的非均匀磁场,可以如图65所示随偏转量校正偏转散焦。
此外,有关取决于扫描方向、校正内容和校正量的偏转散焦校正的技术装置通常是相互独立的并且所需成本不同;然而本发明仅利用一个技术装置就可同时解决这些问题。(6)在沿水平面设置三个一字形电子枪的彩色阴极射线管中,为了取消或简化用于控制三根电子束在荧光屏上的会聚的电路,采用具有桶形磁力线分布的垂直偏转磁场和具有枕形磁力线分布的水平偏转磁场(参见图71,下面说明)。
由偏转磁场引起的三根一字形电子束的各侧边束的偏转散焦量取决于偏转磁场的强度和水平偏转的方向。例如,在将右侧电子束偏转在左侧荧光屏上和将它偏转在右侧荧光屏之间,一字形排列的右侧电子束(沿从荧光屏侧看阴极射线管的方向)移动所通过的偏转磁场的磁通分布是不同。也就是说,在上述两种情况下右侧电子束的偏转散焦量不同,因此由右侧电子束产生的图像质量在荧光屏的左侧和右侧是不同的。
为抑制在荧光屏右侧和左侧端图像质量的变化,要求根据侧边电子束相对于该侧边电子枪的中心是否向右或向左偏转来改变对侧边电子束的聚焦或发散作用量。
通过在偏转磁场中形成在相对于电子枪中心的右侧和左侧具有不同的分布的局部改善的非均匀磁场,本发明能够有效地解决一字形排列的各侧边电子束的上述问题。
在未偏转电子束路径的相对各侧形成具有强度不同的发散作用和与偏转磁场同步的局部改善的非均匀磁场的情况下,当偏转的电子束穿行在局部改善的非均匀磁场中时,偏转的电子束具有大于未偏转电子束的发散量,并且束群也远离未偏转电子束路径。
在远离未偏转电子束路径的一侧,电子束轨迹变化率较大。这是由于在远离未偏转电子束路径的位置处相互交链的磁通量增加的缘故。交链磁通量增加的缘由是因为在磁力线之间的间隔变窄和/或存在磁场的区域变窄。随着磁力线间隔的变窄程度增加和或存在磁场的区域的宽度增加,轨迹变化率变大。
在远离未偏转电子束路径的位置处磁力线间隔的变窄程度增加和/或存在磁场的区域的宽度减小的磁场侧,当偏转的电子束穿行在局部改善的非均匀磁场中时,偏转的电子束具有大于未偏转电子束的发散量,并且束群也远离未偏转电子束路径。
在远离未偏转电子束路径一侧电子束轨迹变化率较大;然而在远离未偏转电子束路径的位置处磁力线间隔变窄程度增加和/或存在磁场的区域的宽度增加的磁场一侧,轨迹变化程度较小。这是由于在远离未偏转电子束路径处使交链磁通的增加量较小。交链磁通的增加量较小的缘由是在磁力线间隔变窄程度较小和/或存在磁场区域的加宽程度较小。
因此,通过在偏转磁场中形成具有随偏转量的增加而同步地增加发散作用的磁场,可以获得如图65所示的偏转散焦校正,其中发散作用的增加取决于偏转方向。
当具有对电子束发散作用的偏磁转场对电子束产生随偏转方向不同的偏转散焦时,通过在磁场中形成具有如图4A至4D所示分布的磁场可以获得如图65所示的偏转散焦校正,该磁场能以随偏转方向决定其增加程度的方式,与偏转增加量同步地增加磁场的聚焦作用。(7)为了通过在偏转磁场中形成局部改善的非均匀磁场而提高在全屏幕上分辨率的一致性,要求以这种方式偏转电子束,以便使其通过在偏转方向具有按必需量分布的磁场区域。换句话说,在局部改善的非均匀磁场和偏转磁场之间存在适宜的位置关系。
同时,校正偏转散焦的作用取决于形成于偏转磁场中的局部改善的非均匀磁场的磁通量。磁通量取决于磁通密度和存在磁场的区域。在至少两个磁极片间产生磁场。磁通密度和磁场区域由上述磁极片的结构和布置的组合以及在磁极片间的磁通密度来决定它还与穿过磁场的电子束的实际直径和磁通密度的实际值有关。
上述用于形成局部改善的非均匀磁场和随偏转量校正偏转散焦的至少两个磁极片被称为″偏转散焦校正磁极片″。对磁极片的数量没有特别的限制,例如可以是三个磁极片或更多,其它电极部分也可用作磁极片。
偏转所需的磁通量取决于在荧光屏上的电压,并且通过用在荧光屏上电压的平方根除磁通量使这些值整理为单一设计参数。单一设计参数使对均匀磁场中的电子束轨迹的分析清楚,并且可有效地提高设置磁场的准确性和获得适宜的偏转散焦校正。
必需的磁通取决于均匀磁场的区域和其磁通密度。当磁场区域较宽时,必需的磁通密度可更低。局部改善的非均匀磁场的磁通密度也取决于用于形成局部改善的非均匀磁场的一对磁极片间的位置关系、在磁极片间的磁通密度和磁极片的结构。当相邻的磁极片相互更靠近时,靠近电子束的磁场强度增加。
通过增加在相邻磁极片间的磁通密度,能够增加磁场的强度。然而,较大地增加磁场强度产生这样的问题,即局部改善的非均匀磁场也给轰击阴极射线管屏幕中央附近的部分的电子束带来严重畸变,结果在屏幕中央附近的分辨率降低到不能忽视的程度。所以在相邻磁极片间的磁场强度是有限制的。
期望在上述磁极片间的间隔变窄以产生与在电子束轨迹中的微小变化同步的对电子束的会聚或发散作用;然而,考虑到电子束的直径实际上限定这种在磁极片间的间隔为0.5mm。按照本发明,在阳极射线管的最大偏转角为100°以下的场合,在整理为磁通密度B的上述设计参数和在荧光屏上的电压Eb满足下列关系时: B / Eb ≥ 0.02 mT • ( KV ) - 1 / 2 (其中B的单位为mT,Eb的单位为KV)可以获得期望的效果。(8)阳极射线管偏转磁场的分布与偏转装置的结构有关。当给定最大偏转角时,基本上就确定了用在荧光屏上电压的平方根除磁通的最大磁密度。在偏转磁场中形成的局部改善的非均匀磁场的位置可在轴向偏转磁场中设置在具有给定或大于最大磁通密度水平的区域。
与根据磁通密度的绝对值选定局部改善的非均匀磁场的位置的情况相比,上述选定局部改善的非均匀磁场位置的方法大大简化了磁通密度的测量。也就是说,用这种方法测量磁通密度可以相对最大磁通密度进行比较,因此从实用观点来看该方法是有利的。在这种情况下,根据磁性材料的形状,最大磁通密度变化;然而,由于这种变化引起的误差是可以忽略的。
按照本发明,在阴极射线管的最大偏转角为100°以上时,考虑到在(7)中起说的磁极片和在磁极片之间的位置关系,实际上通过规定上述磁通密度水平为在用于形成局部改善的非均匀磁场的磁极片在荧光屏一侧的端部处的偏转磁场分布的最大磁通密度的5%以上可以得到这种效果。(9)由于磁通密度取决于磁性材料(磁极片)的相对磁导率,因此,它更紧密地取决于用于产生偏转磁场的线圈的磁芯位置。根据用于产生局部改善的非均匀磁场的磁极片和上述线圈的磁芯间的距离可以确定具有所需磁通密度的区域。仅依据用于产生偏转磁场的线圈磁芯的位置的该方法能够取消测量磁通密度,因而从实用的观点来看该方法是有利的。
在该方法中,磁通密度的分布随磁芯形状而变化,但是由于这种变化引起的误差可忽略。
按照本发明,在阴极射线管的最大偏转角为100°以上时,考虑到在(7)中所说的磁极片和在磁极片间的位置关系,实际上通过规定在远离荧光屏一侧的磁芯的端部与用于形成局部改善的非均匀磁场的磁极片的靠荧光屏一侧的端部之间的距离为50mm以下,就可得到这种效果。
在磁极片靠阴极射线管荧光屏一侧的端部具有轴向缺口(不规则)的情况下,由在磁芯的远离荧光屏一侧的端部与磁极片靠近荧光屏一侧的最长端部之间的距离值决定上述距离。(10)类似地,按照本发明,在阴极射线管的最大偏转角为100°以上的情况下,如果整理为磁通密度B的上述设计参数和在荧光屏上的电压Eb满足下列关系: B / Eb ≥ 0.004 mT • ( KV ) - 1 / 2 (其中B的单位为mT,Eb的单位为KV)则可以获得期望的效果。
在这种情况下,实际上通过相应于(8)中所述的规定上述磁通密度水平为10%以上就可获得这种效果。而且,通过规定相应于在(9)中所述的距离为35mm以下实际上就可以获得这种效果。(11)从实用的角度来看,不能任意增加在阴极射线管中的上述非均匀磁场的强度,例如,考虑到阴极射线管的整体结构和用于阴极射线管的易于制造和易于使用的电子枪的结构。
在本发明中,即使对具有较低强度的磁场,从易于使用的观点来看,为获得这种效果,要求电子束在这种区域内具有适当的直径通常,在阴极射线管中接近主透镜的部分,电子束具有较大直径。因此,用于形成局部改善的非均匀磁场的偏转散焦校正磁极片的位置与距主透镜的距离有关。
另一方面,将磁极片设置在从主透镜部分极度偏移至阴极侧的位置处时,通过主透镜的聚焦作用容易消除象散,而且还经常发生部分电子束撞击电子枪电极部分的问题。
按照本发明,考虑到阴极射线管的最大偏转角低于85°、采用单根电子束以及磁场被用于聚焦电子束的条件,通过规定用于形成局部改善的非均匀磁场的磁极片的靠近荧光屏一侧的端部与电子枪阳极的面对主透镜的端部之间的距离为阳极端部小孔直径(沿垂直于扫描方向)的五倍或更低或者为180mm以下;以及规定磁极片靠近阴极一侧的端部与阳极端部间的距离为上述阳极小孔直径的三倍或更低,就可获得有效效果。(12)本发明要求偏转磁场的磁通密度应适合获得局部改善的非均匀磁场的效果。偏转散焦校正磁极片可由软磁材料构成,特别是为提高磁通密度和改善偏转散焦校正的效果,可以由具有高磁导率的磁性材料构成部分磁极片。(13)要求将本发明偏转散焦校正磁极片设置在电子束路径附近。例如,将磁极片设置在电子束路径的相对侧。如(3)中所述,将与偏转磁场同步并在偏转磁场中对称或非对称分布的局部改善的非均匀磁场设置在未偏转电子束轨迹的相对侧。
通过设置具有预定结构的上述磁极片,可以形成上述两种局部改善的非均匀磁场。通常,通过压制金属板来制备阴极射线管电子枪的电极部分。
最近几年,由于要极大地改善阳极射线管的聚焦特性,对于在阴极射线管中的上述电极部分的精确性要求已经增加。也要求偏转散焦校正磁极片提高其精确性。利用压制金属板制备磁极片可以在批量生产中以较低的成本改善其机械精确度。
常以这种方式实现阴极射线管中的偏转,以便形成如上所述的扫描线。在多数情况下,以基本为矩形形状构成扫描型阴极射线管的荧光屏,并且一般以基本上平行于矩形屏边缘的形式进行扫描。也以相应荧光屏的接近于矩形的形状构成用于支撑荧光屏的阴极射线管的真空外壳,以易于装配图像显示系统。
本发明上述两种局部改善的非均匀磁场可期望与扫描线和荧光屏的形状相关地形成。根据阴极射线管的应用情况可沿扫描方向和沿垂直于扫描方向的方向形成局部改善的非均匀磁场。(14)本发明磁极片间的间隔与由磁极片产生的磁场强度和穿过磁极片间间隔的电子束轨迹紧密相关。磁极片之间的较大间隔不会获得预期的效果。
由于受限于阴极射线管的轴向长度,因此包括阴极射线管的图像显示系统的深度不能随意缩短。
缩短阴极射线管轴向长度的一种方式是增加阴极射线管的最大偏转角。目前对于单束阴极射线管的实际最大偏转角为114°,对于三极一字形电子束式阴极射线管的该角度为接近114°的角。
将来将趋向于使最大偏转进一步地增加,增加的最大偏转角较大地增加偏转磁场的最大磁通密度。最大偏转角实际上与颈部直径有关。
期望的颈部外径最大约为40mm,以节省用于产生偏转磁场的电力和节省用于产生偏转磁场的机械部分的材料。
通常,电子枪电极的最大直径小于阴极射线管颈部的内径,并要求颈部的壁厚为几个mm,以保证机械强度和绝缘性能以及防止射线泄漏。
按照本发明,考虑到与电极和在(7)中所述的磁场有关的限制希望在沿扫描方向或沿垂直于扫描的方向的上述偏转散焦校正磁极片间的最窄间隔距离为沿垂直于扫描方向的电子枪阳极的面对聚焦电极部分的小孔直径的1.5倍或更小,或者在从0.5mm至30mm的通常的范围内。这种距离具有在成本方面的长处并能有效地保证工作特性。(15)通过在电子束路径的相对各侧设置磁极片可形成本发明的局部改善的非均匀磁场。
图68A至68C是表示偏转散焦校正磁极片的一个构形例的视图其中,图68A是磁极片的前视图;图68B是屏蔽帽和磁极片的侧视图和图68C是屏蔽帽和附着在其上的磁极片的分解透视图。在这些图中,参考标号100代表屏蔽帽、39代表磁极片、105代表磁极片支架、和10代表电子束。
图12(下文将描述)表示用于形成局部改善的非均匀磁场的磁极片与未偏转电子束路径间的关系。
当用于形成局部改善的非均匀磁场的磁极39例如图68A至68所示的,被设置在如图12所示的各未偏转电子束路径Zc-Zc和Zs-Z的相对侧时,磁极39具有作为在磁极39附近的磁力线的磁路的高磁导率功能并在磁极39的对置部分之间产生与在偏转磁场中的变化同步变化的局部改善的非均匀磁场。
这些极片39构成偏转散焦校正磁极片。使磁极片的对置部分以这种形状构成,以便按照阴极射线管的应用或与电子枪其它电极特性的组合来获得最佳偏转散焦校正。例如,在磁极片的对置部分中形成非平行部分或切口。
特别是在以小规模生产许多种类的阴极射线管时,从需为各设计规格的阴极射线管制备昂贵的压制模具的成本观点来看是不利的。在精确性稍低些的场合,通过切割或蚀刻薄板材料而不是通过压制模具成形就可容易地制造磁极片。这就可以取消昂贵的压制模具,因而在小规模生产很多路磁极片的情况下也可以较低的成本制备磁极片。
按照本发明,在磁极片对置部分间的最佳距离范围基本上类似于在(14)中所述的磁极片间的间隔。应指出,上述在对置部分间的距离不包括零。此外,对于扫描方向偏转型阴极射线管来说,可沿扫描方向或沿垂直于扫描的方向设置磁极片的对置方向。(16)在以这种方式提供用于形成与偏转磁场同步的局部改善的非均匀磁场的偏转聚焦校正磁极片、以便随偏转量的增加增加束发散作用的情况下,在磁极片对置部分间的磁场必须具有高于邻近的具有聚焦作用的偏转磁场的磁通密度。
按照本发明,通过确定的磁极片形状,可使位于磁极片对置部分间的磁场强度高于邻近的偏转磁场的磁场强度。这就可省去设置在两相互相对的磁极片的对置部分间的电极。
通过在具有足够的磁通密度的偏转磁场中配置既具有预选的恰当结构又具有在对置部分间的恰当间距的磁极片,从而在对置部分之间形成合适的磁通路,就可在磁极片的对置部分之间形成具有与偏转磁场改变量同步变化的高强度的局部改善的非均匀磁场。
作为形成与偏转磁场同步的局部改善的非均匀磁场的一种装置,将由具有软磁特性的铁磁性材料构成的磁部件设置在阴极射线管的内部和/或外部。
为提高偏转散焦校正的准确性,最好从阴极射线管的外部调节与偏转磁场同步的局部改善的非均匀磁场。(17)在通过形成在偏转磁场中的与偏转磁场同步的局部改善的非均匀磁场来校正偏转散焦时,从实际的观点出发,即使在较弱的磁场中,如(11)所述,局部改善的非均匀磁场最好也能显示出有效作用,因而在这种区域要求电子束具有适当的直径。
通常,在阴极射线管主透镜附近,电子束直径较大。偏转散焦校正磁极片的位置与距主透镜的距离有关;但是,由于磁极片的结构取决于偏转磁场,电子枪结构,与宽电子流范围的相适性和与规定的电子束流范围的相适性,因而距主透镜的距离不是恒定的。
在阴极射线管中,特别是在一字排列多束型彩色阴极射线管或彩色显示管中,为简化会聚调整,使用于电子束的偏转磁场为非均匀的。在这种情况下,为抑制起因于偏转磁场的电子束畸变,最好尽可能地使主透镜与偏转磁场产生部分分开,因此,一般将偏转磁场产生部分设置在从电子枪主透镜方向靠荧光屏侧的位置处。(18)按照本发明,在通过形成在偏转磁场中的与偏转磁场同步的局部改善的非均匀磁场来校正偏转散焦时,通过形成局部改善的非均匀磁场可使偏转磁场产生部分与主透镜相互靠近地设置,同时可预先估价起因于上述非均匀偏转磁场的电子束畸变。
按照本发明,当阴极射线管的最大偏转角为100°以上时,在用于形成上述偏转磁场的构成线圈磁芯的磁性材料的在远离荧光屏一侧的端部与电子枪阳极的面对聚焦电极的端部之间的最佳距离为60mm以下。(19)另一方面,为了降低电子枪的图像放大率以使在荧光屏上的束点直径较小,最好电子枪的阴极与主透镜间的长度更长。
考虑到上述两个功能,因而趋于增加具有良好分辨率的阴极射线管的轴向长度。
但按照本发明,可以进一步降低电子枪的图像放大率以进一步减小在荧光屏上的电子束束点直径,同时通过将主聚焦电极的位置置于荧光屏附近可缩短轴向长度,而不会改变在电子枪阴极与主透镜间的长度。(20)通过将主透镜的位置置于荧光屏附近,可缩短维持电子束空间电荷互斥所需要的时间,从而可进一步减小在荧光屏上的束点直径。(21)按照本发明,可以用较高的准确性实施类似于在(18)至(20中所述的说明。也就是说,在最大偏转角为大于或等于100°的情况下,在偏转磁场与主透镜间的最佳距离有一范围,其中电子枪阳极的面对主透镜的端部位于磁场中,该磁场具有在偏转磁场中沿扫描方向和/或沿垂直于扫描的方向偏转电子束的磁场的最大磁通密度的10%以上的磁通。(22)按照本发明,可用较高的准确性实施类似于在(18)至(20)中所述的说明。也就是说,在最大偏转角为100°以上的情况下,在偏转磁场与主透镜间的最佳距离具有一范围,其中在阴极射线管荧光屏上的电压Eb、在电子枪阳极的面对正透镜的端部处用于在偏转磁场中沿扫描方向或沿垂直于扫描的方向偏转电子束的磁场的磁通密度B和阳极Eb满足下列关系式: B / Eb ≥ 0.004 mT • ( KV ) - 1 / 2 其中B的单位为mT,Eb的单位为KV。(23)按照本发明,可以进一步实施类似于在(18)至(22)中所述的说明。也就是说,在最大偏转角在85°至100°的范围内的情况下,以这种方式设定在偏转磁场与主透镜间的最佳距离,以致相当于在(18)至(20)中所述的距离为40mm以下;相当于在(21)中所述的最大磁通密度的百分数为15%以上;相当于在(22)中所述的B/ 为大于或等于0.003mT·(KV)-/2。(24)按照本发明,可以进一步实施类似于在(18)至(22)中所述的说明。也就是说,在最大偏转角为低于85°的范围内时,以这种方式设定在偏转磁场与主透镜间的最佳距离,以致相当于在(18)至(20中所述的距离为低于或等于170mm;相当于在(21)中所述的最大磁通密度的百分数为大于或等于5%,相当于在(22)中所述的B/
Figure A9610846100502
值为0.005mT·(KV)-1/2以上。(25)正如(18)至(24)所示,与现有技术不同地缩短了在偏转磁场与电子枪的主透镜间的最佳距离。
按照本发明,以这种方式设定阴极射线管的颈部和电子枪主透镜的最佳位置,以致在远离荧光屏的一侧电子枪阳极的面对主透镜的端部位置在相对于颈部的靠荧光屏侧的端部为15mm或低于15m的范围内。
在现有技术中电子枪的主透镜位于远离偏转磁场的位置处,因此从阴极射线管颈部的内壁将电压施加给电子枪阳极。
相反,按照本发明,并不要求电子枪的主透镜远离偏转磁场,而可设置在荧光屏的附近,因而可从不同于阴极射线管颈部内壁的部分将电压施加给电子枪阳极。
由于在阴极射线管内的窄小空间内形成了强电场,因此为了提高可靠性而稳定击穿电压特性变得很重要。在电子枪主透镜附近产生最大电场强度。在主透镜附近的电场取决于涂敷在阴极射线管颈部的内壁上用于将电压施加给电子枪阳极的石墨膜,以及取决于保留在阳极射线管中颈部内壁上的杂质的粘附性。
按照本发明,可将电子枪主透镜设置在更接近于荧光屏一侧,因而能够显著地稳定击穿电压特性。(26)当电子束在荧光屏中心形成束点时,偏转磁场没有对电子束产生影响。因此在这种情况下,无需进行用于防止归因于偏转磁场的电子束畸变的测量,所以电子枪透镜形成为轴向对称的聚焦系统,结果可使在荧光屏上的电子束束点直径更小。(27)按照本发明,除形成在偏转磁场中的用于校正偏转聚焦的与偏转磁场同步的局部改善的非均匀磁场之外,为进一步增加在全屏幕上对电子束的适当的聚焦作用,将与偏转同步的动态电压施加给电子枪电极部分,从而在全屏幕上获预期的分辨率。所需的动态电压可被减小。(28)按照本发明,除了形成在偏转磁场中的用于校正偏转聚焦的与偏转磁场同步的局部改善的非均匀磁场之外,可至少使由多个电子枪电极构成的多个静电透镜中之一为非轴向对称电场。这使得在大电流范围中的电子束束点,在荧光屏上形成为近似于圆形或矩形的形状。非轴向对称电场也构成具有比沿垂直于扫描方向聚焦的适应聚焦电压更高的沿电子束扫描方向聚焦的适当聚焦电压的会聚特性的静电透镜,并且该静电透镜具有能够按照沿垂直于扫描方向的荫罩孔距和扫描线密度、与沿扫描方向电子束束点直径相比使在小电流范围内在屏幕中心沿垂直于扫描方向的电子束直径最佳的聚焦特性,以及具有高于沿垂直于扫描方向聚焦的适当聚焦电压的沿扫描方向聚焦的适当聚焦,由非轴向对称电场构成的这些透镜对电子束给出预期的聚焦特性,而在全屏幕上和在整个电流范围内没有任何波纹。(29)应指出,在本发明中的用语″非轴向对称″指与指定的固定点等距离的平面而不是平面曲线。例如,″非轴向对称″的电子束束点指非圆形束点。(30)如(25)所述,在本发明中,由于在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场,因而与现有技术相比,可将电子枪的主透镜设置在更接近偏转磁场之外。
由于偏转磁场也渗入电子枪的主透镜中,因此基本上使自主透镜起接近荧光屏侧的电极具有能防止电子束撞击的结构。按照如图68C所示的一实施例,在具有多个电极的一字形三束电子枪中的屏蔽帽上配置没有隔板并使三根电子束穿过的单孔。
在将偏转散焦校正磁极片设置在自形成在屏蔽帽底面上的电子束通孔的靠荧光屏侧的情况下,即使当偏转的电子束轨迹进入局部改善的非均匀磁场时,为了降低电子束对支撑磁极片的电极的碰撞几率,最好在相应于磁极片对置部分间的间隔的部分设置空隙,从而增进与偏转磁场同步的局部改善的非均匀磁场的有效作用和提高在荧光屏上分辨率的均匀性。例如,如图13B和68C所示,在磁极片支架105上配置缝隙以满足H>W的关系。(31)按照本发明,通过在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场来校正在三根一字形电子束电子枪中的所有三根电子束的偏转散焦。在这种情况下,可以这样来构造用于形成局部的非均匀磁场的磁极片,以便相对中心电子束的磁极片结构不同于相对各侧边电子束的磁极片结构。这就使三根电子束在荧光屏上的分辨率平衡的调整成为可能。
也可以这样来构造相对于各侧边电子束的上述磁极片,以便在沿一字形方向的中心电子束侧边的结构与相对侧边的该结构不同这就能够减小归因于偏转磁场的彗差。
虽然已经说明了本发明各各个技术方案的效果,但是通过两个或更多个技术方案的组合,本发明能够进一步改善在阴极射线管全屏幕上分辨率的均匀性和在整个电流范围内在屏幕中心的分辨率的均匀性,并能缩短阴极射线管的轴向长度。
本发明还能提供一种图像显示系统,通过使用上述阴极射线管该系统能够改善在全荧光屏幕上分辨率的均匀性和在整个电流范围内在屏幕中心分辨率的均匀性,并能缩短其深度。
下面,将对改善阴极射线管会聚特性和分辨率的使用本发明电子枪的装置进行说明。
图69是一字式电子枪和荫罩式彩色阴极射线管的示意剖面图图中,标号7代表管颈,8是锥体,9是包含于管颈7之内的电子枪,1是电子束,11是偏转线圈,12是荫罩,13是形成荧光屏的荧光膜,1是屏盘(屏幕)。
参看图69,由电子枪9发射的电子束10被偏转线圈11在水平和垂直方向上偏转,并穿过荫罩12,激发荧光膜13发光。由发光荧光膜形成的图形从面板14一侧作为图象来观察。
图70是电子束束点的示意图,其中边缘的荧光体被其在屏幕中心的束点被调整为圆形的电子束所激发。标号14代表屏幕,15是屏中心的电子束束点,16是位于水平中心线(X-X)的每个屏边缘处的电子束束点,17是光晕,18是位于垂直中心线(Y-Y)的每个屏顶部和底部的束点,19是屏幕对角线每端(角部)处的束点。
图71是阴极射线管的偏转磁场分布的示意图。图中,标记H代表水平偏转磁场分布,V是垂直偏转磁场分布。
通常,彩色阴极射线管采用枕形非均匀磁场分布的水平磁场和桶形非均匀磁场分布的垂直磁场V,用以简化会聚调节(见图71)
电子束10的发光点在屏边缘部位是非圆形的,这是因为上述非均匀磁场分布、荧光屏中心与边缘部位的电子束10从主透镜至荧光屏的路径长度上的差异以及在屏边缘处电子束10对荧光膜13的倾斜碰撞所致。
如图70所示,当屏中心的束点15是圆形的时,位于水平中心线的屏每边缘处的束点16被水平地拉长,并在此处产生光晕17。结果位于水平中心线的屏边缘处的束点16的尺寸变大,而且由于光晕1的产生使得束点16的轮廓模糊。这降低了分辨率,引起图象质量明显变差。
当电子束10的电流较小时,电子束10在垂直方向的直径过小,从而电子束10与荫罩12的垂直间距相干扰。这导致莫尔条纹现象的产生并降低了图象质量。
由于电子束10被垂直偏转磁场所垂直聚焦,所以位于垂直中心线的屏顶部和底部处的束点18均被垂直压缩,并在该处也产生了光晕17,降低了图象质量。
位于屏每个角处的束点19是正如点16的拉长和正如点18的垂直压缩的组合形状,而且电子束10在此处发生旋转。因此,在屏角处产生了光晕17而且发光点直径变大,图象质量明显变差。
图72是电子枪的电子光学系统的示意图,展示了图70所示束点形状的畸变。为了便于理解,用光学方式来代替上述系统。
图72中,上半部展示了屏在垂直方向(Y-Y)的剖面,下半部则展示了屏在水平方向(X-X)的剖面。
标号20、21代表预聚焦透镜,22是前置主透镜,23是主透镜。这些透镜构成了图80所示的电子枪的电子光学系统。标号24代表由垂直偏转磁场形成的透镜,25是由水平偏转磁场形成的透镜,它被表示为等效透镜,对应于通过由偏转而产生的对荧光膜13的斜碰而在水平方向使电子束16发生的明显拉长。
首先,由位于垂直平面的阴极K发射的电子束27在预聚焦透镜20与21之间的与阴极K相隔距离L1的位置形成交叉点P,并由前置主透镜22和主透镜23聚焦在荧光膜13上。
当偏转为零时,亦即在屏中心,电子束27沿轨迹28撞击在荧光膜13上,但是,在垂直偏转磁场产生的透镜24的影响下,电子束沿轨迹29在屏边缘部位上形成垂直压缩的束点。此外,由于主透镜23的球面散焦作用,另一电子束27按轨迹30在到达荧光膜13之前聚焦。这就是图70所示位于垂直中心线的屏的各边缘处的束点18或者屏的角部处的束点19产生光晕17的原因。
另一方面,在水平平面上由阴极K发射的电子束31由预聚焦透镜20、21、前置主透镜22和主透镜23所聚焦,与垂直平面的电子束27类似,当偏转磁场为零时,电子束31沿轨迹32撞击在荧光膜13亦即在屏中心上。
当电子束10被偏转时,在由水平偏转磁场产生的透镜25的发散作用下,电子束31沿轨迹33形成水平拉长的光点,但是,在水平方向不产生光晕17。
然而,由于主透镜23与荧光膜13之间的距离大于与屏中心的距离,即使在如图70所示的垂直方向不偏转的水平中心线的屏边缘1处,另一电子束在到达荧光膜13之前在垂直平面被聚焦,由此产生光晕17。
在此方式中,采用电子枪的轴向对称透镜系统在屏中心形成圆形电子束束点时,屏边缘部位的束点形状产生畸变。这显著地降低了图象质量。
图73是用于抑制如结合图72所述的在屏边缘部位的图象质量下降的装置的示意图。图中,与图72对应的部分用相同的标记表示。
如图73所示,主透镜23-1在垂直方向(Y-Y)的屏剖面内的聚焦作用弱于主透镜23在水平方向(X-X)的屏剖面的作用。按此设置,电子束穿过由垂直偏移磁场产生的透镜24之后沿路径29移动,不会形成图70所示的特别垂直压缩的形状。光晕17也难于产生。但是屏中心的路径28在束点直径变大的方向上偏移。
图74是展示采用图73所示的透镜系统时电子束在荧光屏14上的形状的示意图。屏边缘部位的束点,亦即,水平中心线上的边缘处的束点16、垂直中心线上的边缘处的束点18和角处的束点19均被抑制了光晕17的产生,以致每个边缘部位的分辨率得以改善。
但是,在屏中心的束点15,其垂直束点直径dY大于水平束点直径dx,降低了垂直分辨率。
因此,形成主透镜23的垂直聚焦作用和水平聚焦作用相互不同的非轴向对称电场系统不能同时在整个屏上改善分辨率。
图75是电子枪的电子光学系统的示意图,预聚焦透镜21在水平方向的透镜强度被提高,用于代替使用非轴向对称主透镜23。用来使交叉点P处的图象发散的水平聚焦预聚焦透镜21-1的强度被做成大于垂直聚焦预聚焦透镜21的强度,用以增大电子束31对前置主透镜22的入射角。这样可以增大穿过主透镜23的电子束的直径,由此可减小荧光膜13上的电子束束点在水平方向的直径。
但是,电子束在屏垂直方向的路径与图52相同,所以不能抑制光晕28的发生。
图76是在图75的构型上增加了光晕抑制作用的电子枪的电子光学系统的示意图。增大了前置主透镜22-1在垂直方向的透镜强度,以致主透镜23的垂直电子束路径靠近光学轴,形成具有更大聚焦深度的聚焦系统。按此构型,光晕28较小,改善了分辨率。
图77是展示当采用图76所示透镜时屏14上电子束束点形状的示意图。正如从此图可见,如束点15、16、18和19所示,在整个屏上可获得无任何光晕的期望的分辨率。
以上说明涉及电子束电流量较大(在大电流区)时电子束束点的形状。但是,在电子束的电流量较小(在小电流区)时,电子束仅穿过图象系统的近轴部位,以致在具有较大直径的透镜21、22和2的水平与垂直方向之间,仅有较小的透镜强度差异。因此,如图7所示,在屏中心束点成为圆形(34),在屏边缘部位成为水平拉长(3、36)或者斜向拉长(37),从而引起莫尔条纹。这使束点横向直径水平直径)变大,分辨率下降。
为了克服这种问题,减小透镜直径,并使透镜的定位要保证在透镜强度上的不对称程度对成象系统的近轴部分施加影响。
图78是电子枪光学系统的示意图,用于展示小电流电子束的路径。此时,阴极K与交叉点P的距离L2小于图72所示距离。
图79是电子枪的光学系统示意图,其中顶聚焦透镜中的发散透镜部分的垂直(Y-Y)透镜强度被提高。通过提高预聚焦透镜20的发散透镜的垂直透镜强度,使得阴极K与交叉点P之间的距离L3长于距离L2。
因此,在垂直剖面上电子束27进入预聚焦透镜21的位置比图7所示更为靠近轴部位,以致透镜21、22-1和23的透镜作用变小,从而形成在屏垂直方向上具有较大聚焦深度的成象系统。
然而,大电流时各透镜的影响并不完全与小电流时无关,预聚焦透镜20-1在垂直方向的透镜作用对大电流电子束的束点形状施加影响。因此,需要通过利用各透镜的性能来平衡光学系统。具体地,由于主透镜结构不固定,而且根据阴极射线管的应用,图象的着重点有所不同,所以非对称透镜的位置和各透镜的透镜强度不能随意地确定。
如上所述,在阴极射线管的通常应用中,用来在大电流区与小电流区之间有所不同的位置上形成非轴向对称电场的每个透镜的设置,必须能在全屏范围内分辨率。各透镜的非轴向对称性也被限制于电场强度的改变。在某些透镜部位,在非轴向对称电场强度下束形状畸变突出,导致分辨率下降。
尽管已经说明了用来抑制因电子束束点直径畸变而产生的聚焦特性下降的一般方式,但在实际的电子枪中有上述抑制聚焦特性下降的两种类型。一种是聚焦电压采用固定方式,另一种是根据电子束的偏转角来动态地改变在阴极射线管屏的各位置的最佳聚焦电压。
上述两种类型各自存在优缺点。采用固定的聚焦电压的一种具有花费不多的电子枪结构,提供聚焦电压的电源电路也简单便宜。但是,其缺点是不能在阴极射线管屏的每个位置获得象散校正所需的最佳聚焦状态,结果束点直径大于最佳聚焦状态。
另一方面,根据电子束偏转角把最佳聚焦电压动态地供给偏转至阴极射线管屏每个位置的电子束的这一种,其优点是在屏上各点均能获得期望的聚焦特性,但其缺点是电子枪和提供聚焦电压的电源电路的结构复杂,因而在电视接收机和终端显示系统的组装工序中需要花费大量时间来设定聚焦电压,结果成本增大。
必须调节动态聚焦电压相位以使电子束偏转。
尤其是,对于在期望立即广泛传播的多种方式的应用中,显示系统需要能以多种偏转频率来驱动。这就要求动态聚焦电压发生器能用于各个偏转频率,并以各频率把动态聚焦电压相位调整得对应于电子束偏转,这就增加了电路成本和制造工序。
本发明提供的阴极射线管,所用的电子枪除了具有上述两类的优点外还消除了其缺点,而且还具有能缩短轴向长度的新的第三优点。
以下,将结合附图详细说明本发明的实施例。
由于阴极射线管的偏转量增大,所以偏转散焦量也快速增多,如图64所述。
本发明方图适当地对已被偏转改变其轨迹的电子束进行聚焦由此在整个荧光屏上改变分辨率的均匀性,其方式是在偏转磁场中形成其变化与偏转磁场同步的并对电子束具有聚焦或发散作用的局部改善非均匀磁场。
本发明还力图对与已被偏转改变其轨迹的电子束的偏转量同步快速增大的偏转散焦(见图64)进行校正,由此在整个荧光屏上适当聚焦电子束,其方式是在偏转磁场中形成能与图65所示的电子束偏转量同步地快速增大偏转散焦校正量的局部改善的非均匀磁场这有利于改善整个荧光屏的分辨率均匀性。
作为能与偏转量同步地适当增大对已被偏转改变其轨迹的电子束的发散作用的局部改善的非均匀磁场的一个例子,是在与未偏转电子束的路径相对的各侧的基本对称的位置,有效地设置局部改善的非均匀磁场。
在与未偏转的电子束路径相对各侧的基本对称位置上形成与偏转磁场同步的局部改善的非均匀磁场,可使对电子束的发散作用量与偏转量同步增大。
图1A和1B是根据本发明的阴极射线管偏转散焦的校正方法第一实施例的示意图。图1A以剖面形式展示了电子束,由均具有与图1B所示偏转磁场同步的发散作用的局部改善非均匀磁场的影响使电子束发散。此外,在与未被偏转的电子束的中心路径Z-Z对应的对称的位置,设置局部改善的非均匀磁场。
图1A中,标号61代表磁力线,62是穿过远离未偏转的电子束中心路径的部位的电子束,63是未偏转的电子束的路径。此外,具有与偏转磁场同步的发散作用的局部改善的非均匀磁场不存在于未偏转电子束63的中心路径上,未偏转的电子束63用虚线表示,以便区别于电子束62。
被偏转并穿过远离未偏转电子束63的中心路径的部位的电子束62当其在磁场中移动时以大于未偏转电子束63的量而发散。束群也变得远离未偏转电子束63的中心路径。在远离未偏转电子束63的中心路径侧,电子束62轨迹变化率较大。这是因为随着磁力线远离未偏转电子束63的中心路径,磁力线之间的间距变窄。
形成在偏转磁场中与电子束的偏转量同步的上述局部改善的非均匀磁场,可使对被偏转并改变轨迹的电子束的发散作用与偏转量同步地增大。这样可以在偏转散焦增大电子束的聚焦时来校正偏转散焦。
例如,在阴极射线管中,从电子枪主透镜至荧光屏的距离通常是边缘部位大于中心,如图66所示。结果,即使偏转磁场无聚焦作用时,在屏中心的电子束最佳聚焦也会引起屏边缘部位的电子束过聚焦。
本实施例中,形成在偏转磁场中与电子束偏转量同步的局部改善的非均匀磁场,如图1A和1B所示,可使对电子束的发散作用与偏转量同步地增大。这能实现图65所示的偏转聚焦的校正。
作为能与偏转量同步地适当增大对被偏转且改变轨迹的电子束的聚焦作用的局部改善的非均匀磁场的一个例子,按如下方式有效地形成与偏转量同步的局部改善的非均匀磁场,即定中心于未偏转电子束的路径上。
按定中心于未偏转电子束路径上这种方式形成与偏转磁场同步的上述局部改善的非均匀磁场,可使对电子束的聚焦作用与偏转量同步地增大。
图2A和2B根据本发明的阴极射线管的偏转散焦校正方法第二实施例的示意图。图2A展示了剖面的电子束,它被具有聚焦作用的局部改善的非均匀磁场作用而聚焦。此外,按定中心于未偏转电子束中心路径Z-Z的方式来设置局部改善的非均匀磁场。
图2A中,标号61代表构成与图28所示偏转磁场同步的局部改善的非均匀磁场的磁力线,62是穿过远离未偏转电子束的中心线Z-的部位的电子束,63是未偏转的电子束,正如图1A所示的未偏转电子束那样用虚线表示。
穿过远离未偏转电子束63的中心路径的部位的电子束62当其在磁场中移动时以大于未偏转电子束63的量聚焦。束群也变成远离未偏转电子束的中心路径。在远离未偏转电子束的中心路径侧的轨迹变化率较小。这是因为随着磁力线61远离未偏转电子束的中心路径Z-Z,磁力线61的间距变宽。
在偏转磁场中形成上述局部改善的非均匀磁场,可使对被偏转且轨迹改变的电子束的聚焦作用与偏转量同步地增大。这样可以在偏转聚焦使电子束发散增大时校正偏转散焦。
在大多数情况下,完成阴极射线管的偏转来使电子束线性扫描如图67所示。线性扫描轨迹60称为扫描线。在扫描方向与垂直于扫描方向的方向之间偏转磁场有所不同。
电子束在它大量地受到形成于偏转磁场并与偏转磁场同步的局部改善的非均匀磁场的作用之前,由电子枪的多个电极中的至少一个作用,经常受到在扫描方向与垂直于扫描方向的方向之间不同的聚焦作用。
此外,强调扫描方向的偏转散焦校正或者强调垂直于扫描方向的方向的偏转散焦校正取决于阴极射线管的应用。
因此,不能简单地确定局部改善的非均匀磁场的性质,该磁场与偏转磁场同步并形成于偏转磁场中,用于在整个荧光屏校正偏转散焦和改善分辨率的均匀性。
技术含量和所需成本取决于由扫描方向决定的偏转散焦校正方向、校正内容和校正量,所以,根据各种因素来明确偏转散焦校正的性质,对于改善图象显示系统的特性和降低成本是重要的。
根据本发明的阴极射线管的偏转散焦校正方法的第三实施例通过在偏转磁场中形成局部改善的非均匀磁场,来校正扫描方向和/或垂直于扫描方向的方向的偏转散焦。如图1A、1B和2A、2B所示。
在具有设置于水平面的三个一字式电子枪的彩色阴极射线管中,采用具有桶形磁力线分布的垂直偏转磁场和具有枕形磁力线分布的水平偏转磁场,如图71所示(以下说明),来消除或简化电子束在荧光屏上的会聚控制电路。
由偏转磁场给三根一字形电子束中的每侧带来的偏转散焦量取决于偏转磁场强度和水平偏转方向。例如,在按一字形排列的右侧电子束(从荧光屏侧看的阴极射线管方向)在荧光屏左半侧偏转时和在右半侧偏转时,右侧电子束通过的偏转磁场的磁通分布是不同的。结果,在上述两种情况下右侧电子束的偏转散焦量是不同的因而由右侧电子束给出的图象质量在荧光屏右和左端不同。
为了校正这种侧边电子束的偏转散焦,在偏转磁场中电子枪中心轴对侧,设置在水平偏转方向不对称的并与偏转磁场同步的局部改善的非均匀磁场是有利的。
图3A-3D是根据本发明的阴极射线管偏转聚焦校正方法第四实施例的示意图。此实施例中,在与电子枪轴相对各侧设置分别对电子束具有不同的磁场分布和发散作用的局部改善的非均匀磁场。
图3A和3B是在磁力线密度较高侧的电子束发散的示意图。在磁力线61密度较高侧,穿过远离中央电子枪的中心轴Z-Z的部位的电子束62-2,当其在校正磁场中运动时产生发散。该束群也远离电子枪中心轴Z-Z。在远离电子枪中心轴Z-Z侧的轨迹变化率较大。这是因为随着磁力线61远离电子枪中心轴Z-Z磁力线61的间距变窄。
图3C和3D是在磁力线密度较低侧的电子束发散的示意图。穿过远离电子枪中心轴Z-Z部位的电子束62-3,当其在校正磁场中移动时象电子束62-2那样发散,束群也远离中心轴Z-Z。在远离电子枪中心轴Z-Z侧的轨迹变化率较大,但是,电子束62-3的轨迹变化程度小于电子束62-2。这是因为即使磁力线61远离中心轴Z-Z,磁力线61的间距也不会改变太多。
形成在偏转磁场中的上述与偏转量同步的局部改善的非均匀磁场,使得施加在被偏转且轨迹改变的电子束上的与偏转量同步的发散作用的增大程度随偏转方向而变。这样聚焦以致偏转散焦量取决于偏转方向的情形有利于校正偏转散焦。
实际上,偏转散焦校正取决于,例如,具有特定的最大偏转角的阴极射线管结构,装配于阴极射线管的偏转磁场发生部分的结构、形成局部改善的非均匀磁场的磁极片、除磁极片之外的其它电子枪结构、阴极射线管的驱动条件和阴极射线管的应用。
图4A-4D是根据本发明阴极射线管的偏转散焦校正方法第五实施例的示意图。此实施例中,靠近电子枪中心轴设置对电子束具有非对称聚焦作用的局部改善的非均匀磁场。在由磁力线61构成的磁场中的磁通密度较高侧,电子束62-4偏转穿过远离电子枪中心轴Z-Z的部位(图4A)。相反,在由磁力线61构成的磁场中的磁通密度较低侧,电子束62-5偏转穿过远离电子枪中心轴的部位(图4C)。
在磁通密度较高侧穿过远离中心轴Z-Z部位的电子束62-4在磁场中移动时聚焦(见图4A)。束群也远离中心轴Z-Z。在靠近中心轴Z-Z侧,电子束62-4的轨迹变化率较大。这是因为随着磁力线61远离中心轴Z-Z,磁力线61的间距变宽。
在磁通密度较低侧穿过远离中心轴Z-Z的部位的电子束62-5在磁场中移动时像电子束62-4那样聚焦(见图4B)。束群也远离中心轴Z-Z。在靠近中心轴Z-Z侧,电子束62-5的轨迹变化率较大,但是电子束62-5的轨迹变化程度小于电子束62-4。这是因为随着磁力线61远离中心轴Z-Z,磁力线61的间距变化不太大。
形成于偏转磁场中、并与偏转量同步的上述局部改善的非均匀磁场,使得加在电子束上使其轨迹与偏转量同步地变化的聚焦作用的增大程度随偏转方向而变。这有利于在这种发散作用以致偏转散焦量取决于偏转方向的情形下校正偏转散焦。
实际上,偏转散焦校正取决于,例如,具有特定的最大偏转角的阴极射线管的结构、组装于阴极射线管的偏转磁场发生部分的结构、形成局部改善的非均匀磁场的磁极片、除磁极片之外的电子枪其它结构、阴极射线管的驱动条件和阴极射线管的应用。
在具有设置于水平面的三个一字式电子枪的彩色阴极射线管中,采用具有桶形磁力线分布的垂直偏转磁场和具有枕形磁力线分布的水平偏转磁场,如图71所示(以下说明),来消除或简化电子束在荧光屏上的会聚控制电路。
在这种彩色阴极射线管中,一字式方向即水平方向成为扫描方向。  由偏转磁场给三个一字形电子束中各侧边电子束带来的偏转散焦量取决于偏转磁场强度和水平偏转方向。
例如,在右侧电子束在荧光屏左半侧偏转时和在右半侧偏转时按一字形排列(从荧光屏侧看的阴极射线管方向)的右侧电子束通过的偏转磁场的磁通分布是不同的。结果,在上述两种情况下右侧电子束的偏转散焦量是不同的。
根据本发明的阴极射线管的偏转散焦校正方法的另一实施例通过在用于侧边电子束的偏转磁场中按如下方式形成与偏转磁场同步的局部非均匀磁场,即与电子枪中心轴为非对称,如图3A~3D或图4A~4D所示,由此来校正每侧边电子束的偏转散焦。
实际上,偏转散焦校正取决于,例如,具有特定的最大偏转角的阴极射线管结构、组装于阴极射线管的偏转磁场发生部分的结构形成局部改善的非均匀磁场的磁极片、除磁极片之外的电子枪其它结构、阴极射线管的驱动条件和阴极射线管的应用。
图5是本发明阴极射线管第一实施例的示意剖面图。标号1代表电子枪的第一栅电极(G1),2是第二栅电极,103是本实施例中作为聚焦电极的第三栅电极(G3)。
标号104代表本实施例中作为阳极的第四栅电极(G4),7是包含电子枪的阴极射线管的管颈,8是锥体,14是屏盘。这些部分7,8和14构成阴极射线管的真空外壳。
标号10代表由电子枪发射的电子束,它穿过荫罩12的小孔并碰撞于在屏盘14内表面形成的荧光膜13,由此发出光线用以在阴极射线管屏上显示图象。标号11代表用于偏转电子束10的偏转线圈,它发生与视频信号同步的磁场,用来控制电子束10在荧光膜13上的碰撞点。
标号38代表电子枪主透镜。由阴极K发射的电子束10穿过第一栅极(G1)1、第二栅极(G2)2、第三栅极(G3)103,然后由形成于第三栅极(G3)103与阳极104之间的主透镜38的电场聚焦在荧光屏1上。
标号39代表磁极片,位于偏转线圈11的磁场中,用于形成至少一个与偏转场同步的局部改善的非均匀磁场,由此与偏转角同步地对由偏转线圈11的磁场所偏转的电子束10的偏转散焦进行校正。
此实施例中,把偏转散焦校正磁极片39在电子束上下位置机械地固定在阳极104,亦即在垂直纸面的方向上。这些磁极片39形成对穿过磁极片39之间的电子束10有发散作用的局部改善的非均匀磁场。此外,标号40代表把电子枪的电极连接至管脚(未示出)的软线。
相互隔开的两个磁极片之间的垂直距离由各磁极片的安装位置、其伸向荧光膜13的长度、偏转磁场分布、穿过该间距的电子束直径和阴极射线管的最大偏转角的组合来实际确定。
在此实施例中,如图5所示,在偏转线圈11的偏转磁场中,电子枪的主透镜38的设置位置从偏转线圈安装位置偏向荧光膜13。但是,并不特别限定于图中所示的安装位置,只要位于偏转线圈的磁场中即可。
图6是展示本发明阴极射线管工作的剖面示意图,尤其是展示偏转散焦校正磁极片39的工作。位于图5所示偏转线圈11的磁场中的磁极片39形成局部改善的非均匀磁场,用于与偏转角同步地对由偏围线圈11的磁场偏转的电子束10的偏转散焦进行校正。
此实例中,电子束10被局部改善的非均匀磁场发散。图6中,与图5所示对应的部件用相同标号表示。
与图6类似,图7是无磁极片的阴极射线管的剖面示意图,用于与相关的已有技术比较地展示本发明的磁极片的作用。
参见图6和7,穿过电子枪第三栅极(G3)103的电子束10由形成于第三栅极(G3)103与第四栅极(G4)104之间的主透镜38所聚焦。当被偏转线圈11形成的偏转磁场偏转时,电子束10直线运动并在荧光膜13上形成直径为D1的束点。
这里将定性地说明在磁极片39存在(图6)或不存在(图7)时电子束10偏转至荧光膜13上侧时其轨迹如何变化。
参见图7,由于未设置磁极片39,所以电子束10的最低轨迹如标号10D所示那样迁移。由于未设置磁极片39,电子束10的最高轨迹也如标号10U所示那样迁移,并在到达荧光膜13之前与最低轨迹10交叉。结果,在荧光膜13上形成具有图7所示直径D2的束点。
相反,如图6所示,设置磁极片39时,在磁极片39形成的磁力线的影响下,电子束10最高轨迹如标号10U′那样迁移。由于在该轨迹部位偏转磁场被磁极片39形成的磁路所减弱,所以电子束10最低轨迹如标号10D那样迁移,从而在荧光膜13前面不与最高轨迹交叉地到达荧光膜13。
结果,在荧光膜13上形成具有小于直径D2的直径D3的束点。这是因为形成了局部改善的非均匀磁场,如图1A和1B所示。
通过磁极片39的安装位置、伸向荧光膜13的磁极片39的长度偏转磁场的分布、穿过磁极片39之间的间距的电子束直径和最大偏转角的组合,可以适当地调节在荧光膜13上具有直径D3的束点形状。通过使直径D3与屏中心的束点直径D1之间的差别变小,可以在整个屏上获得均匀的分辨率。
图8A和8B是展示本发明的阴极射线管另一实施例的工作的剖面示意图,尤其是展示偏转散焦校正磁极片39的另一种作用,其中图8A是顶视剖视图,图8B是侧视剖面图。位于图5所示的偏转线圈11的偏转磁场的磁极片39,形成局部改善的非均匀磁场,用于与偏转角同步地对被偏转线圈11的磁场偏转的电子束10的偏转散焦进行校正。
此实例中,电子束10被上述局部改善的非均匀磁场聚焦。这些图中,与图5所示对应的部件用相同标号表示。
与图8A类似,图9是无磁极片的阴极射线管的剖面示意图,用于与相关的已有技术比较地展示本发明的磁极片的作用。
参见图8A、8B和图9,穿过电子枪第三栅极(G3)103的电子束1由形成于第三栅极(G3)103与第四栅极(G4)104之间的主透镜38所聚焦,当被偏转线圈11形成的偏转磁场偏转时,电子束10直线运动并在荧光膜13上形成直径为D1的束点。
这里将定性地说明在磁极片39存在(图8A和8B)或不存在(图9时电子束10偏转至荧光膜13上侧时其轨迹如何变化。
参见图9,由于未设置磁极片39,所以电子束10的最右轨迹和标号10R所示那样迁移。由于未设置磁极片39,电子束10的最左轨迹也如标号10L所示那样迁移,并在荧光膜13上发散,形成直径为D2的束点。
相反,如图8A所示,设置磁极片39时,在磁极片39形成的磁力线的影响下,电子束10最左轨迹如标号10L′那样迁移。
由于在该轨迹部位偏转磁场被磁极片39形成的磁路所减弱,所以电子束10最右轨迹如标号10R那样迁移,从而在荧光膜13上聚焦。
结果,在荧光膜13上形成具有小于直径D2的直径D3的点。这是因为形成了局部改善的非均匀磁场,如图2A和2B所示。
通过磁极片39的安装位置、伸向荧光膜13的磁极片39的长度基本上平行于荧光膜13延伸的磁极片39的长度、偏转磁场的分布穿过磁极片39之间的间距的电子束直径和最大偏转角的组合,可以适当地调节在荧光膜13上具有直径D3的束点形状。通过使直径D与屏中心的束点直径D1之间的差别变小,可以在整个屏上获得均匀的分辨率。
结果,本发明可以提供一种价廉的阴极射线管,能够在荧光屏上实现与偏转角同步的聚焦控制,而无需与电子束偏转角同步的动态聚焦,导致全屏的均匀显示。本发明的这些实施例中的具体条件实际上取决于,例如,具有特定的最大偏转角的阴极射线管结构,组装于阴极射线管的偏转磁场发生部分的结构,形成局部改善的非均匀磁场的磁极片,除磁极片之外的其它电子枪结构,阴极射线管的驱动条件和阴极射线管的应用。
为了通过在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场而改善整个荧光屏的分辨率均匀性,即使在局部改善的非均匀磁场中也要使电子束轨迹偏转通过不同的磁场区域,所以,在局部改善的非均匀磁场与偏转磁场之间存在位置关系。
图10A和10B分别是偏转磁场分布的曲线图和示意图,其中图10A是偏转角为100°以上的阴极射线管轴上的偏转磁场分布的曲线示意图,图10B是图10A所示偏转磁场分布与偏转磁场发生机构之间的位置关系示意图。
图10B右侧是靠近荧光屏一侧,图10B左侧是远离荧光屏一侧。
图10A和10B中,标号A代表磁场测量的基础位置,BH是用于在扫描方向偏转的磁场磁通密度64的最大值位置,BV是用于在垂直于扫描方向的方向偏转的磁场磁通密度的最大值位置,C是形成磁场的线圈磁芯的磁性材料在远离荧光屏一侧的端部。
当荧光屏一侧的磁极片具有在阴极射线管轴向的轴向缺口部位时,该距离由最长部位表示。
图11A和11B分别是偏转磁场分布的曲线图和示意图,其中图11A是偏转角为110°以上的阴极射线管轴上的偏转磁场分布的曲线示意图,图11B是图11A所示偏转磁场分布与偏转磁场发生机构之间的位置关系示意图。
图11B右侧是靠近荧光屏一侧,图11B左侧是远离荧光屏一侧。
图11A和11B中,标号A代表磁场测量的参考位置,BH是用于在扫描方向偏转的磁场磁通密度64的最大值位置,BV是用于在垂直于扫描方向的方向偏转的磁场磁通密度的最大值位置,C是形成磁场的线圈磁芯的磁性材料在远离荧光屏一侧的端部。
图12是本发明的偏转散焦校正磁极片构形的透视图,它形成于偏转线圈中,用来形成与偏转磁场同步的局部改善的非均匀磁场。图中所示四个磁极片39中的每一个均由软磁片制成。磁极片39表面E基本上平行地面对荧光屏,相邻磁极片39的磁极端头39A相隔距离D。未偏转电子束穿过磁极端头39A的间隙内的各中心Zc-Zc和Zs-Zs。
磁极片39的角度设定方式是使磁极端39A之间的六个间隙D平行于扫描线,并安装在彩色阴极射线管的电子枪阳极上,管参数为颈部外径是29mm,最大偏转角是112°。荧光屏尺寸是68cm。
在如下条件,即施加图10A所示偏转磁场、图12所示表面E定在-96mm的轴向位置、施加30KV的阳极电压,这种阴极射线管呈现期望的结果。
在从图12的表面E移走磁极片时,磁通密度与阳极电压之间的关系B(mT)/ 为0.0104mT·(kV)-1/2,这对应于最大磁通密度的40%。表面E的设定位置与产生偏转磁场的线圈的远处磁芯端部相隔约18mm。
这些条件取决于,例如,具有特定最大偏转角的阴极射线管结构。组装于阴极射线管的偏转磁场发生部分的结构、形成局部改善的非均匀磁场的磁极片、除磁极片之外的电子枪结构、阴极射线管的驱动条件和阴极射线管的应用。
图12所示的、用于在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39也安装在彩色阴极射线管电子枪的阳极上,管参数是颈部外径为29mm,最大偏转角为90°,和荧光屏尺寸为48cm。
在如下条件,即施加图11A所示偏转磁场、图12所示表面E定在-58mm的轴向位置、施加30kV的阳极电压,这种阴极射线管呈现期望的结果。
在从图12的表面E移走磁极片时,磁通密度B与阳极电压Eb之间的关系B(mT)/
Figure A9610846100732
为0.016mT·(kV)-1/2,这对应于最大磁通密度的约78%,表面E的设定位置与产生偏转磁场的线圈的远处磁芯端部相隔约25mm。
这些条件取决于,例如,具有特定最大偏转角的阴极射线管结构、组装于阴极射线管的偏转磁场发生部分的结构、形成局部改善的非均匀磁场的磁极片、除磁极片之外的电子枪结构、阴极射线管的驱动条件和阴极射线管的应用。
图13A是用于本发明的阴极射线管的电子枪一个实施例的基本部分的剖面图。参看此图,形成主透镜38的阳极6设置于阴极射线管中靠近荧光屏一侧,聚焦电极5设置于远离荧光屏一侧。
图13A中,用于在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的偏转散焦校正磁极片39位于从阳极6与电子枪主透镜38之间的面对表面6a偏向荧光屏的位置。标号100代表屏蔽罩105是磁极片支架。
图14是用于本发明的阴极射线管的电子枪的构形的一个实施例的示意图。此外,阴极射线管是投影式的,而且最大偏转角小于85:
图14中,磁聚焦线圈74置设置于颈部7外侧,位于相对于阳极104的荧光屏一侧。在阳极104面对主透镜38的表面104a与偏转散焦校正磁极片39靠近荧光屏13的端部之间的距离L5约为180mm,磁极片39是用来在偏转磁场中形成局部改善的非均匀磁场。阳极10是一个圆桶,面对主透镜38的表面104a的内径是30mm。
在图14所示构形中,荧光膜的电位被形成在颈部7内表面的电阻膜75和电阻76所分压,产生供给阳极104的电压,具体条件取决于例如,具有特定最大偏转角的阴极射线管结构、组合于阴极射线管的偏转磁场发生部分的结构、偏转散焦校正磁极片、除磁极片之外的电子枪结构、阴极射线管的驱动条件和阴极射线管的应用。
图15A和15B是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片一种结构的示意图,其中图15A是用于在垂直方向散焦校正的磁力线的示意图,图15B是用于在水平方向散焦校正的磁力线的示意图。
图15A中,磁极片39位于各电子束10在一字形方向的相对各侧磁极片39的各磁极端头39a的相对部位位于垂直于电子束10一字形方向的方向,用于在相对部位的磁通会聚。
此外,图15A的标号77代表在垂直于一字形方向的方向偏转电子束的磁力线。形成由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使磁力线77靠近位于未偏转电子束路径相对各侧的部分会聚,从而完成偏转散焦校正。
图15B中,标号78代表在一字形方向偏转电子束的磁力线。形成由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使磁力线78靠近位于未偏转电子束路径相对各侧的部分会聚,从而完成偏转散焦校正。
图15A、15B所示磁极片39可实际用于具有13A所示三根一字形电子束的类型的彩色阴极射线管的电子枪。图13B是图13A所示阴极射线管各电子枪的磁极片39、磁极片支撑105和屏蔽罩100组合状态的分解透视图,图13C是磁极片39细节的前视图。磁极片的特征如下。
(1)四个磁极片39-1、39-2、39-3和39-4按如下方式布置在三根电子束的一字形方向,相邻的磁极片的磁极端头39A设置在未偏转电子束路径穿过的平面的相对位置并垂直于一字形方向。
图13C中,标号S代表未偏转电子束之间的间距。
(2)用于三个电子束的四个磁极片的六个相对部位中的每一个具有靠近一字形轴的按相同半径形成的同样的弧形区域。以弧形有利于减弱靠近一字形轴的垂直偏转磁场,并能适当地增强远离一字式轴的部位的垂直偏转磁场。由于用于三电子束的四个磁极片有按相同半径形成的相同弧形的六个中心相对区域,所以对靠近一字形轴的三电子束轨迹的校正(无需对轨迹做很大校正)基本相同一致,从而抑制了会聚的改变,而且安装于电子枪时,可使用圆筒形卷筒,从而改进组装中的加工性和安装精度。
(3)每个磁极片的相对表面在远离一字形轴的部位,在弧形切线的中间处切去一部分。
通过把弧形切线的中间处切去一部分,可以对用来在垂直于一字形方向的方向使电子束发散的磁场强度分布的过大梯度予以抑制。当磁场强度分布出现过大变化时,垂直偏转散校校正会在荧光屏上部和下部过量,以致束点的垂直直径变大,从而降低了垂直分辨率,而且磁力线弯曲增大,以致对电子束在水平方向的聚焦作用过量,从而在束点右和左侧产生光晕。显示交叉阴影图形时,在每条垂直线左右会产生光晕,从而降低了分辨率。
(4)对于三个电子枪,极片间距定为相互一样。通过对三个电子枪周边施加相同的磁场,磁极片相对于偏转磁场的位置产生变化也能抑制会聚的改变。
(5)中央的磁极片39-2和39-3的磁极端头39A比左右两侧最外边的磁极片39-1和39-4磁极端头39A更靠近一字形轴X-X。这样可以减小侧边电子束向右偏转状态与向左偏转状态之间的偏转散焦影响的差异,并取得偏转灵敏度的左右平衡。这有利于抑制在水平方向的会聚变化。
(6)左右最外侧的磁极片39-1和39-4在X-X方向的宽度上均大于中央磁极片39-2和39-3。这样可以把侧边电子束的水平偏转灵敏度调整至中央电子束的程度,由此可以抑制会聚的变化。
(7)磁极片的板厚是均匀的。磁极片可通过冲压来形成,结果降低了成本。
图16A和16B是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图,其中图16A是用于在垂直方向散焦校正的磁力线的示意图,图16B是用于在水平方向散焦校正的磁力线的示意图。
图16A中,磁极片39位于各电子束10在一字形方向的相对各侧磁极片39的各磁极端头39a的相对部位位于垂直于电子束10一字形方向的方向,用于在相对部位的磁通会聚。
此外,图16A的标号77代表在垂直于一字形方向的方向偏转电子束的磁力线。形成由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使磁力线77靠近位于未偏转电子束10路径相对各侧的部分会聚,从而完成偏转散焦校正。
图16B中,磁极片39位于各电子束10在一字形方向的相对各侧磁极片39的各磁极端头39a的相对部位位于电子束10一字形方向用于在相对部位的磁通会聚。
图16B中,标号78代表在一字形方向偏转电子束10的磁力线。形成由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使磁力线78靠近位于未偏转电子束路径相对各侧的部分会聚,从而完成偏转散焦校正。
这种磁极片39靠近电子束的部位被形成锥形的构形,与图15和15B所示构形相比,适合用于在靠近未偏转电子束路径相对侧的位置上偏转磁场在垂直一字形方向的方向的磁力线77无须减少的情况。
图17A和17B是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图,其中图17A是用于在垂直方向散焦校正的磁力线的示意图,图17B是用于在水平方向散焦校正的磁力线的示意图。
图17A中,磁极片39位于各电子束10在一字形方向的相对各侧磁极片39的各磁极端头39a的相对部位位于垂直于电子束10一字形方向的方向,用于在相对部位的磁通会聚。
此外,图17A的标号77代表在垂直于一字形方向的方向偏转电子束的磁力线。形成由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使磁力线77靠近位于未偏转电子束路径相对各侧的部分会聚,从而完成偏转散焦校正。
图17B中,磁极片39位于各电子束10在一字形方向的相对各侧磁极片39的各磁极端头39a的相对部位位于电子束10一字形方向,用于在相对部位的磁通会聚。
图17B中,标号78代表在一字形方向偏转电子束10的磁力线。形成由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使磁力线78靠近位于未偏转电子束路径相对各侧的部分会聚,从而完成偏转散焦校正。
这种磁极片39远离电子束的部位被形成锥形的构形,与图15和15B所示构形相比,适合用于在靠近未偏转电子束路径相对侧的位置上偏转磁场在垂直于一字形方向的方向的磁力线77无须减少的情况。
图18是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。
图18中,磁极片39位于各电子束10在一字形方向的相对各侧,磁极片39的各磁极端头39a的相对部位位于垂直于电子束10一字形方向的方向,用于在相对部位的磁通会聚。
此外,图18的标号77代表在垂直于一字形方向的方向偏转电子束的磁力线。形成由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使大量磁力线77靠近位于未偏转电子束路径相对各侧的部分会聚,从而完成偏转散焦校正。
参看图18,它也可以靠近未偏转电子束路径增加在一字形方向偏转电子束的磁力线78。
图19是用于本发明三根一字形电子束式彩色阴极射线管的转散焦校正磁极片另一种结构的示意图。
图19中,磁极片39位于各电子束10在一字形方向的相对各侧,磁极片39的各磁极端头39a的相对部位位于垂直于电子束10一字形方向的方向,用于在相对部位的磁通会聚。
此外,图19的标号77代表在垂直于一字形方向的方向偏转电子束的磁力线。形成由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使大量磁力线77靠近位于未偏转电子束路径相对各侧的部分会聚,从而完成偏转散焦校正。
通过在从每边电子束靠近颈部的侧边使侧边的磁极片的端部长度HS(在垂直于一字形方向的方向)大于各中央磁极片的长度Hc可以增大磁力线77的会聚量。
图20是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。
图20中,磁极片39位于各电子束10在一字形方向的相对各侧,磁极片39的各磁极端头39a的相对部位位于垂直于电子束10一字形方向的方向,用于在相对部位的磁通会聚。
此外,图20的标号77代表在垂直于一字形方向的方向偏转电子束的磁力线。形成由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使大量磁力线77靠近位于未偏转电子束路径相对各侧的部分会聚.从而完成偏转散焦校正。
通过使对应于各侧边电子束的磁极端头39A之间的间距Ls不同于对应于中央电子束的磁极端头39A之间的间距Lc,可使用于中央电子束的磁场强度不同于用于各侧边电子束的磁场强度。
图21是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。
图21中,磁极片39位于各电子束10在一字形方向的相对各侧,磁极片39的各磁极端头39a的相对部位位于垂直于电子束10一字形方向的方向,用于在相对部位的磁通会聚。
此外,图21的标号77代表在垂直于一字形方向的方向偏转电子束的磁力线。形成由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使大量磁力线77靠近位于未偏转电子束路径相对各侧的部分会聚,从而完成转散焦校正。
通过使用于侧边电子束的磁极片靠近中央电子束的部位的长度Hc(在垂直于一字形方向的方向)长于用于侧边电子束的磁极片靠近颈部的部位的长度Hs,用于各侧边电子束的磁场可具有沿一字形方向的分布。
图22是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。
图22中,磁极片39位于各电子束10在垂直于一字形方向的方向的相对各侧,磁极片39的各磁极端头39a的相对部位位于垂直于电子束10一字形方向的方向,用于在相对部位的磁通会聚。
此外,图22的标号77代表在垂直于一字形方向的方向偏转电子束的磁力线。形成由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使大量磁力线77靠近位于未偏转电子束路径相对各侧的部分会聚,从而完成偏转散焦校正。
此外,图22的标号77代表在垂直于一字形方向的方向偏转电子束的磁力线。通过使用由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使磁力线77靠近位于未偏转电子束路径相对各侧的部分会聚,从而完成偏转散焦校正。
图23是用于本发明三根一字形电子束式彩色极射线管的偏转散焦校正磁极片另一种结构的示意图。
参看图23,偏转散焦校正磁极片39的磁极端头39A设置于在垂直于一字形方向上稍微远离各电子束10的位置的两个位置。
在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场其方式是在用于在垂直于一字形方向的方向偏转电子束10的两个位置上形成磁力线77a和77b,以致磁力线77a、77b靠近位于未偏转电子束路径相对各侧的部分会聚,从而在这些部分完成偏转散焦校正。
这种构形适合于在一字形方向无须偏转的磁场会聚的情况。
图24A和24B是用于本发明三根一字形电子束彩色阴阴极射线管的偏转散焦校正磁极片另一种结构的示意图。其中图24A是前视图,图24B是在箭头方向看的沿线I-I的侧视图。
参看图24A和24B,由剖面为方形的棒材制成的偏转散焦校正磁极片39的相对部位设置于垂直于各电子束10的一字形方向的位置使磁通会聚于其中。
此外,图24A的标号77代表在垂直于一字形方向的方向偏转电子束的磁力线。通过使用由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使磁力线77靠近位于未偏转电子束路径相对各侧的部分会聚,从而完成偏转散焦校正。
图25A和25B是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。其中图25A是前视图,图25B是在箭头方向看的沿线I-I的侧视图。
参看图25A和25B,由剖面为圆形的棒材制成的偏转散焦校正磁极片39的相对部位设置于垂直于各电子束10的一字形方向的位置使磁通会聚于其中。
此外,图25A的标号77代表在垂直于一字形方向的方向偏转电子束10的磁力线。通过使用由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使磁力线77靠近位于未偏转电子束路径相对各侧的部分会聚,从而完成偏转散焦校正。
这种构形适合于在一字形方向无须偏转的磁场会聚的情况。
图26A和26B是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。其中图26A是前视图,图26B是在箭头方向看的沿线I-I的侧视图。
参看图26A和26B,由棒材制成的偏转散焦校正磁极片39的相对部位设置于垂直于各电子束10的一字形方向的位置,使磁通会聚于其中。
此外,图26A的标号77代表在垂直于一字形方向的方向偏转电子束10的磁力线。通过使用由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可使磁力线77靠近位于未偏转电子束路径相对各侧的部分会聚,从而完成偏转散焦校正。
通过延伸磁极片在从各侧边电子束靠近颈部的部位的长度(在垂直于一字形方向),可增强磁通的会聚。
这种构形适合于在一字形方向无须偏转的磁场会聚的情况。
图27A和27B是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。其中图27A是前视图,图27B是在箭头方向看的沿线I-I的侧视图。
参看图27A和27B,由板材制成的偏转散焦校正磁极片39的相对部位设置于垂直于各电子束10的一字形方向的位置,使磁通会聚于其中。
亦即,通过设置由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可以靠近位于未偏转电子束路径的相对侧的部位,形成在垂直于一字形方向的方向偏转电子束10的磁力线77和在一字形方向偏转电子束10的磁力线78。
图28A和28B是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。其中图28A是前视图,图28B是在箭头方向看的沿线I-I的侧视图。
参看图28A和28B,由剖面为圆形的棒材制成的偏转散焦校正磁极片39设置于各电子束10在一字形方向的相对侧,使磁通会聚至各电子束10。
亦即,通过设置由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可以靠近位于未偏转电子束路径的相对侧的部位,形成在垂直于一字形方向的方向偏转电子束10的磁力线77和在一字形方向偏转电子束10的磁力线78。
图29A和29B是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。其中图29A是前视图,图29B是在箭头方向看的沿线I-I的侧视图。
参看图29A和29B,由沿阴极射线管轴向较长的板材制成的偏转散焦校正磁极片39设置于各电子束10在一字形方向的相对侧,使磁通会聚至各电子束10。
亦即,通过使用由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,可以靠近保持未偏转电子束轨迹的部位,形成在垂直于一字形方向的方向偏转电子束10的磁力线77和在一字形方向偏转电子束10的磁力线78。
图30是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。
参看图30,由沿垂直于一字形方向的方向较长的板材制成的偏转散焦校正磁极片39设置于各电子束10在一字形方向的相对侧,使磁通会聚至各电子束10。
亦即,通过设置由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,并靠近位于未偏转电子束10路径的相对侧的部位均匀地分布与偏转磁场同步的磁力线77,可以校正此部位的偏转散焦。
此外,磁力线78在一字形方向偏转电子束10。
图31是用于本发明三根一字形电子束式彩色阴相射线管的偏转散焦校正磁极片另一种结构的示意图。
参看图31,由沿垂直于一字形方向的方向较长的窄幅板材制成的偏转散焦校正磁极片39设置于各电子束10在一字形方向的相对侧,使磁通会聚至各电子束10。
亦即,通过设置由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,并靠近位于未偏转电子束10路径的相对侧的部位均匀地分布与偏转磁场同步的磁力线77,可以校正此部位的偏转散焦。
此外,磁力线78在一字形方向偏转电子束10。
图32是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。
参看图32,由沿垂直于一字形方向的方向较长的板材制成的偏转散焦校正磁极片39设置于各电子束10在一字形方向的相对侧,而且位于中央电子束各侧的磁极片宽度大于从各侧边电子束靠近颈部的磁极片宽度,以使磁通会聚至各电子束10。
亦即,通过设置由磁性材料制成的、用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的磁极片39,并靠近位于未偏转电子束10路径的相对侧的部位均匀地分布与偏转磁场同步的磁力线77,可以校正此部位的偏转散焦。
此外,磁力线78在一字形方向偏转电子束10。
四个磁极片39的宽度关系可以颠倒,由此获得特别作用于各侧边电子束的更均匀的磁力线77的分布。
图33是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。
参看图33,由沿垂直于一字形方向的方向较长的板材制成的偏转散焦校正磁极片39设置于各电子束10在一字形方向的相对侧,以使磁通会聚至各电子束10。
标号77代表在垂直于一字形方向的方向偏转电子束10的磁力线,78是在一字形方向偏转电子束10的磁力线。
中央电子束各侧的磁极片长度长于从各侧边电子束靠近颈部处的磁极片长度。这样可使作用于中央电子束的磁力线77均匀,并使在颈部作用于各侧边电子束的磁力线77致密及均匀。
四个磁极片39的长度关系可以颠倒,由此获得特别作用于各侧边电子束的更均匀的磁力线77的分布。
图34是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。
参看图34,由沿垂直于一字形方向的方向较长的板材制成的偏转散焦校正磁极片39设置于各电子束10在一字形方向的相对侧,以使磁通会聚至各电子束10。
标号77代表在垂直于一字形方向的方向偏转电子束10的磁力线,78是在一字形方向的偏转电子束10的磁力线。
中央电子束各侧的磁极片长度长于从各侧边电子束靠近颈部处的磁极片长度,而且,位于从各侧边电子束靠近颈部的磁极片在电子束侧的部位长度被缩短。
按此构形,可以在颈部侧获得作用于各侧边电子束的比图33所示构形更为致密和均匀的磁力线77的分布。
四个磁极片39的形状关系可以颠倒,由此获得不同于上述的磁场分布。
图35A和35B是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。
图35A是前视图,图35B是在箭头方向看的沿线I-I的侧视图。
参看图35A和35B,由沿垂直于一字形方向的方向较长的棒材制成的偏转散焦校正磁极片39的磁极端头39A的相对部位设置于垂直于各电子束10的一字形方向的方向,以使在垂直于一字形方向的方向偏转的磁通会聚。
标号77代表在垂直于一字形方向的方向偏转电子束10的磁力线,78是在一字形方向偏转电子束10的磁力线。
位于从各侧边电子束靠近颈部的磁极片,有一部位F在一字形方向的中轴侧沿垂直于一字形方向的方向延伸,另一部位G在相反方向延伸至部位F。
按此构形,部位F可以使在一字形方向偏转的偏转磁场中作用于各侧边电子束的磁场靠近颈部的磁通密度增大,部位G可以增大在垂直于一字形方向的方向的偏转散焦校正磁场。
图36是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。在此构形,如图35A和35所示的在颈部一侧的磁极片由弯曲的棒材制成。此构形的效果与图35A和35B所示相同。
图37A和37B是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。其中图37A是前视图,图37B是在箭头方向看的沿线I-I的侧视图。
参看图37A和37B,偏转散焦校正磁极片39位于各电子束在一字形方向的相对各侧,磁极端头39A的相对部位位于垂直于电子束1的一字形方向的方向,在端部突出于阴极射线管轴向。
标号77代表在垂直于一字形方向的方向偏转电子束10的磁力线,78是在一字形方向偏转电子束10的磁力线。
通过设置用来在偏转磁场中形成与偏转磁场同步的局部改善的非均匀磁场的这种构形的磁极片39,可以在阴极射线管轴向延伸局部改善的非均匀磁场的范围,由此改善偏转散焦校正灵敏度。
图38是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。尤其是展示了用于通过水平偏转来进行散焦校正的磁力线。
参看图38,磁极片39的磁极端头39A的相对部位位于垂直于各电子束10的一字形方向的方向,用于在相对部位之间会聚磁通,从而校正偏转散焦。
图39是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。尤其是展示了用于通过水平偏转来进行散焦校正的磁力线。
参看图39,磁极片39的磁极端头39A的相对部位位于垂直于各电子束10的一字形方向的方向,用于在相对部位之间会聚磁通,从而校正偏转散焦。
当中央电子枪在偏转散焦量上不同于各侧边电子枪时,通过把磁极片在垂直于一字形方向的方向的长度取为电子枪所需值,来改变磁通会聚量,从而适当地控制各电子枪的校正量。
图40是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。尤其是展示了用于通过水平偏转来进行散焦校正的磁力线。
参看图40,磁极片39的磁极端头39A的相对部位位于垂直于各电子束10的一字形方向的方向,用于在相对部位之间会聚磁通,从而校正偏转散焦。
当各侧边电子枪的电子束的水平发散态在中央电子枪侧与在相对侧之间不同时,通过改变电子枪之间的距离和磁极片39之间的距离W可以适当地控制发散态。
图41是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。尤其是展示了用于通过水平偏转来进行散焦校正的磁力线。
参看图41,磁极片39的磁极端头39A位于垂直于各电子束10的一字形方向的方向,用于在相对部位之间会聚磁通,从而校正偏转散焦。
当各侧边电子枪的电子束的水平发散态相互不同时,通过改变用于各电子枪的磁极片在一字形方向的长度可以适当地控制发散态。
图42是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。尤其是展示了用于通过水平偏转来进行散焦校正的磁力线。
参看图42,磁极片39的磁极端头39A的相对部位位于垂直于各电子束10的一字形方向的方向,用于在相对部位之间会聚磁通,从而校正偏转散焦。
当各侧边电子枪与中央电子枪之间的电子束的水平发散态不同时,通过改变对应于各电子枪的磁极端头39A相对部位的长度P和Ps可以适当地调节发散态。
图43是用于本发明三根一形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。尤其是展示了用于通过水平偏转来进行散焦校正的磁力线。
参看图43,磁极片39的磁极端头39A的相对部位位于垂直于各电子束10的一字形方向的方向,用于在相对部位之间会聚磁通,从而校正偏转散焦。
通过改变磁极片39在一字形方向于磁极端头39A的相对部位侧与远离相对部位侧的一侧之间的长度,可以适当地控制磁通的会聚态。
图44A是前视图,图44B是在箭头方向看的沿线I-I的侧视图。
图44A和44B是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。尤其是展示了用于通过水平偏转来进行散焦校正的磁力线。
参看图44A和44B,磁极片39的磁极端头39A的相对部位位于垂直于各电子束10的一字形方向的方向,用于在相对部位之间会聚磁通,从而校正偏转散焦。
通过缩短磁极片在一字形方向的长度,延伸磁极片在轴向的长度L,靠近电子束中央形成相对于电子束其强度较高并较长的磁场可以增加水平方向的校正量及抑制对垂直偏转磁场的作用。
图45A和45B、46A和46B、47A和47B均是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。尤其展示了用于通过水平偏转来进行散焦校正的磁力线
图45A、46A和47A分别是前视图,图45B、46B和47B分别是在箭头方向看的沿线I-I的侧视图。
参看这些图,磁极片39的磁极端头39A的相对部位位于垂直于各电子束10的一字形方向的方向,用于在相对部位之间会聚磁通,从而校正偏转散焦。
通过缩短磁极片在一字形方向的长度,在从靠近一字形中央轴到远离一字形中央轴的范围延伸磁极片在轴向的长度L,靠近电子束中央形成高强度的磁场,可以增加水平方向的校正量及抑制对垂直偏转磁场的作用。
图48A和48B是用于本发明三根一字形电子束式彩色阴极射线管的偏转散焦校正磁极片另一种结构的示意图。尤其是展示了用于通过垂直偏转和水平偏转来进行散焦校正的磁力线。
图48A是前视图,图48B是在箭头方向看的沿线I-I的侧视图。
参看这些图,磁极片391的磁极端头391A的相对部位位于垂直于各电子束10的一字形方向的方向,用于在相对部位之间会聚磁通从而校正偏转散焦。
通过缩短磁极片在一字形方向的长度,在从靠近一字形中央轴到远离一字形中央轴的范围延伸磁极片在轴向的长度,靠近电子束中央形成高强度的磁场,可以增加水平方向的校正量及抑制对垂直偏转磁场的作用。
磁极片391的磁极端头391A相对部位之间的各间距也位于垂直于各电子束10的一字形方向的方向,用于在磁极端头391A的相对部位之间会聚磁通,从而进一步在垂直方向校正偏转散焦。
通过缩短磁极片39在垂直于一字形方向的方向的长度,可以增加垂直方向的校正量及抑制对水平偏转磁场的作用。
此外,对应于各偏转磁场的磁极片轴向位置相互不同,用于进一步降低水平和垂直偏转磁场的相互影响。
图84A、84B~89A、89B分别展示了具有不同形状的磁极片3和磁极片支架105的组合例。这些例子中,应该满足关系H>W。
图49A~49C是采用本发明的阴极射线管的单束式电子枪主透镜部位的示意图,图49A是剖面图,图49B是从图49A箭头方向看的前视图,图49C是透视图。
参看这些图,阳极104直径形成得大于聚焦电极103的直径。这种电极结构可使主透镜小孔增大。这增大了穿过主透镜的电子束直径,使处于阴极射线管屏中央部位的束点直径变小,结果分辨率提高。
当穿过主透镜的电子束直径增大时,因主透镜与荧光屏之间的距离变化而产生的对偏转的偏转散焦影响增大,结果,对屏中央分辨率的改善和偏转散焦的增大是不相容的。
根据本发明,设置偏转散焦校正磁极片39,用来形成根据偏转量发散电子束的磁场。这些图中,根据在垂直方向偏转电子束的磁场形成在垂直方向发散电子束的磁场。
图50A~50C是采用本发明的阴极射线管的单束式电子枪另一种主透镜部位的示意图,图50A是剖面图,图50B是从图50A箭头方向看的前视图,图50C是透视图。
除了形成主透镜表面的电极结构之外,此构形的基本工作状态与图49A~49C相同。
图51和52是电子枪基本部分和电子束轨迹的示意图,其中阳极104的直径大于聚焦电极,如图49A~49C和图50A~50C所示。
这些图中,在屏中央部实施无偏转磁场的最佳聚焦。根据偏转在不设置偏转散焦校正磁极片时,电子束聚焦在屏前部,如标号1。所示。
相反,在设置磁极片39时,电子束最佳聚焦在屏上,如标号10。′所示。
图53是采用本发明的阴极射线管的单束式电子枪另一种主透镜部位的示意图,其中使用四个偏转散焦校正磁极片39。在水平方向磁极片之间的间距较窄。
由此构形,可以对在垂直方向偏转的电子束10的偏转散焦进行校正。
图54是采用本发明的阴极射线管的单束式电子枪另一种主透镜部位的示意图,其中使用四个偏转散焦校正磁极片39。在垂直方向磁极片之间的间距较窄。
由此构形,可以对在水平方向偏转的电子束10的偏转散焦进行校正。此构形适用于投射式阴极射线管。
根据水平和垂直磁场分布,图53和54所示的磁极片可以相互组合。
图55是采用本发明的阴极射线管的单束式电子枪另一种构形实例的示意图,其中使用两个偏转散焦校正磁极片39。在垂直方向磁极片39之间的每个间距较窄。在水平方向偏转的电子束10的偏转散焦可以校正。此外,由于在水平方向磁极片长度较长,所以,与图54所示构形相比,水平方向的磁通可以大量地会聚。
图56是采用本发明的阴极射线管的单束式电子枪另一种构形实例的示意图,此例中使用四个偏转散焦校正磁极片39,可以校正在垂直和水平方向偏转的电子束10的偏转散焦。
图57是用于使用本发明的一字形三电子束式的阴极射线管的电子枪的部分剖面图。
图58是用于使用本发明的一字形三电子束式的阴极射线管的另一电子枪的整体示意图。
用于使用本发明的一字形三电子束式阴极射线管的又一电子枪的部分剖面示于图13。
图59展示了在主透镜与荧光屏之间对电子束的空间电荷斥力的作用。标号L8是透镜38与荧光屏13之间的距离。
图59中,当电子束10足够地远离阳极4(第四栅极)时,电子束1周围成为阳极电平,电场几乎被消除。此状态下,迁移同时被主透镜38聚焦的电子束10因空间电荷斥力而改变轨迹,在到达荧光膜1之前,尺寸减至最小直径D4。之后,随着接近荧光膜13电子束10尺寸增大,并在荧光膜13成为直径D1
图60是主透镜与荧光膜之间的距离与荧光膜上的电子束点之间的关系图。在阴极射线管按相同条件驱动时,上述空间电荷斥力取决于主透镜38与荧光膜13之间的距离L8。亦即,束点直径D1随距离L8线性增大。
对于彩色电视接收机所用阴极射线管,确定最大偏转角时,主透镜38与荧光膜13之间的距离L8随着阴极射线管屏尺寸的增加而增加。所以,当阴极射线管屏尺寸增大时,电子束在荧光膜13上的点径D1也增大,结果通过增大屏尺寸不能使分辨率提高太多。
图61是本发明阴极射线管第一实施例尺寸的示意图,图62是已有的相关阴极射线管的尺寸示意图,用于与阴极射线管第一实施例对比。
图61和62所示阴极射线管所用的电子枪在技术要求上相互一样。所以,每个阴极射线管具有相同的从作为阴极射线管底部的芯柱部分到主透镜38之间的距离L9。
但是,图62所示阴极射线管中,主透镜38必须与偏转线圈11形成的偏转磁场分离开,用以防止穿过主透镜38的电子束受到干扰因而电子枪设置在从偏转线圈11在颈部7的方向上向后伸的位置。结果,主透镜38与荧光屏13之间的距离L8不能比偏转线圈11与荧光屏13之间的距离缩短得更多。
主透镜直径做得较大,用于改善阴极射线管屏中心的分辨率。主透镜直径的放大作用显示为穿过主透镜38的电子束直径的增大随着穿过主透镜38的电子束直径的增大。偏转磁场的干扰也变大以致大直径主透镜必须进一步与偏转磁场分离开。
相反,图61所示本发明的构形中,考虑到以下因素,即穿过主透镜38的电子束由偏转磁场干扰,而设置偏转散焦校正磁极片39,用于在偏转磁场中形成与偏转磁场同步的局部改善非均匀磁场,以致距离L8可以比偏转线圈11与荧光屏13之间的距离缩短得更多。
所以,在本发明的阴极射线管中,主透镜与荧光屏之间的距离可以比已有的阴极射线管缩短得更多,结果,即使阴极射管的屏尺寸与具有大直径的主透镜对应地增大时,也能减少空间电荷斥力的影响,降低电子束在荧光屏上的束点直径,结果提高分辨率。
按此方式,由于电子枪长度难于在抑制聚焦特性降低的同时缩短,所以已有的阴极射线管的总长L10难于缩短,但是,在本发明的一个实施例中,由于缩短了主透镜38与荧光屏13之间的距离,所以无需改变从电子枪阴极伸向主透镜的部分,即可明显地缩短阴极射线管的总长L10。
根据本发明的一个实施例,在偏转磁场中,按图13所示的固定于电子枪阳极6上的方式,设置偏转散焦校正磁极片,如图12所示,用于形成与偏转磁场同步的局部改善的非均匀磁场。此构形可用于具有三根一字形电子束式的彩色阴极射线管(颈部外径:29mm,最大偏转角:112°,荧光屏对角线尺寸:68cm)。
阴极射线管与图10A所示偏转磁场组合,位于荧光屏一侧的磁极片39的表面E定在-96mm的轴向位置。阴极射线管由30KV的阴极电压来驱动。通过驱动上述阴极射线管可获得较好结果。
由处于上述部位的磁通B(mT)除以阳极电压Eb(KV)的平方根所得值是0.0104mT·(kV)-1/2。这是最大磁通密度的40%左右。
而且,确定磁极片39表面E的部位,与产生偏转磁场的线圈铁芯在荧光屏一侧的端部向阴极一侧分开约18mm。此外,当图10A中主透镜中心表面38的轴向位置定在-100mm以上的位置时,因偏转磁场对电子束的干扰存在,由此降低了荧光屏边缘部位的分辨率。
根据另一实施例,图55所示的偏转聚焦校正磁极片39固定于图14所示的电子枪阳极上,用于在偏转磁场中形成局部改善的非均匀磁场。
这种阴极射线管是投影式的,最大偏转角为75°,除了静电透镜之外还使用磁聚焦线圈74作为电子枪主透镜。在图14所示构形中,通过由形成在颈部7内表面上的电阻膜75和设置于阴极射线管的电阻76对荧光屏电压分压而产生电子枪阳极电压。
电子枪阳极4面对主透镜一侧的表面4a与磁极片39在荧光屏一侧的端部之间的距离是180mm。
图61所示构形中,设置用来在偏转磁场中形成局部改善的非均匀磁场的偏转散焦校正磁极片39,可使主透镜38靠近荧光屏13设置而仅有较少的偏围转磁场的影响,以致阳极4面对主透镜的表面104a可以比颈部7在荧光屏一侧的端部7-1更为移向荧光屏。
在中间电极空间施加高压于阴极射线管的电子枪,并产生强电场。为了稳定击穿电压特性,在制造中需要高水平设计技术和质量控制。最大强电场形成主透镜38附近。靠近主透镜38的电场也受颈部内壁的充电和残留在阴极射线管并粘附于电子枪电极上的微尘的影响。由于主透镜38不面对颈部7,所以此实施例能避免这种不利之处。
此外,通过把加在阳极4的电源从颈部7内壁向盘屏8的内壁偏移,可以防止因颈部7内壁上的石墨膜脱落而引起的击穿电压下降。
通常,在彩色电视接收机和计算机的终端显示系统中,管壳深度取决于阴极射线管总长度L10。具体地,近来的彩色电视接收机趋向于增大屏尺寸,其程度以致放置于家庭室内时不能忽略管壳深度。当彩色电视接收机平行于其它家俱放置时,仅几十毫米的深度很不方便。结果,从方便使用角度来看,缩短管壳深度显然有利。
根据本发明的实施例,可以提供一种彩色电视接收机和计算机终端显示系统,通过缩短阴极射线管的总长度,在不损害聚焦特性的条件下,与已有的管壳相比可以显著地缩短管壳深度。
通常,彩色电视接收机、阴极射线管成品和用于阴极射线管的部件例如管锥在体积上明显大于电子部件如半导体元件,因此,每单位数量的运输成本增多。尤其是运输路程较长时如向海外,这是不可忽略的。根据本发明的实施例,由于可以提供阴极射线管总长度可以缩短、管壳深度也可缩短的彩色电视接收机,所以可以节省运输成本。
图63A~63D是在本发明的图象显示系统与已有的图象显示系统之间比较尺寸的示意图。
图63A和63B展示了使用本发明的阴极射线管的图象显示系统其中图63A是前视图,图63B是侧视图。从这些图可见,由于可以缩短阴极射线管总长度L10,所以图象显示系统深度可以缩短。
相反,图63C和63D展示了使用已有的阴极射线管的图象显示系统,其中图63C是前视图,图63D是侧视图。从这些图可见,由于阴极射线管总长度不可以缩短,所以图象显示系统深度不能缩短。
如上所述,本发明提供一种在阴极射线管中校正偏转散焦的方法,能在全屏和整个电子束电流区改善聚焦特性及获得期望的分辨率,尤其是无需动态聚焦,而且还可在小电流区减少莫尔条纹,还提供一种使用该方法的阴极射线管和包含该阴极射线管的图象显示系统。
本发明还提供一种阴极射线管的校正偏转散焦方法,能改善聚焦特性及缩短阴极射线管的总长,还提供采用该方法的阴极射线管和包含该阴极射线管的图象显示系统。

Claims (50)

1.一种在阴极射线管中校正偏转散焦的方法,该阴极射线管包括含多个电极的电子枪、电子束偏转装置和荧光屏,
所说的方法包括在由所说电子束偏转装置产生的偏转磁场中设置磁性材料磁极片,由此局部改善在电子束路径中的所说偏转磁场和校正电子束的偏转散焦。
2.一种在阴极射线管中校正偏转散焦的方法,该阴极射线管包括含多个电极的电子枪、电子束偏转装置和荧光屏,
所说的方法包括在由所说电子束偏转装置产生的偏转磁场中设置磁性材料磁极片,由此局部改善在电子束路径中的所说偏转磁场和相应于所说电子束的偏转量校正所说电子束的偏转散焦。
3.一种在阴极射线管中校正偏转散焦的方法,该阴极射线管包括含多个电极的电子枪、电子束偏转装置和荧光屏,
所说的方法包括在由所说电子束偏转装置产生的偏转磁场中设置磁性材料磁极片,由此在电子束路径中建立与所说偏转磁场的变化同步改变的非均匀磁场,并相应于所说电子束的偏转量校正所说电子束的偏转散焦。
4.一种在阴极射线管中校正偏转散焦的方法,该阴极射线管包括含多个电极的电子枪、电子束偏转装置和荧光屏,
所说的方法包括在由所说电子束偏转装置产生的偏转磁场中相对于未偏转电子束路径基本对称地把磁性材料磁极片设置在未偏转电子束路径的相对各侧,由此在电子束路径中建立至少一个对应于所说的偏转磁场分布而变化的非均匀磁场分布,和对应于所说电子束的偏转量校正所说电子束的偏转散焦。
5.根据权利要求4所述的在阴极射线管中校正偏转散焦的方法,其特征在于所说的至少一个非均匀磁场对所说电子束具有发散作用。
6.根据权利要求4所述的在阴极射线管中校正偏转散焦的方法,其特征在于所说的至少一个非均匀磁场对所说电子束具有发散作用,并由此对应于沿所说电子束扫描方向和沿垂直于所说电子束扫描的方向中的至少一个方向的偏转量校正偏转散焦。
7.一种在阴极射线管中校正偏转散焦的方法,该阴极射线管包括含多个电极的电子枪、电子束偏转装置和荧光屏,
所说的方法包括在由所说电子束偏转装置产生的偏转磁场中相对于未偏转电子束路径基本对称地将磁性材料的磁极片设置在未偏转电子束路径的相对各侧,并由此基本上以未偏转电子束的中心路径为中心建立对应于所说偏转磁场分布而变化的非均匀磁场和对应于所说电子束的偏转量校正所说电子束的偏转散焦。
8.根据权利要求7所述的在阴极射线管中校正偏转散焦的方法,其特征在于所说的非均匀磁场对所说电子束具有聚焦作用。
9.根据权利要求7所述的在阴极射线管中校正偏转散焦的方法,其特征在于所说的非均匀磁场对所说电子束具有聚焦作用,并由此对应于沿所说电子束扫描方向和沿垂直于所说电子束扫描的方向中的至少一个方向的偏转量校正偏转散焦。
10.一种在阴极射线管中校正偏转散焦的方法,该阳极射线管包括含多个电极并产生三根一字形电子束的电子枪、电子束偏转装置和荧光屏,
所说的方法包括在由所说电子束偏转装置产生的偏转磁场中设置磁性材料的磁极片,并由此沿垂直于所说一字形方向在零偏转处的所说三根电子束的中心路径的各侧建立至少一个非均匀磁场
所说的至少一个非均匀磁场具有对应于所说三根电子束的偏转量对所说三根电子束的发散作用。
11.一种在阴极射线管中校正偏转聚焦的方法,该阴极射线管包括含多个电极并产生三根一字形电子束的电子枪、电子束偏转装置和荧光屏,
所说的方法包括在由所说电子束偏转装置产生的偏转磁场中设置磁性材料的磁极片,并由此在零偏转处的所说三根电子束的中心路径的各侧、沿垂直于所说一字形方向建立至少一个非均匀磁场,所说的至少一个第一非均匀磁场具有对应于所说三根电子束的偏转量对所说三根电子束的发散作用,
并且建立至少一个以在零偏转处的所说三根电子束的各中心轨迹为中心的第二非均匀磁场,所说至少一个第二非均匀磁场具有对应于所说三根电子束偏转量对所说三根电子束的聚焦作用。
12.一种在阴极射线管中校正偏转散焦的方法,该阴极射线管包括含多个电极并产生电子束的电子枪、电子束偏转装置和荧光屏,
所说的方法包括在由所说电子束偏转装置产生的偏转磁场中设置磁性材料的磁极片,并由此在零偏转处的各所说电子束的中心路径各侧建立至少一个非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
在所说非均匀磁场中由所说电子束横向穿过的最大磁通和最小磁通的差别为由所说电子束交链的磁通的1%至30%的范围。
13.根据权利要求1至12中的任一项所述的在阴极射线管中校正偏转散焦的方法,其特征在于所说的磁极片由软磁材料构成。
14.根据权利要求1至12中的任一项所述的在阴极射线管中校正偏转散焦的方法,其特征在于所说的磁极片由具有室温下相对磁导率不低于50的软磁材料构成。
15.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片在零偏转处的所说电子束的中心路径的各侧建立至少一个非均匀磁场,用于对应于所说电子束偏转校正偏转散焦,
在具有不低于所说偏转磁场分布的最大值的5%的磁通密度的区域设置所说的磁极片。
16.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片在零偏转处的所说电子束的中心路径的各侧建立至少一个非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说的磁极片设置在自所说电子束偏转装置的磁芯朝向所说电子枪阴极的50mm之内。
17.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片在零偏转处的所说电子束的中心路径的各侧建立至少一个非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说的磁极片设置在具有满足下列关系式的磁通密度B的区域内,
         B/(Eb的平方根)≥0.2其中:Eb是以KV表示的所说电子枪的阳极电压,
  B是以mT表示的磁通密度。
18.  一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片在零偏转处的所说电子束的中心路径的各侧建立至少一个非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说非均匀磁场的分布最大值不低于所说偏转磁场分布最大值的5%。
19.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片在零偏转处的所说电子束的中心路径的各侧建立至少一个非均匀磁场,用于对应于所说电子束偏转校正偏转散焦,
所说的磁极片设置在具有满足下列关系式的磁通密度B的区域内,
           B/(Eb的平方根)≥0.001其中:Eb是以KV表示的所说电子枪的阳极电压;
  B是以mT表示的磁通密度。
20.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片在零偏转处的所说电子束的中心路径的各侧建立至少一个非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说的磁极片的磁极端头之间的间隙不小于面对所说电子枪主透镜侧的阳极上的小孔直径的10%,并且沿垂直于所说电子束扫描的方向测量所说的直径。
21.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片在零偏转处的所说电子束的中心路径的各侧建立至少一个非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说磁极片安装于其上的电极的小孔,其构形是其沿垂直于所说电子束扫描线方向的直径大于其沿所说扫描线方向的直径。
22.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片在零偏转处的所说电子束的中心路径的各侧建立至少一个非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说磁极片安装于其上的所说电子枪电极上的小孔,其构形是具有沿垂直于所说电子束扫描线方向延伸的缝隙。
23.一种包括含多个电极并产生三根一字形电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片在零偏转处的所说电子束的中心路径的各侧建立至少一个非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说磁极片安装于其上的所说电子枪电极上的小孔为所说三根电子束所共有。
24.一种包括含多个电极并产生三根一字形电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片在零偏转处的所说电子束的中心路径的各侧建立至少一个非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
在零偏转处的所说电子束中心路径的各侧的所说至少一个非均匀磁场分布的中心之间的距离不小于在面对所说电子枪主透镜一侧的阳极上的小孔直径的10钆并且所说的直径是沿垂直于所说电子束扫描方向测量的。
25.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片用于建立至少一个具有以在零偏转处的所说电子束中心路径为中心分布的非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说的磁性材料磁极片设置在具有不低于所说偏转磁场分布最大值的0.05%的磁通密度的区域。
26.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片用于建立至少一个具有以在零偏转处的所说电子束中心路径为中心分布的非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说磁性材料磁极片设置在自阴极一侧的偏转装置的磁芯端部朝向所说阴极的50mm之内。
27.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片用于建立至少一个具有以在零偏转处的所说电子束中心路径为中心分布的非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说的磁性材料磁极片设置在具有满足下列关系式的磁通密度B的区域内,
            B/(Eb的平方根)≥0.003其中:Eb是以KV为单位的所说电子枪阳极电压,
  B是以mT为单位的磁通密度。
28.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片用于建立至少一个具有以在零偏转处的所说电子束中心路径为中心分布的非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说磁性材料磁极片的磁场分布的最大值不小于所说偏转磁场分布最大值的1%。
29.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片用于建立至少一个具有以在零偏转处的所说电子束中心路径为中心分布的非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说至少一个非均匀磁场分布的最大值满足下列关系,
            B/(Eb的平方根)≥0.005其中:Eb是以KV为单位的所说电子枪阳极电压,
  B是以mT为单位的磁通密度。
30.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片用于建立至少一个具有以在零偏转处的所说电子束中心路径为中心分布的非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
在所说磁性材料磁极片的两相邻的磁极端头间的间隙不小于在面对所说电子枪主透镜一侧的阳极上的小孔直径的10%,所述直径是沿垂直于所说电子束扫描方向测量的。
31.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片用于建立至少一个具有以在零偏转处的所说电子束中心路径为中心分布的非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说磁极片安装于其上的电极的小孔,其构形是其沿垂直于所说电子束扫描线方向的直径大于沿所说扫描线方向的直径。
32.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片用于建立至少一个具有以在零偏转处的所说电子束中心路径为中心分布的非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说磁极片安装于其上的所说电子枪电极上的小孔,其构形是其具有沿垂直于所说电子束扫描线延伸的缝隙。
33.一种包括含多个电极并产生电子束的电子枪和荧光屏并与电子束偏转装置共同使用的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,该磁极片用于建立至少一个具有以在零偏转处的所说电子束中心路径为中心分布的非均匀磁场,用于对应于所说电子束的偏转校正偏转散焦,
所说磁极片安装于其上的所说电子枪电极上的小孔为所说三根电子束共有的。
34.一种包括含多个电极并产生三根一字形电子束的电子枪、电子束偏转装置和荧光屏的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,并由此在零偏转处的所说三根电子束的各中心路径的各侧建立至少一个非均匀磁场,
所说至少一个非均匀磁场的与侧边电子束相关的分布最大值不同于所说至少一个非均匀磁场的与中心电子束相关的最大值。
35.一种包括含多个电极并产生三根一字形电子束的电子枪、电子束偏转装置和荧光屏的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中的磁性材料磁极片,并由此在零偏转处的所说的三根电子束的各中心路径各侧建立至少一个非均匀磁场,
所说的至少一个非均匀磁场的与侧边电子束相关的分布相对于在所说三根电子束的零偏转处的侧边电子束路径不对称。
36.根据权利要求15至35中任一项所述的阴极射线管,其特征在于所说的磁性材料磁极片由软磁材料构成。
37.根据权利要求15至35中任一项所述的阴极射线管,其特征在于所说的磁性材料磁极片由具有不低于50的相对磁导率的软磁材料构成。
38.使用如权利要求15至37中任一项所述的阴极射线管的图像显示系统。
39.一种在阴极射线管中校正偏转散焦的方法,该阴极射管包括含多个电极的电子枪、电子束偏转装置和荧光屏,
所说的方法包括在由所说电子束偏转装置产生的偏转磁场中在未偏转电子束路径的上下,设置一对包括多个水平排列的磁性材料部件的磁极片,该水平排列的磁性材料部件之间分别留有间隙,
所说的各间隙位于包括所说未偏转电子束的所说路径的平面附近的区域并垂直于电子束水平偏转方向。
40.根据权利要求39所述的方法,其特征在于通过磁性材料部件,所说的多个磁性材料部件均横跨所说的未偏转电子束的所说路径与其面对的所说多个磁性材料部件中之一磁性连接。
41.一种在阴极射线管中校正偏转散焦的方法,该阴极射线管包括含多个电极并产生三根一字形电子束的电子枪、电子束偏转装置和荧光屏,
所说的方法包括在由所说电子束偏转装置产生的偏转磁场中在零偏转处的所说三根电子束的各轨迹上下,设置一对包括多个水平排列的磁性材料部件的磁极片,该水平排列的磁性材料部件之间分别留有间隙,
所说的间隙各分别位于包括在零偏转处的所说三根电子束的各路径的平面附近的区域并垂直于所说三根电子束的水平偏转方向。
42.根据权利要求41所述的方法,其特征在于通过磁性材料部件,所说的多个磁性材料部件均横跨通过在零偏转处的所说三根电子束的各路径与其面对的所说多个磁性材料部件中之一磁性连接。
43.一种包括含多个电极的电子枪、电子束偏转装置和荧光屏的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中,于未偏转电子束路径的上下,设置的一对含多个水平排列的磁性材料部件的磁极片,该水平排列的磁性材料部件间设置有间隙,
所说的各间隙位于包括所说未偏转偏转电子束的所说路径的平面附近的区域并垂直于电子束水平偏转方向。
44.根据权利要求43所述的方法,其特征在于通过磁性材料部件,所说的多个磁性材料部件均横跨所说未偏转电子束的所说路径与其面对的所说多个磁性材料部件中之一磁性连接。
45.一种包括含多个电极和产生三根一字形电子束的电子枪电子束偏转装置和荧光屏的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场的零偏转处设置的一对含多个水平排列的磁性材料部件的磁极片,该水平排列的磁性材料部件间设有间隙,
所说的各间隙分别位于包括在零偏转处的所说三根电子束的各路径的各平面附近的区域并垂直于所说三根电子束的水平偏转方向。
46.根据权利要求45所述的阴极射线管,其特征在于通过磁性材料部件,所说的多个磁性材料部件均横跨在零偏转处的所说三根电子束的各路径与其面对的所说多个磁性材料部件中之一磁性连接。
47.一种在阴极射线管中校正偏转散焦的方法,该阴极射线管包括含多个电极的电子枪、电子束偏转装置和荧光屏,
所说的方法包括在由所说电子束偏转装置产生的偏转磁场中在位于包括所说未偏转电子束的所说路径的平面附近的区域并垂直于电子束水平偏转方向于未偏转电子束轨迹的上下,设置一对垂直延伸的磁性材料部件。
48.一种在阴极射线管中校正偏转散焦的方法,该阴极射线管包括含多个电极的电子枪、电子束偏转装置和荧光屏,
所说的方法包括在由所说电子束偏转装置产生的偏转磁场中于零偏转处的所说三根电子束各路径的上下,在包括在零偏转处所说三根电子束各路径的各平面附近的各区域中并垂直于所说三根电子束的水平偏转方向,设置一对垂直延伸的磁性材料部件。
49.一种包括含多个电极并产生三根一字形电子束的电子枪、电子束偏转装置和荧光屏的阴极射线管,
所说的阴极射线管包括在由所说电子束偏转装置产生的偏转磁场中,在零偏转处的所说三根电子束各路径的上下,在包括在零偏转处所说三根电子束各路径的各平面附近的各区域中并垂直于所说三根电子束的水平偏转方向,设置一对垂直延伸的磁性材料部件。
50.一种在阴极射线管中校正偏转散焦的方法,该阴极射线管包括含多个电极并产生三根一字形电子束的电子枪、电子束偏转装置和荧光屏,
所说的方法包括分别在所说三根电子束路径的附近产生三个沿垂直于管轴的平面改变的磁场分布,
所说的各个磁场分布具有共同用于所有的所说三个磁场分布的相同磁极性的各峰值,以同时或者会聚或者发散所有的所说三根电子束,
在由所说电子束偏转装置产生的偏转磁场中,在邻近于所说三根电子束的各轨迹的区域设置多个磁部件。
CN96108461A 1995-05-12 1996-05-11 阴极射线管和含该管的图象显示系统 Expired - Fee Related CN1113384C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP114755/95 1995-05-12
JP7114755A JPH08315751A (ja) 1995-05-12 1995-05-12 陰極線管の偏向収差補正方法および陰極線管並びに画像表示装置
JP114755/1995 1995-05-12

Publications (2)

Publication Number Publication Date
CN1148258A true CN1148258A (zh) 1997-04-23
CN1113384C CN1113384C (zh) 2003-07-02

Family

ID=14645880

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96108461A Expired - Fee Related CN1113384C (zh) 1995-05-12 1996-05-11 阴极射线管和含该管的图象显示系统

Country Status (7)

Country Link
US (2) US6005339A (zh)
EP (1) EP0742576B1 (zh)
JP (1) JPH08315751A (zh)
KR (1) KR100242924B1 (zh)
CN (1) CN1113384C (zh)
DE (1) DE69616417T2 (zh)
IN (1) IN188168B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108176854A (zh) * 2017-12-27 2018-06-19 深圳市圆梦精密技术研究院 电子束散焦的修正方法
WO2019137183A1 (zh) * 2018-01-10 2019-07-18 桂林狮达技术股份有限公司 一种多相绕組的偏转扫描装置及偏转扫描系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079234A (ja) * 1996-09-04 1998-03-24 Hitachi Ltd カラー陰極線管のコンバーゼンス補正方法
JPH10116569A (ja) * 1996-10-14 1998-05-06 Hitachi Ltd 陰極線管の偏向収差補正方法
KR20000074316A (ko) * 1999-05-19 2000-12-15 김영남 칼라음극선관의 인라인형 전자총
KR100708630B1 (ko) * 2000-03-14 2007-04-18 삼성에스디아이 주식회사 전자총과 이를 이용한 칼라 음극선관
JP2002216664A (ja) * 2001-01-19 2002-08-02 Hitachi Ltd 陰極線管

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615102B2 (zh) * 1974-10-14 1981-04-08
JPS5161766A (ja) * 1974-11-27 1976-05-28 Hitachi Ltd Denshiju
DE2733566A1 (de) * 1976-08-02 1978-02-09 Exxon Research Engineering Co Filtersystem
JPS5423476A (en) * 1977-07-25 1979-02-22 Akashi Seisakusho Kk Composite electron lens
NL7802129A (nl) * 1978-02-27 1979-08-29 Philips Nv Inrichting voor het weergeven van gekleurde beelden.
JPS54139372A (en) * 1978-04-20 1979-10-29 Hitachi Ltd Cathode-ray tube
US4329618A (en) * 1980-05-29 1982-05-11 Rca Corporation Horizontal deflection enhancement for kinescopes
JPS5840749A (ja) * 1981-09-02 1983-03-09 Toshiba Corp 磁気集束型陰極線管
JPS58220339A (ja) * 1982-06-17 1983-12-21 Toshiba Corp カラ−受像管
JPS598246A (ja) * 1982-07-05 1984-01-17 Toshiba Corp 電子銃
JPS59127346A (ja) * 1983-01-10 1984-07-23 Hitachi Ltd カラ−受像管電子銃
JPH0821337B2 (ja) * 1983-10-12 1996-03-04 株式会社東芝 電子銃構体
US4556819A (en) * 1983-12-13 1985-12-03 Rca Corporation Color picture tube having inline electron gun with coma correction members
NL8402303A (nl) * 1984-07-20 1986-02-17 Philips Nv Kleurenbeeldbuis.
FR2585878B1 (fr) * 1985-07-30 1988-12-09 Videocolor Conformateur de champ, pour tube de television couleur a trois faisceaux en ligne
JPS63231848A (ja) * 1987-03-20 1988-09-27 Hitachi Ltd カラ−受像管
JPS63294653A (ja) * 1987-05-27 1988-12-01 Hitachi Ltd インラインカラ−受像管装置
US5036258A (en) * 1989-08-11 1991-07-30 Zenith Electronics Corporation Color CRT system and process with dynamic quadrupole lens structure
DE69017350T2 (de) * 1989-10-25 1995-07-13 Toshiba Kawasaki Kk Farbbildkathodenstrahlröhre.
JPH0452586A (ja) * 1990-06-21 1992-02-20 Nec Corp 測距装置
US5107238A (en) * 1991-04-01 1992-04-21 The United States Of America As Represented By The Secretary Of The Army Magnetic cladding for use in periodic permanent magnet stacks
JPH04324229A (ja) * 1991-04-25 1992-11-13 Nec Corp インライン型カラー受像管用電子銃
JPH0574367A (ja) * 1991-09-12 1993-03-26 Nec Corp インライン型カラー受像管用電子銃
US5350967A (en) * 1991-10-28 1994-09-27 Chunghwa Picture Tubes, Ltd. Inline electron gun with negative astigmatism beam forming and dynamic quadrupole main lens
JPH05159720A (ja) * 1991-12-02 1993-06-25 Hitachi Ltd インライン型電子銃を有するカラー陰極線管
US5170101A (en) * 1991-12-30 1992-12-08 Zenith Electronics Corporation Constant horizontal dimension symmetrical beam in-line electron gun
EP0551027B1 (en) * 1992-01-10 1997-09-17 THOMSON TUBES & DISPLAYS S.A. Magnetic focusing device
JPH0636704A (ja) * 1992-07-16 1994-02-10 Hitachi Ltd 陰極線管
JP3135421B2 (ja) * 1993-07-06 2001-02-13 松下電子工業株式会社 カラー陰極線管
US5412277A (en) * 1993-08-25 1995-05-02 Chunghwa Picture Tubes, Ltd. Dynamic off-axis defocusing correction for deflection lens CRT
JPH0778573A (ja) * 1993-09-09 1995-03-20 Hitachi Ltd 陰極線管
KR950012549A (ko) * 1993-10-22 1995-05-16 에스. 씨. 첸 칼라 음극선관전자총을 위한 연장중앙 원형 개구를 가진 오목한 체인-링크 주렌즈 설계
JPH07211258A (ja) * 1994-01-07 1995-08-11 Hitachi Ltd カラー陰極線管及び画像表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108176854A (zh) * 2017-12-27 2018-06-19 深圳市圆梦精密技术研究院 电子束散焦的修正方法
WO2019137183A1 (zh) * 2018-01-10 2019-07-18 桂林狮达技术股份有限公司 一种多相绕組的偏转扫描装置及偏转扫描系统
US10804070B2 (en) 2018-01-10 2020-10-13 Guilin Thd Technology Co., Ltd Deflection scanning device with multi-phase winding and deflection scanning system

Also Published As

Publication number Publication date
JPH08315751A (ja) 1996-11-29
CN1113384C (zh) 2003-07-02
DE69616417T2 (de) 2002-06-27
US6005339A (en) 1999-12-21
DE69616417D1 (de) 2001-12-06
EP0742576A2 (en) 1996-11-13
US6329746B1 (en) 2001-12-11
EP0742576A3 (en) 1997-03-26
EP0742576B1 (en) 2001-10-31
KR100242924B1 (ko) 2000-02-01
IN188168B (zh) 2002-08-31

Similar Documents

Publication Publication Date Title
CN1263067C (zh) 气体放电面板
CN1288507C (zh) 能束曝光方法和曝光装置
CN1115705C (zh) 阴极组件、电子枪组件、电子管、灯丝、及阴极组件和电子枪组件的制造方法
CN1906728A (zh) 离子束装置
CN1113384C (zh) 阴极射线管和含该管的图象显示系统
CN1126143C (zh) 彩色阴极射线管
CN1107967C (zh) 小颈径彩色阴极射线管
CN1663008A (zh) 用于提供一种合适的表面电位分布的等离子体显示面板用共面放电电极板
CN1196568A (zh) 偏转系统和用于偏转系统的偏转磁轭
CN1082241C (zh) 彩色阴极射线管
CN1051870C (zh) 电子枪和含该电子枪的阴极射线管
CN1149620C (zh) 阴极射线管和图象显示设备
CN1279571C (zh) 彩色阴极射线管装置
CN1094845A (zh) 阴极射线管
US7196461B2 (en) Structure of electron gun for cathode ray tube
CN1259756A (zh) 总长度缩短的阴极射线管
CN1276676A (zh) 图像控制设备和方法,以及图像显示设备
CN1133195C (zh) 彩色阴极射线管
CN1087487C (zh) 彩色阴极射线管
US6259196B1 (en) CRT deflection-defocusing correcting member therefor, a method of manufacturing same member, and an image display system including same CRT
CN1293591C (zh) 备有冷阴极电子枪的高分辨率显像管器件
CN1257299A (zh) 阴极射线管
CN1194369C (zh) 阴极射线管和使用该阴极射线管的图像显示装置
CN1172350C (zh) 彩色阴极射线管
CN1201367C (zh) 彩色阴极射线管装置

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee