CN114773054B - 一种三元钛酸铋钠基高介超宽温无铅多层陶瓷电容器介质材料及制备 - Google Patents

一种三元钛酸铋钠基高介超宽温无铅多层陶瓷电容器介质材料及制备 Download PDF

Info

Publication number
CN114773054B
CN114773054B CN202210311214.5A CN202210311214A CN114773054B CN 114773054 B CN114773054 B CN 114773054B CN 202210311214 A CN202210311214 A CN 202210311214A CN 114773054 B CN114773054 B CN 114773054B
Authority
CN
China
Prior art keywords
temperature
hours
dielectric
tio
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210311214.5A
Other languages
English (en)
Other versions
CN114773054A (zh
Inventor
侯育冬
刘嘉成
于肖乐
朱满康
郑木鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202210311214.5A priority Critical patent/CN114773054B/zh
Publication of CN114773054A publication Critical patent/CN114773054A/zh
Application granted granted Critical
Publication of CN114773054B publication Critical patent/CN114773054B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

一种三元钛酸铋钠基高介超宽温无铅多层陶瓷电容器介质材料及制备,应用于陶瓷电容器领域。根据化学式(1‑x)(0.8Bi0.5Na0.5TiO3‑0.2Bi0.5K0.5TiO3)‑xNaTaO3,x=0.3。称取Bi2O3、Na2CO3、K2CO3、TiO2和Ta2O5作为起始原料。高温煅烧后,研钵粉碎,再二次球磨将粉体研细,使用聚乙烯醇缩丁醛酒精溶液作粘结剂造粒,过120目筛压制成型,保温3小时排出胶体,随后在高温炉空气气氛中烧结,保温2小时后,随炉自然冷却至室温。本发明操作方法简单,制备周期短,不含铅等对环境有毒有害物质。

Description

一种三元钛酸铋钠基高介超宽温无铅多层陶瓷电容器介质材 料及制备
技术领域
本发明提供一种高介电常数、高绝缘电阻率、低介电损耗的超宽温无铅陶瓷电容器介质材料及其制备方法,主要应用于陶瓷电容器领域。
背景技术
电容器是在电路中具有存储电荷,控制电流大小,消除电流噪声等功能的电子元器件。在超宽温温度范围内(-55-300℃)容温变化率△C/C25℃≤±15%,同时确保低介电损耗,高介电常数和高绝缘电阻率有利于获得高品质的大容量陶瓷电容器。在新能源汽车、航空航天等高科技领域,电子设备工作温度高达300℃,急需超宽温大容量陶瓷电容器提升电路集成度。根据美国电子工业协制定的EIA标准,Ⅱ类瓷X9R电容器的最低工作温度为-55℃,最高工作温度为200℃,容温变化率△C/C25℃≤±15%,无法满足高科技领域对最高工作温度300℃的高介陶瓷电容器需求。MLCC由陶瓷介质层、内电极和端电极构成,提高介质材料的宽温区介电性能与绝缘特性是构建高介超宽温电容器的关键。
目前市场主流的MLCC基体为钛酸钡(BaTiO3),其居里温度仅为120℃,限制了其在200℃以上获得低容温变化率(△C/C25℃≤±15%)。钛酸铋钠(Bi0.5Na0.5TiO3)有两个相变峰,其中居里温度为320℃,使其具有成为超宽温陶瓷电容器的潜力。近期有研究者报道了以Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-NaNbO3为基体,引入CaZrO3改性得到(1-x)(NBT-KBT-NN)-xCZ四元体系。添加CZ使得材料弛豫特性增强,纳米极性微区(PNRs)相互间耦合能力减弱,介电常数在宽温度区间几乎不随温度发生变化,表现出类顺电体平坦的介温谱特征。其中最优组分0.063CZ样品能够在-55~300℃超宽温度范围内保持容温变化率稳定(△C/C25℃≤±15%)和低介电损耗(tanδ≤0.025)(Liu等,JOURNAL OF THE EUROPEAN CERAMICSOCIETY卷:42期:3页:973-980出版年:MAR2022)。但是,需要说明的是该材料在具有优异介电温度稳定性的同时,标准室温介电常数仅为840,低介电常数不利于MLCC获得高电容体积效率,限制发展大容量超宽温陶瓷电容器。同时,该材料的300℃高温绝缘电阻率仅为109Ω·cm数量级,低绝缘电阻率容易使陶瓷电容器产生漏电流,影响电路正常运行。此外,这种陶瓷材料为复杂的四元体系,原料种类多,组分敏感性大,不利于工业化批量配料工艺控制。因此,有必要探寻组分简单的高介电常数、高绝缘电阻率、低介电损耗的超宽温无铅陶瓷电容器介质材料。
本发明报道一种解决以上问题的简单三元材料体系(1-x)(0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3)-xNaTaO3,在超宽温温度范围内保持高介电常数、高绝缘电阻率和低介电损耗,该材料体系在本发明所在领域尚未见报道。
发明内容
本发明特色在于向NBT-KBT中引入NaTaO3作为第三组元,获得一种高介电常数、高绝缘电阻率、低介电损耗的超宽温无铅陶瓷电容器介质材料。NaTaO3是钙钛矿相,易于与NBT-KBT固溶形成三元体系,此外,NaTaO3中的Ta5+是具有d0轨道的过渡金属元素,能够增宽三元材料体系带隙,提升高温电阻率,从而降低漏导电流,防止器件失效。同时,低极化率的Na+、Ta5+离子进入NBT-KBT钙钛矿铁电基体中会改变离子排布的有序性与电荷平衡分布,使铁电宏畴分裂成极性纳米微区,显著增强材料弛豫性,能极大拓宽容温变化率的稳定温度区间。NBT-KBT-NaTaO3陶瓷介质在25℃的介电常数达到925,在25℃和300℃的绝缘电阻率分别大于1×1013Ω·cm和1×1010Ω·cm,在超宽温度范围内(-55℃-301℃)保持优异的电容温度稳定性(△C/C25℃≤±15%),同时介电损耗低于0.025的温度范围为-67℃-277℃,应用于多层陶瓷电容器等表面贴装电子元器件。
本发明通过如下技术方案予以实现。
一种高介超宽温的无铅电容器陶瓷介质材料,其化学组成为(1-x)(0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3)-xNaTaO3,其中x优选0.3。
一种新型多层陶瓷电容器用介质材料的制备方法,具有如下步骤:
(1):根据化学式(1-x)(0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3)-xNaTaO3,其中x=0.3;称取适量的Bi2O3、Na2CO3、K2CO3、TiO2和Ta2O5作为起始原料,并将这几种原料于100℃的温度下烘干8h;
(2):按照表达式中金属原子的化学计量比称取Bi2O3、Na2CO3、K2CO3、TiO2和Ta2O5并放入球磨罐中,以无水乙醇为球磨介质,球磨12小时混合均匀,取出烘干,然后升温至900℃进行预烧3小时,升温速率为4℃/min;
(3):把步骤(2)预烧后的制得的粉体研碎,再球磨12小时混合均匀,于100℃下烘干8小时后研磨成粉状,以聚乙烯醇缩丁醛酒精溶液(PVB)优选浓度为10wt%的作为粘结剂造粒,然后过120目筛后压制成型,于650℃下保温3小时以排出胶体,再在高温炉空气气氛中1160℃烧结,保温2小时后,随炉自然冷却至室温,得到一种高介超宽温的无铅电容器陶瓷介质材料。
与现有技术相比较,本发明具有以下优点:
本发明与传统BaTiO3基介电材料体系相比,显著拓宽陶瓷电容器的工作温度范围。同时,与现有报道的Bi0.5Na0.5TiO3基介电材料相比,标准室温介电常数显著提升(达到925左右),优于本领域大多数超宽温电容器瓷,有利于MLCC小型化,提高电路集成度。此外,该材料的室温25℃绝缘电阻率为9.23×1013Ω·cm,高温300℃绝缘电阻率为1.33×1010Ω·cm,也优于现有报道超宽温电容器瓷。本材料介电常数温度稳定范围(△C/C25℃≤±15%)能保持在-55℃-301℃之间,在-67℃-277℃的温度区间内介电损耗低于0.025。同时,原材料组成简单,有利于器件工业化移植。
附图说明
采用德国Bruker公司D8-Advance型X射线衍射仪测定样品的相结构。采用精密数字电桥(Agilent E4980A)在1kHz下测试该介电材料的容温变化率,介电常数和介电损耗随温度变化的关系。采用宽频阻抗分析仪(Novocontrol Concept 400)测试样品变温绝缘电阻率。
图1:实施例1和对比例1、2、3制备的陶瓷介质材料的XRD图谱。
图2:实施例1和对比例1、2、3制备的陶瓷介电材料的容温变化率与温度的关系曲线。
图3:实施例1制备的陶瓷介电材料在1kHz频率下介电常数及介电损耗与温度的关系曲线。
图4:对比例1制备的陶瓷介电材料在1kHz频率下介电常数及介电损耗与温度的关系曲线。
图5:对比例2制备的陶瓷介电材料在1kHz频率下介电常数及介电损耗与温度的关系曲线。
图6:对比例3制备的陶瓷介电材料在1kHz频率下介电常数及介电损耗与温度的关系曲线。
图7:实施例1制备的陶瓷介电材料和NBT-KBT-NN-CZ材料在不同温度下的绝缘电阻率。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
实施例1
(1):根据化学式(1-x)(0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3)-xNaTaO3,其中x=0.3。称取适量的Bi2O3、Na2CO3、K2CO3、TiO2和Ta2O5作为起始原料,并将这几种原料于100℃的温度下烘干8h;
(2):按照表达式中金属原子的化学计量比称取Bi2O3、Na2CO3、K2CO3、TiO2和Ta2O5并放入球磨罐中,以无水乙醇为球磨介质,球磨12小时混合均匀,取出烘干,然后升温至900℃进行预烧3小时,升温速率为4℃/min;
(3):把步骤(2)预烧后的制得的粉体研碎,再球磨12小时混合均匀,于100℃下烘干8小时后研磨成粉状,以10wt%的聚乙烯醇缩丁醛酒精溶液(PVB)作为粘结剂造粒,然后过120目筛后压制成型,于650℃下保温3小时以排出胶体,再在高温炉空气气氛中1160℃烧结,保温2小时后,随炉自然冷却至室温,得到一种高介超宽温的无铅电容器陶瓷介质材料a。
对比例1
(1):根据化学式(1-x)(0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3)-xNaTaO3,其中x=0。称取适量的Bi2O3、Na2CO3、K2CO3、TiO2和Ta2O5作为起始原料,并将这几种原料于100℃的温度下烘干8h;
(2):按照表达式中金属原子的化学计量比称取Bi2O3、Na2CO3、K2CO3、TiO2和Ta2O5并放入球磨罐中,以无水乙醇为球磨介质,球磨12小时混合均匀,取出烘干,然后升温至900℃进行预烧3小时,升温速率为4℃/min;
(3):把步骤(2)预烧后的制得的粉体研碎,再球磨12小时混合均匀,于100℃下烘干8小时后研磨成粉状,以10wt%的聚乙烯醇缩丁醛酒精溶液(PVB)作为粘结剂造粒,然后过120目筛后压制成型,于650℃下保温3小时以排出胶体,再在高温炉空气气氛中1160℃烧结,保温2小时后,随炉自然冷却至室温,得到一种高介超宽温的无铅电容器陶瓷介质材料b。
对比例2
(1):根据化学式(1-x)(0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3)-xNaTaO3,其中x=0.2。称取适量的Bi2O3、Na2CO3、K2CO3、TiO2和Ta2O5作为起始原料,并将这几种原料于100℃的温度下烘干8h;
(2):按照表达式中金属原子的化学计量比称取Bi2O3、Na2CO3、K2CO3、TiO2和Ta2O5并放入球磨罐中,以无水乙醇为球磨介质,球磨12小时混合均匀,取出烘干,然后升温至900℃进行预烧3小时,升温速率为4℃/min;
(3):把步骤(2)预烧后的制得的粉体研碎,再球磨12小时混合均匀,于100℃下烘干8小时后研磨成粉状,以10wt%的聚乙烯醇缩丁醛酒精溶液(PVB)作为粘结剂造粒,然后过120目筛后压制成型,于650℃下保温3小时以排出胶体,再在高温炉空气气氛中1160℃烧结,保温2小时后,随炉自然冷却至室温,得到一种高介超宽温的无铅电容器陶瓷介质材料c。
对比例3
(1):根据化学式(1-x)(0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3)-xNaTaO3,其中x=0.4。称取适量的Bi2O3、Na2CO3、K2CO3、TiO2和Ta2O5作为起始原料,并将这几种原料于100℃的温度下烘干8h;
(2):按照表达式中金属原子的化学计量比称取Bi2O3、Na2CO3、K2CO3、TiO2和Ta2O5并放入球磨罐中,以无水乙醇为球磨介质,球磨12小时混合均匀,取出烘干,然后升温至900℃进行预烧3小时,升温速率为4℃/min;
(3):把步骤(2)预烧后的制得的粉体研碎,再球磨12小时混合均匀,于100℃下烘干8小时后研磨成粉状,以10wt%的聚乙烯醇缩丁醛酒精溶液(PVB)作为粘结剂造粒,然后过120目筛后压制成型,于650℃下保温3小时以排出胶体,再在高温炉空气气氛中1160℃烧结,保温2小时后,随炉自然冷却至室温,得到一种高介超宽温的无铅电容器陶瓷介质材料d。
由图1可知,制备的陶瓷样品均呈现钙钛矿结构,无第二相生成。
由图2可知,随着添加NaTaO3含量增加,电容量的温度变化率满足△C/C25℃≤±15%的温度区间随之拓宽。当x=0.3时,所得介电材料在从-55℃-301℃温度范围内具有良好的温度稳定性。
由图3可知当x=0.3时,所得介电材料在从-55℃-301℃温度范围内具有良好的介电常数温度稳定性,同时样品的介电损耗在-67℃-277℃区间内都低于0.025,所以该组分样品介电常数和介电损耗稳定区间能在-55℃-277℃重合,并且室温下介电常数能够在925左右,所以此组分最适宜制备超宽温大容量多层陶瓷电容器。
由图4和图5,可知当x=0和x=0.2,所得介电材料相比于x=0.3的样品,虽然室温介电常数较高(>1500),但是其满足△C/C25℃≤±15%的温度区间下限没有达到-55℃,并且x=0样品的介电损耗在小于100℃时出现了明显的上升,不利于器件应用。综上,当x=0和x=0.2时,所得的电介质材料不适宜制备超宽温多层陶瓷电容器。
由图6可知,当x=0.4时,所得介电材料相比于x=0.3的样品虽然具有更优异的介电常数和介电损耗的温度稳定性,但是其介电常数也随着NaTaO3含量的增加而显著降低,样品标准室温介电常数仅600左右,不利于实现电容器大容量化。
由图7可知,NBT-KBT-NT电容器瓷25℃和300℃绝缘电阻率均高于NBT-KBT-NN-CZ电容器瓷,有利于MLCC在超宽温环境下应用。

Claims (3)

1.一种三元钛酸铋钠基高介超宽温无铅多层陶瓷电容器介质材料,其特征在于,其名义化学组成为(1-x)(0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3)-xNaTaO3,x=0.3;该材料的室温25℃绝缘电阻率为9.23×1013Ω·cm,高温300℃绝缘电阻率为1.33×1010Ω·cm;材料的标准室温介电常数为925,介电常数温度稳定范围△C/C25℃≤±15%能保持在-55℃-301℃之间,在-67℃-277℃的温度区间内介电损耗低于0.025。
2.根据权利要求1所述的一种三元钛酸铋钠基高介超宽温无铅多层陶瓷电容器介质材料的制备方法,其特征在于,包括以下步骤:
(1):根据化学式(1-x)(0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3)-xNaTaO3,其中x=0.3;称取适量的Bi2O3、Na2CO3、K2CO3、TiO2和Ta2O5作为起始原料,并将这几种原料于100℃的温度下烘干8h;
(2):按照表达式中金属原子的化学计量比称取Bi2O3、Na2CO3、K2CO3、TiO2和Ta2O5并放入球磨罐中,以无水乙醇为球磨介质,球磨12小时混合均匀,取出烘干,然后升温至900℃进行预烧3小时,升温速率为4℃/min;
(3):把步骤(2)预烧后的制得的粉体研碎,再球磨12小时研细粉料,于100℃下烘干8小时后研磨成粉状,以聚乙烯醇缩丁醛酒精溶液作为粘结剂造粒,然后过120目筛后压制成型,于650℃下保温3小时以排出胶体,再在高温炉空气气氛中1160℃烧结,保温2小时后,随炉自然冷却至室温,得到高介超宽温的无铅电容器陶瓷介质材料。
3.根据权利要求1所述的一种三元钛酸铋钠基高介超宽温无铅多层陶瓷电容器介质材料的应用,用于MLCC小型化,应用于多层陶瓷电容器表面贴装电子元器件。
CN202210311214.5A 2022-03-28 2022-03-28 一种三元钛酸铋钠基高介超宽温无铅多层陶瓷电容器介质材料及制备 Active CN114773054B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210311214.5A CN114773054B (zh) 2022-03-28 2022-03-28 一种三元钛酸铋钠基高介超宽温无铅多层陶瓷电容器介质材料及制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210311214.5A CN114773054B (zh) 2022-03-28 2022-03-28 一种三元钛酸铋钠基高介超宽温无铅多层陶瓷电容器介质材料及制备

Publications (2)

Publication Number Publication Date
CN114773054A CN114773054A (zh) 2022-07-22
CN114773054B true CN114773054B (zh) 2023-03-24

Family

ID=82425921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210311214.5A Active CN114773054B (zh) 2022-03-28 2022-03-28 一种三元钛酸铋钠基高介超宽温无铅多层陶瓷电容器介质材料及制备

Country Status (1)

Country Link
CN (1) CN114773054B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041567A1 (de) * 2010-09-28 2012-03-29 Siemens Aktiengesellschaft Bleifreier, texturierter piezokeramischer Werkstoff mit Haupt- und Nebenphase und anisometrischen Keimen, Verfahren zum Herstellen eines piezokeramischen Bauteils mit dem Werkstoff und Verwendung dazu
CN102557635A (zh) * 2011-12-22 2012-07-11 四川师范大学 铌酸钠钽酸锂系无铅压电陶瓷组合物
JP2015038953A (ja) * 2013-06-28 2015-02-26 セイコーエプソン株式会社 圧電材料、圧電素子、液体噴射ヘッド、液体噴射装置、超音波センサー、圧電モーター及び発電装置
CN105174944A (zh) * 2015-09-18 2015-12-23 北京工业大学 一种超宽温高稳定无铅电容器陶瓷介电材料及其制备方法
CN107162585A (zh) * 2017-06-07 2017-09-15 同济大学 一种钛酸铋钠基电致伸缩陶瓷及其制备方法和应用
CN110436920B (zh) * 2019-08-26 2020-06-16 中南大学 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用
CN115461829B (zh) * 2020-05-12 2024-07-26 株式会社村田制作所 电介质组合物和层叠陶瓷电容器
CN113666741B (zh) * 2021-08-10 2022-11-01 内蒙古工业大学 一种钒掺杂铌酸钠压电陶瓷及其制备方法

Also Published As

Publication number Publication date
CN114773054A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
US20200308059A1 (en) Barium strontium titanate-based dielectric ceramic materials, preparation method and application thereof
JP3028503B2 (ja) 非還元性誘電体磁器組成物
US20120268862A1 (en) Ceramic dielectric material matched with nickel internal electrode and method for producing capacitor using same
CN106927804A (zh) 一种微波介质陶瓷温频特性调控剂及其ltcc材料
JPH02279555A (ja) 高誘電率のセラミック材料
JP6334580B2 (ja) セラミックコンデンサ誘電体材料
KR20030056175A (ko) 내환원성 유전체 자기 조성물
KR102599848B1 (ko) 도핑된 페로브스카이트 바륨 스타네이트 재료 및 이의 제조 방법과 응용
CN109231985A (zh) 一种低损耗x8r型电介质材料的制备方法
CN114230335B (zh) 一种巨介电常数、低损耗和高电阻率的BaTiO3基细晶陶瓷及其制备方法
CN109721348B (zh) 低介电常数介电瓷粉组合物制备方法及其制成的电容器
CN105399405A (zh) 一种低介微波铁电陶瓷及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
KR100790682B1 (ko) 저온 소결용 유리 조성물과 이를 이용한 유리 프릿, 유전체조성물, 적층 세라믹 커패시터
Chen et al. Effect of Y2O3 and Dy2O3 on dielectric properties of Ba0. 7 Sr0. 3 TiO3 series capacitor ceramics
CN114773054B (zh) 一种三元钛酸铋钠基高介超宽温无铅多层陶瓷电容器介质材料及制备
JP2020152630A (ja) 低い誘電損失を有する誘電体の製造方法及びそれによって製造される誘電体
JPH11106259A (ja) 誘電体磁器組成物
KR100444225B1 (ko) 유전체 자기 조성물, 이를 이용한 자기 커패시터 및 그 제조방법
KR100444221B1 (ko) 유전체 자기 조성물, 이를 이용한 자기 커패시터 및 그 제조방법
CN110304916A (zh) 一种抗还原BaTiO3基介质陶瓷及制备方法
TWI251245B (en) Temperature-compensated type laminated ceramic capacitor and its dielectric composite material
CN105294101A (zh) 一种高温度稳定型陶瓷电容器用介质材料及其制备方法与应用
CN111825446B (zh) 一种bt-brt复合超低损耗多层瓷介电容器用介质陶瓷材料及其制备方法和应用
CN111499374B (zh) 一种电容器用陶瓷介电材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant