CN114807609B - 一种高效回收废水中镍的方法 - Google Patents

一种高效回收废水中镍的方法 Download PDF

Info

Publication number
CN114807609B
CN114807609B CN202210371810.2A CN202210371810A CN114807609B CN 114807609 B CN114807609 B CN 114807609B CN 202210371810 A CN202210371810 A CN 202210371810A CN 114807609 B CN114807609 B CN 114807609B
Authority
CN
China
Prior art keywords
nickel
wastewater
bda
composite
efficiently recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210371810.2A
Other languages
English (en)
Other versions
CN114807609A (zh
Inventor
关伟
刘永胜
李宁
袁明杰
谢志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Arts and Sciences
Chongqing Technology and Business University
Original Assignee
Chongqing University of Arts and Sciences
Chongqing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Arts and Sciences, Chongqing Technology and Business University filed Critical Chongqing University of Arts and Sciences
Priority to CN202210371810.2A priority Critical patent/CN114807609B/zh
Priority to JP2022107406A priority patent/JP7153173B1/ja
Publication of CN114807609A publication Critical patent/CN114807609A/zh
Priority to US18/193,318 priority patent/US11952291B2/en
Application granted granted Critical
Publication of CN114807609B publication Critical patent/CN114807609B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/06Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese
    • C25C1/08Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/004Seals, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46145Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/4615Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/14Additives which dissolves or releases substances when predefined environmental conditions are reached, e.g. pH or temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

一种高效回收废水中镍的方法,是调节含镍废水pH为3‑9,采用磷酸二异辛酯(P204)和2‑溴癸酸(2‑BDA)作为复合萃取剂,置于含镍废水中,常温下搅拌反应10‑20min,然后采用硫酸解吸获得富集液后进行电沉积处理。本发明中以磷酸二异辛酯和2‑溴癸酸在特定比例下作为复合萃取剂,以较少的萃取剂实现了高效的释放镍离子,废水中镍离子的去除率达到了91.72%,且达到去除平衡的时间仅仅为10min左右,镍离子的回收率达到99.4%。

Description

一种高效回收废水中镍的方法
技术领域
本发明涉及工业废水处理技术领域,具体涉及一种高效回收废水中镍的方法。
背景技术
电镀作为全球应用领域最广泛的技术,受到越来越多人的关注。电镀生产给各工业产品附上包覆膜,但同时给全球生态环境和自然资源带来了严重的威胁。化学镀镍过程中会持续发生氧化还原反应,镀液逐渐被消耗,一定生命周期后镀液被迫报废。化学镀镍槽液中的报废液初始废水中除了含有大量重金属镍离子外,还存在磷(H2PO2-、HPO3 2-、PO4 3-)、络合剂、乳酸、醋酸钠以及苹果酸等,它们会与镍离子形成稳定的络合物,使得回收重金属之前要先破络合,导致回收难度大大提高。如果废液直接排放至生态环境中,不仅会破坏生态平衡,还对人类生命造成严重危害。因此,化学镀镍废水在排放之前必须进行净化处理。
常见的重金属废水处理方法有化学沉淀法、膜分离法、离子交换法等。然而它们或多或少存在很多弊端,如化学沉淀法在沉淀的过程中会产生金属污泥,增加处理难度和成本;膜分离法存在膜污染问题,易造成二次污染;离子交换树脂存在强度低、易氧化实效、且再生频繁、操作费用高等缺点,大大限制了他们在重金属废水处理方面的应用,因此我们考虑使用萃取法对镍离子进行破络合去除。
磷酸二异辛酯(P204)对于镍的萃取去除具有较好的效果,但是在实际电镀含镍废水中使用时,需要极大的使用量,但是P204价格较为昂贵(约140元/500mL),导致投入的经济成本极高。因而需求更适合的萃取剂来降低经济成本的投入。
发明内容
基于上述技术问题,本发明目的在于提供一种回收废水中镍的方法。
本发明目的通过如下技术方案实现:
一种高效回收废水中镍的方法,其特征在于:调节含镍废水pH为3-9,采用磷酸二异辛酯(P204)和2-溴癸酸(2-BDA)作为复合萃取剂,置于废水中,常温下搅拌反应10-20min,然后采用硫酸解吸获得富集液后进行电沉积处理,其中2-BDA占复合萃取剂体积的6.5-12.5%。
进一步,上述复合萃取剂与含镍废水体积比为1:9-12,废水中镍的浓度为6-8g/L。
在采用P204作为萃取剂对镍的络合物进行破络合过程中发现,当P204的投加量与含镍废水体积比为1:1时,对于镍离子的去除率是最好的,但是P204价格较为昂贵,因此若按照该体积进行使用,造成投入的经济成本极大。而在研究时发现将本身对于镍离子去除效果不好的2-溴葵酸(2-BDA)作为辅助萃取剂,少量的与P204复合后,在大量降低萃取剂使用量的情况下,对于镍离子的去除率不仅没有下降,反而呈现上升的趋势,且缩短了去除平衡时间,同时拓宽了萃取时适宜的pH环境,使得萃取性能更为稳定。
优选的,上述含镍废水的pH调节至4-8。
优选的,复合萃取剂与含镍废水体积比为1:10,2-BDA占复合萃取剂体积的10%,废水中镍的浓度为6.5g/L。
进一步,硫酸解吸是将反应结束后,取反应结束后的上清液与等体积浓度为1mol/L的硫酸,解吸15-25min,获得富集液。
进一步,上述电沉积处理的阳极是钌钛网,阴极是不锈钢,电流为2-3A,电压为32-35V。
最具体的,一种高效回收废水中镍的方法,其特征在于,按如下步骤进行:
步骤(1)萃取
将含有镍的废水pH调节到3-9,采用磷酸二异辛酯(P204)和2-溴葵酸(2-BDA)混合作为复合萃取剂投入含镍废水中,在常温下搅拌反应10-20min,复合催化剂与含镍废水的体积比为1:9 -12,其中2-BDA的体积占复合催化剂总量的6.5-12.5%,含镍废水中镍的浓度为6-8g/L;
步骤(2)解吸
反应结束后,去上清液与等体积的浓度为1mol/L的硫酸混合,反应15-25min,获得富集液;
步骤(3)电沉积
以钌钛网为阳极,不锈钢为阴极,在电流为2-3A、电压为32-35V下对富集液进行电沉积10-20min。
本发明具有如下技术效果:
本发明中以磷酸二异辛酯和2-溴癸酸在特定比例下作为复合萃取剂,以较少的萃取剂对化学镀镍废水中镍实现了突出的破络合效果,实现了高效的释放镍离子,且在pH为4-8的弱酸性、中心和弱碱性环境下具有优异的去除效果,且稳定性优异,从而达到高效去除回收废水中的镍离子,废水中镍离子的去除率达到了91.72%,且达到去除平衡的时间仅仅为10min左右,镍离子的回收率达到99.4%,实现了镍离子的循环利用,同时有效降低了回收镍的经济成本。
附图说明
图1:不同萃取剂在与含镍废水体积比为1:1时对于镍离子的去除率曲线图。
图2:复合萃取剂中2-BDA的体积占比对于镍离子去除率的影响曲线图。
图3:pH变化对不同萃取剂去除镍离子的影响曲线图。
图4:萃取剂的添加量对于镍离子去除率的影响曲线图。
具体实施方式
下面通过实施例对本发明进行具体的描述,有必要在此指出的是,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术人员可以根据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例1
一种高效回收废水中镍的方法,按如下步骤进行:
步骤(1)萃取
将含有镍的废水pH调节到6,采用磷酸二异辛酯(P204)和2-溴葵酸(2-BDA)混合作为复合萃取剂投入含镍废水中,在常温下搅拌反应15min,复合催化剂与含镍废水的体积比为1:10,其中2-BDA的体积占复合催化剂总量的10%,含镍废水中镍的浓度为6.5g/L;
步骤(2)解吸
反应结束后,去上清液与等体积的浓度为1mol/L的硫酸混合,反应20min,获得富集液;
步骤(3)电沉积
以钌钛网为阳极,不锈钢为阴极,在电流为2A、电压为35V下对富集液进行电沉积15min。
在研究对于镍离子的回收过程中,由于在真实的电镀废水中,其环境较实验室模拟废水更为复杂,化学镀镍槽液中的报废液初始水中除了含有大量重金属镍离子外,还存在磷(H2PO2-、HPO3 2-、PO4 3-)、络合剂、乳酸、醋酸钠以及苹果酸等,它们会与镍离子形成稳定的络合物,使得回收重金属之前要先破络合,导致回收难度大大提高。在研究过程中,我们尝试了大量的萃取剂,如图1所示,P204对镍的络合物进行破络合,对于镍离子的去除率最高,达到76.43%,且达到平衡吸附的时间最短,为20min左右,而其他萃取剂达到平衡萃取的时间较长,且对于镍离子的破络合去除率均较低,其中最低的是2-溴葵酸(2-BDA)仅仅为20.74%,但是当将2-BDA与P204按照特定比例(2-BDA占复合萃取剂体积的10%)复合后,其对于镍离子的去除率得到了显著的提高,从单一的P204去除率为76.4%上升至91.72%,且平衡萃取时间缩短至10min。
本实施例萃取、解吸进行电沉积,对镍离子进一步回收,回收率达到99.4%。
在研究P204中加入2-BDA,复合后对于镍离子去除率的影响发现,2-BDA的占比对于镍离子的去除率影响较大,具体如图2所示:在萃取剂与浓度为6.5g/L的含镍废水体积比为1:1时,单独的P204对于镍离子的最高去除率达到76.43%,随着2-BDA的加入,取代部分P204,镍离子的去除率呈下降趋势,当2-BDA在复合萃取剂中体积占比达到5%后,镍离子的去除率开始成上升趋势,当2-BDA在复合萃取剂中的体积占比达到10%左右时,镍离子的去除率达到最高91.72%,之后再持续增加2-BDA,镍离子去除率又开始降低。因此,2-BDA在该复合萃取剂中占比较少,仅仅作为辅助萃取剂,促进P204的催取效率的提高。
P204和2-BDA对于含镍废水不同pH环境下,对于镍离子的去除率情况如图3所示,二者均是在pH为6-8的环境下对镍离子具有较高的去除率,且去除率趋于稳定,在pH低于6的环境下,对于镍离子的去除率均是呈明显的下降趋势,而二者按照特定比例(2-BDA占复合萃取剂体积的10%)复合后,其适宜的pH为4-8,且在该范围内其对于镍离子的去除率达到稳定的状态,即复合后的萃取剂适宜的pH范围变宽。
按照镍离子浓度为6.5g/L的含镍废水体积为100mL,分别向其中添加不同体积的P204、2-BDA和复合萃取剂,随萃取剂添加量变化,镍离子去除率的变化如图4所示:三种萃取剂均是与含镍废水体积比为1:1时,萃取剂与含镍废水体积比为1:10时,对于镍离子的去除率最高,但是将P204和2-BDA复合后,其去除率的到显著提高,最高达到了91.72%,且在萃取剂与含镍废水体积比为1:1下降至1:10时,而P204对镍离子的去除率已经从76.4%下降至38.89%,2-BDA从20.74%下降至9.91%,而本发明去除率均维持在较高水平,为88.36%,随着萃取剂投加量的下降,本发明到达1:12时,去除率有略微下降,之后再持续降低萃取剂的投加量,镍离子的去除率成剧烈下降,因此本发明中选择复合萃取剂与含镍废水的体积比为1:9-12,最优的选择是1:10。
实施例2
一种回收废水中镍的方法,按如下步骤进行:
步骤(1)萃取
将含有镍的废水pH调节到3,采用磷酸二异辛酯(P204)和2-溴葵酸(2-BDA)混合作为复合萃取剂投入含镍废水中,在常温下搅拌反应20min,复合催化剂与含镍废水的体积比为1:12,其中2-BDA的体积占复合催化剂总量的12.5%,含镍废水中镍的浓度为8g/L;
步骤(2)解吸
反应结束后,去上清液与等体积的浓度为1mol/L的硫酸混合,反应15min,获得富集液;
步骤(3)电沉积
以钌钛网为阳极,不锈钢为阴极,在电流为3A、电压为32V下对富集液进行电沉积30min。
本实施例中对于镍离子的去除率达到88.2%,镍离子回收率达到99.1%。
实施例3
一种高效回收废水中镍的方法,按如下步骤进行:
步骤(1)萃取
将含有镍的废水pH调节到9,采用磷酸二异辛酯(P204)和2-溴葵酸(2-BDA)混合作为复合萃取剂投入含镍废水中,在常温下搅拌反应10min,复合催化剂与含镍废水的体积比为1: 9,其中2-BDA的体积占复合催化剂总量的6.5%,含镍废水中镍的浓度为6g/L;
步骤(2)解吸
反应结束后,去上清液与等体积的浓度为1mol/L的硫酸混合,反应25min,获得富集液;
步骤(3)电沉积
以钌钛网为阳极,不锈钢为阴极,在电流为2A、电压为32V下对富集液进行电沉积10min。
本实施例中对于镍离子的去除率达到86.4%,镍离子回收率达到99.6%。

Claims (5)

1.一种高效回收废水中镍的方法,其特征在于:调节废水pH为3-9,采用磷酸二异辛酯(P204)和2-溴癸酸(2-BDA)作为复合萃取剂,置于废水中,常温下搅拌反应10-20min,然后采用硫酸解吸获得富集液后进行电沉积处理,其中2-BDA占复合萃取剂体积的6.5-12.5%。
2.如权利要求1所述的一种高效回收废水中镍的方法,其特征在于:所述复合萃取剂与含镍废水体积比为1:9-12,废水中镍的浓度为6-8g/L。
3.如权利要求1或2所述的一种高效回收废水中镍的方法,其特征在于:所述硫酸解吸是将反应结束后,取反应结束后的上清液与等体积浓度为1mol/L的硫酸,解吸15-25min,获得富集液。
4.如权利要求1-3任一项所述的一种高效回收废水中镍的方法,其特征在于:所述电沉积处理的阳极是钌钛网,阴极是不锈钢,电流为2-3A,电压为32-35V。
5.一种高效回收废水中镍的方法,其特征在于,按如下步骤进行:
步骤(1)萃取
将含有镍的废水pH调节到4-8,采用磷酸二异辛酯(P204)和2-溴葵酸(2-BDA)混合作为复合萃取剂投入含镍废水中,在常温下搅拌反应10-20min,复合催化剂与含镍废水的体积比为1:9 -12,其中2-BDA的体积占复合催化剂总量的6.5-12.5%,含镍废水中镍的浓度为6-8g/L;
步骤(2)解吸
反应结束后,去上清液与等体积的浓度为1mol/L的硫酸混合,反应15-25min,获得富集液;
步骤(3)电沉积
以钌钛网为阳极,不锈钢为阴极,在电流为2-3A、电压为32-35V下对富集液进行电沉积10-20min。
CN202210371810.2A 2022-04-11 2022-04-11 一种高效回收废水中镍的方法 Active CN114807609B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210371810.2A CN114807609B (zh) 2022-04-11 2022-04-11 一种高效回收废水中镍的方法
JP2022107406A JP7153173B1 (ja) 2022-04-11 2022-07-01 廃水中のニッケルを高効率に回収するための装置およびその方法
US18/193,318 US11952291B2 (en) 2022-04-11 2023-03-30 Device for efficiently recycling nickel in wastewater and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210371810.2A CN114807609B (zh) 2022-04-11 2022-04-11 一种高效回收废水中镍的方法

Publications (2)

Publication Number Publication Date
CN114807609A CN114807609A (zh) 2022-07-29
CN114807609B true CN114807609B (zh) 2023-04-18

Family

ID=82535226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210371810.2A Active CN114807609B (zh) 2022-04-11 2022-04-11 一种高效回收废水中镍的方法

Country Status (3)

Country Link
US (1) US11952291B2 (zh)
JP (1) JP7153173B1 (zh)
CN (1) CN114807609B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117741084A (zh) * 2023-12-27 2024-03-22 广东工业大学 一种隧道岩溶水中铁离子浓度检测装置及检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU581158A1 (ru) * 1975-02-21 1977-11-25 Норильский Ордена Ленина Горно-Металлургический Комбинат Им. А.П.Завенягина Способ окислительного автоклавного выщелачивани сульфидов цветных металлов
SU726031A1 (ru) * 1972-12-28 1980-04-05 Научно-Исследовательский Институт Сланцев Способ биохимической очистки сточных вод от органических соединений
CN106046374A (zh) * 2016-05-31 2016-10-26 重庆交通大学 一种新型多孔吸附材料的制备方法
CN106521164A (zh) * 2016-11-07 2017-03-22 清华大学 一种复合萃取剂及其从化学镀镍废液中回收镍的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276129C (zh) * 2004-07-28 2006-09-20 金川集团有限公司 一种制备高纯镍的方法
JP5004106B2 (ja) * 2009-03-30 2012-08-22 Jx日鉱日石金属株式会社 ニッケルとリチウムの分離回収方法
TWI667056B (zh) * 2018-04-30 2019-08-01 Chaoyang University Of Technology 錯合反應協同溶劑萃取回收金屬之方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU726031A1 (ru) * 1972-12-28 1980-04-05 Научно-Исследовательский Институт Сланцев Способ биохимической очистки сточных вод от органических соединений
SU581158A1 (ru) * 1975-02-21 1977-11-25 Норильский Ордена Ленина Горно-Металлургический Комбинат Им. А.П.Завенягина Способ окислительного автоклавного выщелачивани сульфидов цветных металлов
CN106046374A (zh) * 2016-05-31 2016-10-26 重庆交通大学 一种新型多孔吸附材料的制备方法
CN106521164A (zh) * 2016-11-07 2017-03-22 清华大学 一种复合萃取剂及其从化学镀镍废液中回收镍的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Volkan Eyupoglu a, Recep Ali Kumbasar .Extraction of Ni(II) from spent Cr–Ni electroplating bath solutions using LIX 63 and 2BDA as carriers by emulsion liquid membrane technique.《Journal of Industrial and Engineering Chemistry Volume 21, 25 January 2015, Pages 303-310 Journal of Industrial and Engineering Chemistry》.2015,第25卷 303-310. *
刘静源 ; 张旭 ; 郑治龙 ; 张瑜林 ; .用P204从鼓风炉烟尘浸出液中萃取铟的试验研究.湿法冶金.2007,(第04期), *

Also Published As

Publication number Publication date
US20230322583A1 (en) 2023-10-12
JP7153173B1 (ja) 2022-10-14
CN114807609A (zh) 2022-07-29
US11952291B2 (en) 2024-04-09
JP2023155864A (ja) 2023-10-23

Similar Documents

Publication Publication Date Title
JPH01294368A (ja) レドックスフロー電池電解液の調製方法
CN111560615B (zh) 一种酸性蚀刻废液在线回收铜、氯气及蚀刻液再生的方法
CN103320613B (zh) 一种电解锰工业离子交换法回收钴镍方法
CN105174556A (zh) 一种高酸高铁重金属废水分质资源回收的方法
CN114807609B (zh) 一种高效回收废水中镍的方法
CN103173615A (zh) 高温合金废料回收工艺中金属铼富集新方法
CN102071410B (zh) 一种从化学镀镍废液中回收镍资源的方法
Liu et al. Preparation of electrolyte for vanadium redox flow battery from sodium-polyvanadate precipitated wastewater
CN111446478B (zh) 一种以富钒液为原料制备钒电池电解液的方法
CN111472016A (zh) 一种电解回收硫酸钠废液制备双氧水的方法
CN113896361B (zh) 一种不锈钢酸洗酸性废液清洁处置及资源循环利用的方法
CN103320624B (zh) 一种从铜阳极泥中选择性提取金银的方法
CN112813268B (zh) 一种pcb电镀铜与酸性蚀刻铜资源循环利用方法
CN112777774A (zh) 含镍废水处理装置及含镍废水处理方法
CN111333152A (zh) 一种电解氧化处理高浓度含镍含磷有机废液的方法
CN106929687B (zh) 一种湿法炼锌净化剂及其净化工艺
CN112813267B (zh) 一种pcb电镀铜与酸性蚀刻协同进行的方法
CN211255522U (zh) 含镍废水处理装置
CN114759285A (zh) 废旧锂离子电池浸出液的处理方法
CN102382981A (zh) 一种萃取色层分离净化铁溶液的方法
CN112794544A (zh) 一种高氯含钯废水的处理方法
CN111074301A (zh) 含金废水的回收方法及其回收系统
CN216513270U (zh) 一种化学镀镍老化液资源化处理系统
CN115216629B (zh) 一种综合回收掺钨三元前驱体废料中金属元素的方法
CN113174499B (zh) 一种极低浓度稀溶液中痕量铼的富集回收方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant