CN114784099B - 一种mosfet电流路径优化结构及其制备方法 - Google Patents

一种mosfet电流路径优化结构及其制备方法 Download PDF

Info

Publication number
CN114784099B
CN114784099B CN202210705762.6A CN202210705762A CN114784099B CN 114784099 B CN114784099 B CN 114784099B CN 202210705762 A CN202210705762 A CN 202210705762A CN 114784099 B CN114784099 B CN 114784099B
Authority
CN
China
Prior art keywords
layer
doped region
gate
gate oxide
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210705762.6A
Other languages
English (en)
Other versions
CN114784099A (zh
Inventor
李振道
孙明光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Rongxin Microelectronic Co ltd
Original Assignee
Nanjing Rongxin Microelectronic Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Rongxin Microelectronic Co ltd filed Critical Nanjing Rongxin Microelectronic Co ltd
Priority to CN202210705762.6A priority Critical patent/CN114784099B/zh
Publication of CN114784099A publication Critical patent/CN114784099A/zh
Application granted granted Critical
Publication of CN114784099B publication Critical patent/CN114784099B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种MOSFET电流路径优化结构及其制备方法,包括:基底和位于基底表面的外延层,外延层的本体内靠近上表面处两侧均设有掺杂区,每个掺杂区包括N+掺杂区、P+掺杂区和P‑掺杂区,外延层的上表面开有两列凹槽组,外延层的上表面和凹槽表面均生长有闸极氧化层;闸极氧化层上表面沉积有顶部闸极多晶硅层,且位于凹槽内的闸极氧化层内沉积有闸极多晶硅部,闸极多晶硅部向上连接顶部闸极多晶硅层;闸极氧化层和顶部闸极多晶硅层的上表面沉积有介电层;介电层、P+掺杂区和N+掺杂区的上表面沉积有金属层。本发明将闸极多晶硅采间隔方式埋在通道间,不仅可提高载子迁移率,降低通道阻值,而且加快了切换速度,降低了功率损耗。

Description

一种MOSFET电流路径优化结构及其制备方法
技术领域
本发明属于半导体领域,特别涉及一种MOSFET电流路径优化结构及其制备方法。
背景技术
随着全球用电量的增加,对节能减碳的要求也与日俱增,因此高效率的功率组件也开始成为各个半导体业者追求的目标。所谓的高效率的功率组件必须满足能够承受高电压与高电流、可操作于高频率且具备低切换速度及低功率损耗等要求。因此以传统的硅作为基板的功率组件已不符合上述所要求。相较于传统硅材料,以目前的宽能隙材料碳化硅(SiC)和纯硅的特性较为接近,同样能满足上述需求,更适合做为体积较小的功率组件。
碳化硅是一种极性晶体,即不同极性面向就有不同的特性。对于以碳化硅为基底外延材料所做成的功率金属氧化物半导体场效晶体管(MOSFET)而言,除了制程如生长方式与闸极氧化层等问题要克服,最大的影响便是通道阻值,以平面式SiC MOSFET为例,如图1所示,其通道随着闸极电压增加而开启,电流I1延着闸极下方的XZ面(极性面0001)而流通,但以此极性面所流过的电流所产生的通道阻值却占了组件全部阻值的8成以上,导致组件不易发挥出碳化硅本身材料的优势。
发明内容
针对现有技术中存在的问题,本发明公开了一种MOSFET电流路径优化结构及其制备方法,将闸极多晶硅采间隔方式埋在通道间,不仅可提高载子迁移率,降低通道阻值,而且加快了切换速度,降低了功率损耗。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种MOSFET电流路径优化结构,包括:
基底和位于基底表面的外延层;
所述外延层的本体内靠近上表面处两侧均设有掺杂区,每个所述掺杂区包括N+掺杂区、P+掺杂区和P-掺杂区,所述N+掺杂区和P+掺杂区均位于所述P-掺杂区内,所述P+掺杂区包覆所述N+掺杂区一侧边以及所述N+掺杂区平行于外延层上表面的部分区域,所述N+掺杂区和P+掺杂区的上表面与外延层上表面齐平;
所述外延层的上表面有两列对称设置的凹槽组, 且每列凹槽组包括若干等间距排列的凹槽,所述外延层的上表面和凹槽表面均生长有闸极氧化层,且所述闸极氧化层覆盖所述N+掺杂区部分上表面;
所述闸极氧化层上表面沉积有顶部闸极多晶硅层,且位于凹槽内的闸极氧化层内沉积有闸极多晶硅部,所述闸极多晶硅部向上连接顶部闸极多晶硅层;
所述闸极氧化层和顶部闸极多晶硅层的上表面沉积有介电层,且所述介电层包覆顶部闸极多晶硅层侧边;
所述介电层、P+掺杂区和N+掺杂区的上表面沉积有金属层。
优选地,所述基底和外延层均为碳化硅材料,且所述外延层为N型外延层。
优选地,所述凹槽的深度小于0.4μm,位于所述凹槽内的闸极氧化层同时与N+掺杂区、P-掺杂区和外延层接触。
优选地,位于所述凹槽内的闸极氧化层的厚度A取值为0.03 -0.08μm,位于所述外延层上表面的闸极氧化层的厚度B取值为0.08 -0.14μm,且厚度B大于厚度A。
优选地,所述P-掺杂区的布植材料为铝,且铝的整体浓度为1015cm-2等级。
优选地,所述N+掺杂区的布植材料为磷,且磷的整体浓度为1015cm-2等级。
优选地,所述P+掺杂区的布植材料为铝,且铝的整体浓度为1016cm-2等级。
优选地,所述顶部闸极多晶硅层的厚度为0.4-1.0μm。
优选地,所述金属层为铝金属层,且金属层厚度为3-5μm 。
一种MOSFET电流路径优化结构的制备方法,具体制备步骤如下:
S1:在所述外延层上表面沉积氧化物,之后利用光刻板完成曝光制程,接着在离子布植后将氧化物去除,同样的步骤重复三次依次形成P-掺杂区, N+掺杂区和P+掺杂区;
S2:使用一层光刻板在900-1000℃高温氯气环境下以湿蚀刻制程的方式在外延层上蚀刻出通道内的凹槽,随后在1200-1300℃高温氧气环境下在外延层、N+掺杂区、P+掺杂区和凹槽表面生长出闸极氧化层;
S3:在闸极氧化层表面沉积形成闸极多晶硅I,且闸极多晶硅I填充在凹槽内的闸极氧化层表面;
S4:采用化学机械研磨方式清除表面的闸极多晶硅I,形成闸极多晶硅部,且闸极多晶硅部表面与闸极氧化层表面齐平;
S5:在1200-1300℃高温氧气环境下,将闸极多晶硅部表面氧化,使得闸极氧化层包覆闸极多晶硅部,再采用沉积氧化物方式将闸极氧化层表面垫高,使其厚度大于凹槽内的闸极氧化层;
S6:采用一层光刻板在闸极氧化层上蚀刻出两个埋入式的闸极多晶硅接触孔,随后在闸极氧化层表面沉积形成顶部闸极多晶硅层,并填充在闸极多晶硅接触孔中,与凹槽内的闸极多晶硅部接触,再利用一层光刻板将顶部闸极多晶硅层两侧的闸极多晶硅蚀刻去除,露出部分闸极氧化层;
S7:在闸极氧化层和顶部闸极多晶硅层表面沉积介电层,并采用光刻技术在介电层两侧进行干蚀刻,进一步去除闸极氧化层两侧多余的闸极氧化层,露出P+掺杂区和部分N+掺杂区上表面,形成金属接触孔,最后将金属沉积在介电层表面,并填充在金属接触孔中形成金属层,使得金属层位于P+掺杂区和部分N+掺杂区的上表面,即得到MOSFET器件。
有益效果:本发明公开了一种MOSFET电流路径优化结构及其制备方法,具有如下优点:
1)本发明提出一种新的MOSFET器件结构,将闸极多晶硅埋在通道间,此结构的通道电流将分成同样是闸极多晶硅下方延着XZ面的电流I1,以及与闸极多晶硅侧面延着XY面(极性面1120)的电流I2,此极性面在通道浓度为1017~1018 cm-3之间时,可将载子迁移率提高到90 cm2/Vs,从而大大降低了通道阻值。
2)本发明中由于图2的闸极氧化层厚度B远大于图1的闸极氧化层厚度A,且闸极多晶硅部几乎被P-掺杂区所包覆,因此降低了闸汲极间的电容CGD与闸汲极间的电荷QGD, 加快了切换速度,降低了功率损耗。
附图说明
图1为现有的MOSFET器件结构示意图。
图2为实施例1的MOSFET器件结构示意图(省略基底)。
图3为实施例1的MOSFET器件结构的部分俯视图(省略介电层和金属层)。
图4为本发明中步骤S1完成后的示意图。
图5为本发明中步骤S2完成后的示意图。
图6为本发明中步骤S3完成后的示意图。
图7为本发明中步骤S4完成后的示意图。
图8为本发明中步骤S5完成后的示意图。
图9为本发明中步骤S6完成后的示意图。
图中:外延层1、P-掺杂区2、N+掺杂区3、P+掺杂区4、闸极氧化层5、顶部闸极多晶硅层6、闸极多晶硅部6-1、闸极多晶硅I6-2、介电层7、金属层8、凹槽9。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
一种MOSFET电流路径优化结构,包括:
基底和位于基底表面的外延层1,且外延层1为N型外延层;
所述外延层1的本体内靠近上表面处两侧均设有掺杂区,每个所述掺杂区包括N+掺杂区3、P+掺杂区4和P-掺杂区2,所述N+掺杂区3和P+掺杂区4均位于所述P-掺杂区2内,所述P+掺杂区4包覆所述N+掺杂区3一侧边以及所述N+掺杂区3平行于外延层1上表面的部分区域,所述N+掺杂区3和P+掺杂区4的上表面与外延层上表面齐平, 所述P-掺杂区2的布植材料为铝,且铝的整体浓度为1015cm-2等级;所述N+掺杂区3的布植材料为磷,且磷的整体浓度为1015cm-2等级,所述P+掺杂区4的布植材料为铝,且铝的整体浓度为1016cm-2。等级。
如图3所示,所述外延层1的上表面有两列对称设置的凹槽组,且每列凹槽组包括若干等间距排列的凹槽9,所述外延层1的上表面和凹槽9表面均生长有闸极氧化层5,所述闸极氧化层5覆盖N+掺杂区3部分上表面, 位于所述凹槽9内的闸极氧化层5同时与N+掺杂区3、P-掺杂区2和外延层1接触;
所述闸极氧化层5上表面沉积有顶部闸极多晶硅层6,且位于凹槽内的闸极氧化层5内沉积有闸极多晶硅部6-1,所述闸极多晶硅部6-1向上连接顶部闸极多晶硅层6;
所述闸极氧化层5和顶部闸极氧化层6的上表面生长有介电层7,且所述介电层7包覆顶部闸极多晶硅层6侧边;
所述介电层7、P+掺杂区4和N+掺杂区3的上表面生长有金属层8,金属层8为铝金属层。
本发明中,如图2所示的位于所述凹槽9内的闸极氧化层5的厚度A取值为0.03-0.08μm ,位于所述外延层1上表面的闸极氧化层5的厚度B取值为0.08-0.14μm,且厚度B大于厚度A,所述顶部闸极多晶硅层6的厚度为0.4-1.0μm ;金属层厚度为3-5μm。
本发明中MOSFET电流路径优化结构的具体制备步骤如下:
S1:在所述外延层1上表面沉积氧化物,之后利用光刻板完成曝光制程,接着在离子布植后将氧化物去除,同样的步骤重复三次依次形成P-掺杂区2, N+掺杂区3和P+掺杂区4,如图4所示。
S2:使用一层光刻板在900-1000℃高温氯气环境下以湿蚀刻制程的方式在外延层1上蚀刻出通道内的凹槽9,随后在1200-1300℃高温氧气环境下在外延层1和凹槽9表面生长出闸极氧化层5,且所述闸极氧化层5覆盖N+掺杂区3和P+掺杂区4,如图5所示;
S3:在闸极氧化层5表面沉积形成闸极多晶硅I6-2,且闸极多晶硅I6-2填充在凹槽9内的闸极氧化层5表面,如图6所示;
S4:采用化学机械研磨方式依次清除表面的闸极多晶硅I6-2,形成闸极多晶硅部6-1,且闸极多晶硅部6-1表面与闸极氧化层5表面齐平,如图7所示;
S5:在1200-1300℃高温氧气环境下,将闸极多晶硅部6-1表面氧化,使得闸极氧化层5包覆闸极多晶硅部6-1,再采用沉积氧化物方式将闸极氧化层5表面垫高,使其厚度大于凹槽内的闸极氧化层5,如图8所示;
S6:采用一层光刻板在闸极氧化层5上蚀刻出两个埋入式的闸极多晶硅接触孔,随后在闸极氧化层5表面沉积形成顶部闸极多晶硅层6,并填充在闸极多晶硅接触孔中,与凹槽9内的闸极多晶硅部6-1接触,再利用一层光刻板将顶部闸极多晶硅层6两侧的闸极多晶硅蚀刻去除,露出部分闸极氧化层5,如图9所示;
S7:在闸极氧化层5和顶部闸极多晶硅层6表面沉积介电层7,并采用光刻技术在介电层7两侧进行干蚀刻,进一步去除闸极氧化层5两侧多余的闸极氧化层,露出P+掺杂区4和部分N+掺杂区2上表面,形成金属接触孔,最后将金属(铝)沉积在介电层7表面,并填充在金属接触孔中,形成金属层8,使得金属层位于P+掺杂区和部分N+掺杂区的上表面,即得到MOSFET器件,如图2所示。
如图2所示,本发明的MOSFET器件的通道电流将分成闸极多晶硅部6-1下方延着XZ面的电流I1以及闸极多晶硅部6-1侧面延着XY面的电流I2,此极性面在通道浓度为1017~1018cm-3之间时,可将载子迁移率提高到90 cm2/Vs,将通道阻值大大的降低。图3为图2中MOSFET器件的俯视图(不含介电层和金属层),从图3可清楚的得知,闸极多晶硅是采间隔方式埋入通道内,如此可让电流I2有空间延XY面流过。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (10)

1.一种MOSFET电流路径优化结构,其特征在于,包括:
基底和位于基底表面的外延层;
所述外延层的本体内靠近上表面处两侧均设有掺杂区,每个所述掺杂区包括N+掺杂区、P+掺杂区和P-掺杂区,所述N+掺杂区和P+掺杂区均位于所述P-掺杂区内,所述P+掺杂区包覆所述N+掺杂区一侧边以及所述N+掺杂区平行于外延层上表面的部分区域,所述N+掺杂区和P+掺杂区的上表面与外延层上表面齐平;
所述外延层的上表面有两列对称设置的凹槽组, 且每列凹槽组包括若干等间距排列的凹槽,所述外延层的上表面和凹槽表面均生长有闸极氧化层,所述闸极氧化层覆盖所述N+掺杂区部分上表面,且位于所述凹槽内的闸极氧化层同时与N+掺杂区、P-掺杂区和外延层接触;
所述闸极氧化层上表面沉积有顶部闸极多晶硅层,且位于凹槽内的闸极氧化层内沉积有闸极多晶硅部,所述闸极多晶硅部向上连接顶部闸极多晶硅层;
所述闸极氧化层和顶部闸极多晶硅层的上表面沉积有介电层,且所述介电层包覆顶部闸极多晶硅层侧边;
所述介电层、P+掺杂区和N+掺杂区的上表面沉积有金属层。
2.根据权利要求1所述的MOSFET电流路径优化结构,其特征在于,所述基底和外延层均为碳化硅材料,且所述外延层为N型外延层。
3.根据权利要求1或2所述的MOSFET电流路径优化结构,其特征在于,所述凹槽的深度小于0.4μm。
4.根据权利要求1或2所述的MOSFET电流路径优化结构,其特征在于,位于所述凹槽内的闸极氧化层的厚度A取值为0.03 -0.08μm,位于所述外延层上表面的闸极氧化层的厚度B取值为0.08 -0.14μm,且厚度B大于厚度A。
5.根据权利要求1所述的MOSFET电流路径优化结构,其特征在于,所述P-掺杂区的布植材料为铝,且铝的整体浓度为1015cm-2等级。
6.根据权利要求1所述的MOSFET电流路径优化结构,其特征在于,所述N+掺杂区的布植材料为磷,且磷的整体浓度为1015cm-2等级。
7.根据权利要求1所述的MOSFET电流路径优化结构,其特征在于,所述P+掺杂区的布植材料为铝,且铝的整体浓度为1016cm-2等级。
8.根据权利要求1所述的MOSFET电流路径优化结构,其特征在于,所述顶部闸极多晶硅层的厚度为0.4-1.0μm。
9.根据权利要求1所述的MOSFET电流路径优化结构,其特征在于,所述金属层为铝金属层,且金属层厚度为3-5μm 。
10.一种权利要求1-9任一所述的MOSFET电流路径优化结构的制备方法,其特征在于,具体制备步骤如下:
S1:在所述外延层上表面沉积氧化物,之后利用光刻板完成曝光制程,接着在离子布植后将氧化物去除,同样的步骤重复三次依次形成P-掺杂区, N+掺杂区和P+掺杂区;
S2:使用一层光刻板在900-1000℃高温氯气环境下以湿蚀刻制程的方式在外延层上蚀刻出通道内的凹槽,随后在1200-1300℃高温氧气环境下在外延层、N+掺杂区、P+掺杂区和凹槽表面生长出闸极氧化层;
S3:在闸极氧化层表面沉积形成闸极多晶硅I,且闸极多晶硅I填充在凹槽内的闸极氧化层表面;
S4:采用化学机械研磨方式清除表面的闸极多晶硅I,形成闸极多晶硅部,且闸极多晶硅部表面与闸极氧化层表面齐平;
S5:在1200-1300℃高温氧气环境下,将闸极多晶硅部表面氧化,使得闸极氧化层包覆闸极多晶硅部,再采用沉积氧化物方式将闸极氧化层表面垫高,使其厚度大于凹槽内的闸极氧化层;
S6:采用一层光刻板在闸极氧化层上蚀刻出两个埋入式的闸极多晶硅接触孔,随后在闸极氧化层表面沉积形成顶部闸极多晶硅层,并填充在闸极多晶硅接触孔中,与凹槽内的闸极多晶硅部接触,再利用一层光刻板将顶部闸极多晶硅层两侧的闸极多晶硅蚀刻去除,露出部分闸极氧化层;
S7:在闸极氧化层和顶部闸极多晶硅层表面沉积介电层,并采用光刻技术在介电层两侧进行干蚀刻,进一步去除闸极氧化层两侧多余的闸极氧化层,露出P+掺杂区和部分N+掺杂区上表面,形成金属接触孔,最后将金属沉积在介电层表面,并填充在金属接触孔中形成金属层,使得金属层位于P+掺杂区和部分N+掺杂区的上表面,即得到MOSFET器件。
CN202210705762.6A 2022-06-21 2022-06-21 一种mosfet电流路径优化结构及其制备方法 Active CN114784099B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210705762.6A CN114784099B (zh) 2022-06-21 2022-06-21 一种mosfet电流路径优化结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210705762.6A CN114784099B (zh) 2022-06-21 2022-06-21 一种mosfet电流路径优化结构及其制备方法

Publications (2)

Publication Number Publication Date
CN114784099A CN114784099A (zh) 2022-07-22
CN114784099B true CN114784099B (zh) 2022-09-02

Family

ID=82420809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210705762.6A Active CN114784099B (zh) 2022-06-21 2022-06-21 一种mosfet电流路径优化结构及其制备方法

Country Status (1)

Country Link
CN (1) CN114784099B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118011A (ja) * 2006-11-07 2008-05-22 Fuji Electric Device Technology Co Ltd ワイドバンドギャップ半導体縦型mosfetとその製造方法。
EP2976787A1 (de) * 2013-03-18 2016-01-27 Robert Bosch GmbH Gleichrichterdiode

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3675413B2 (ja) * 2002-02-19 2005-07-27 日産自動車株式会社 炭化珪素半導体装置及びその製造方法
US20050191812A1 (en) * 2004-03-01 2005-09-01 Lsi Logic Corporation Spacer-less transistor integration scheme for high-k gate dielectrics and small gate-to-gate spaces applicable to Si, SiGe strained silicon schemes
US7449413B1 (en) * 2006-04-11 2008-11-11 Advanced Micro Devices, Inc. Method for effectively removing polysilicon nodule defects
JP5682096B2 (ja) * 2007-11-15 2015-03-11 富士電機株式会社 半導体装置およびその製造方法
US8048791B2 (en) * 2009-02-23 2011-11-01 Globalfoundries Inc. Method of forming a semiconductor device
CN102110710A (zh) * 2009-12-23 2011-06-29 中国科学院微电子研究所 形成有沟道应力层的半导体结构及其形成方法
TWI407564B (zh) * 2010-06-07 2013-09-01 Great Power Semiconductor Corp 具有溝槽底部多晶矽結構之功率半導體及其製造方法
JP5788678B2 (ja) * 2011-01-05 2015-10-07 ローム株式会社 半導体装置およびその製造方法
CN102842503B (zh) * 2011-06-20 2015-04-01 中芯国际集成电路制造(北京)有限公司 半导体器件的制造方法
TWI681458B (zh) * 2018-10-24 2020-01-01 禾鼎科技股份有限公司 金氧半場效應電晶體之終端區結構及其製造方法
CN110034015B (zh) * 2019-04-19 2021-07-23 中国科学院微电子研究所 一种纳米线围栅器件的形成方法
CN112993013A (zh) * 2021-05-18 2021-06-18 江苏应能微电子有限公司 一种碳化硅闸沟槽式功率半导体器件及其制作方法
CN112993014B (zh) * 2021-05-18 2022-04-19 江苏应能微电子有限公司 一种碳化硅平面式功率半导体器件及其制作方法
CN113257895B (zh) * 2021-07-14 2021-09-28 江苏应能微电子有限公司 一种半导体场效应管器件
CN113571421B (zh) * 2021-09-24 2021-12-24 江苏应能微电子有限公司 一种屏蔽闸沟槽式mos管的斜氧制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118011A (ja) * 2006-11-07 2008-05-22 Fuji Electric Device Technology Co Ltd ワイドバンドギャップ半導体縦型mosfetとその製造方法。
EP2976787A1 (de) * 2013-03-18 2016-01-27 Robert Bosch GmbH Gleichrichterdiode

Also Published As

Publication number Publication date
CN114784099A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN108767004B (zh) 一种分离栅mosfet器件结构及其制造方法
JP4068597B2 (ja) 半導体装置
US20110049564A1 (en) Integrated schottky diode in high voltage semiconductor device
CN114420761B (zh) 一种耐高压碳化硅器件及其制备方法
CN115207085A (zh) 半导体装置
CN107425068A (zh) 一种碳化硅TrenchMOS器件及其制作方法
CN102097479A (zh) 一种低压埋沟vdmos器件
CN114823872A (zh) 一种全隔离衬底耐压功率半导体器件及其制造方法
CN111933714A (zh) 三段式氧化层屏蔽栅沟槽mosfet结构的制造方法
CN103077970B (zh) 超级结器件及其制造方法
CN105895671A (zh) 超低功耗半导体功率器件及制备方法
CN108336133B (zh) 一种碳化硅绝缘栅双极型晶体管及其制作方法
US20100090258A1 (en) Semiconductor device
CN112216743A (zh) 沟槽功率半导体器件及制造方法
CN205564758U (zh) 超低功耗半导体功率器件
CN114784099B (zh) 一种mosfet电流路径优化结构及其制备方法
CN114664934B (zh) 一种含有场板的dmos晶体管及其制作方法
CN106057902A (zh) 一种高性能mosfet及其制造方法
CN103022155A (zh) 一种沟槽mos结构肖特基二极管及其制备方法
CN110061049B (zh) 一种低功耗屏蔽栅型半导体功率器件及其制备方法
CN102751199B (zh) 一种槽型半导体功率器件的制造方法
CN114975127B (zh) 一种碳化硅平面式功率mosfet器件的制造方法
CN220189649U (zh) 一种集成超势垒二极管的平面碳化硅器件元胞结构
CN111354788B (zh) 一种深沟槽绝缘栅极器件及其制备方法
CN203721734U (zh) 一种低vf的功率mosfet器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant