TWI251245B - Temperature-compensated type laminated ceramic capacitor and its dielectric composite material - Google Patents

Temperature-compensated type laminated ceramic capacitor and its dielectric composite material Download PDF

Info

Publication number
TWI251245B
TWI251245B TW94111730A TW94111730A TWI251245B TW I251245 B TWI251245 B TW I251245B TW 94111730 A TW94111730 A TW 94111730A TW 94111730 A TW94111730 A TW 94111730A TW I251245 B TWI251245 B TW I251245B
Authority
TW
Taiwan
Prior art keywords
temperature
ceramic capacitor
composition
mole
component
Prior art date
Application number
TW94111730A
Other languages
Chinese (zh)
Other versions
TW200636777A (en
Inventor
Jian-Ji Lin
Ching-Lin Ji
Original Assignee
Prosperity Dielectrics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prosperity Dielectrics Co Ltd filed Critical Prosperity Dielectrics Co Ltd
Priority to TW94111730A priority Critical patent/TWI251245B/en
Application granted granted Critical
Publication of TWI251245B publication Critical patent/TWI251245B/en
Publication of TW200636777A publication Critical patent/TW200636777A/en

Links

Abstract

A dielectric composite material for temperature-compensated type laminated ceramic capacitor is disclosed in the present invention. The invention is particularly suitable for use in the fabrication of laminating ceramic capacitor that has a temperature coefficient in the range of 0 ± 30 ppm/DEG C. The sintering temperature is lower than 1000 DEG C, and the 90% Ag/10% Pd internal electrode is matched to fabricate the laminated ceramic capacitor. The invention is composed of 100 weight percentages of the first composition, which includes 13.0 mole% <= BaO <= 20.5 mole%, 1.0 mole% <= Bi2O3 <= 8.5 mole%, 8.0 mole% <= Nd2O3 <= 16.0 mole%, 63.0 mole% <= TiO2 <= 71.0 mole%, and 2 to 16 weight parts of the second composition glass, which includes BaO, Bi2O3, SiO2, ZnO, B2O3. The composition of glass contains 5% <= BaO <= 30%, 20% <= Bi2O3 <= 70%, 0% <= SiO2 <= 30%, 10% <= Zn0 <= 40%, 10% <= B2O3 <= 60%.

Description

1251245 九、發明說明: 【發明所屬之技術領域】 本發明係一種超低溫燒成系溫度補償型積層陶瓷電容 器及其介電材料組成物。本發明更適合供電子工業協會 (Electronic Industry Association,簡稱E.I.a )所規定之、四 度係數為NP0規格所採用,亦即電容器在-55^〜ΐ25。。之門, 其電容值的溫度係數(1/c) (AC/^T)須在〇±刈卯爪/它 之範圍内。 【先前技術】 …-般陶究電容器依其究粉組成的介電常數高低可分成 三類:高介電常數型(Hi-K)、中介電常數型(Mid_K)119. The invention relates to an ultra-low temperature firing type temperature-compensated multilayer ceramic capacitor and a dielectric material composition thereof. The invention is more suitable for use by the Electronic Industry Association (E.I.a), and the quadruple coefficient is NP0, that is, the capacitor is at -55^~ΐ25. . The gate, the temperature coefficient of its capacitance (1/c) (AC/^T) must be within the range of 〇±刈卯//. [Prior Art] ...-like ceramic capacitors can be divided into three categories according to the dielectric constant of their powder composition: high dielectric constant type (Hi-K), dielectric constant type (Mid_K)

及溫度補償型(TC)。高介電常數型之介數達侧〜 15000,但其值隨溫度變化而變化很大。中介電常數型的介 電常數約1_〜3_ ’介電常數隨溫度的變化較小但常是 非線性。溫度補償型的介電常數約8〜11〇,介電常數隨溫 度的變化最小且常是線性的變化。 積層陶瓷電容器^的内電極和陶瓷介電層須一起共燒, 因此常見商品化之積層陶瓷電容器之瓷粉組成依燒成:度 可概分為高溫燒成系與低溫燒成系兩種,高湛燒成系之燒 成溫度約在125〇。(:〜mere,因其燒成溫度較高,故其内電 極般舄採用炫點較高,且價格昂貴的|巴(Pd )系貴金屬。 低溫燒成系由於燒成溫度在115(rc以下,故其内電極可採 用熔點較低而價格便宜,銀含量較高之銀鈀合金金屬 5 1251245 (Ag/Pd)來降低成本而較經濟。 一身又/m度補彳員型電谷為曼粉組成的介電常數雖約在8 〜110間,但現行溫度補償型組成若要較高的介電常數,通 常添加Pb以提昇介電常數。而組成物内添加有破璃戋熔塊 專低介電常數物質’亦常會降低介電常數。 一般低溫燒成系介電究粉組成,通常是用高溫燒成的 主成份再添加各種燒結助劑(Sintering aid ),諸如玻璃 (glass),玻璃熔塊(fdt)或助熔劑(flux)等以降低燒成 溫度,一般此玻璃或玻璃熔塊皆含鉛(Pb)或鎘(Cd)等低熔點 成份。而Pb、Cd為對環境生態有害物質,因應環保潮流, 開發出不含Pb、Cd之介電瓷粉組成有其必要性。 【發明内容】 本發明所欲解決之技術問題: 關於低溫燒成系溫度補償型陶瓷電容器組成物,美國 發明專利第4,500,942號所揭示一種由主成份Ba〇_pb〇_ Nd203-Bi203-Ti02和副成份Pb0-Ba0-Bi20rB203-Si02玻璃所 構成的組成物’付合Ε·Ι·A的ΝΡ0規格要求,但其燒成溫度 都須在1100 °C以上且瓷粉組成都含有Pb乏對環境有害物 質。而且,雖然美國發明專利第4,500,942號所揭示組成 可將介電常數提昇至120,但添加玻璃後在ii〇〇°c而可使用 70%Ag/30%Pd内電極共燒成之介電常數卻在90以下。因此 燒成溫度為1000°C以下,可使用90%Ag/10%Pd内電極共燒 且成份内不含Pb、Cd而介電常數可達80〜105之溫度補償型 積層陶瓷電容器瓷粉組成尚未出現。 6 1251245 本發明之目的即在開發一種能在超低溫燒成之積層陶 瓷電容器組成,且不含鉛、鎘等成份。 本發明之另一目的是提供一種可供製造溫度補償型積 層陶瓷電容器使用之介電瓷粉,其電氣特性之介電常數可 達80〜105以上,Q值為1000以上,溫度係數符合E.I.A.之NPO 規格,即〇± 30ppm/°C以内,適合於供製造溫度補償型積層 陶瓷電容器使用之介電瓷粉組成。 本發明之另一目的是提供一種溫度補償型積層陶瓷電 容器,該積層陶瓷電容器所使用之介電材料組成物包含第 一成份Ba0-Bi203-Nd203-Ti02與第二成份玻璃加以配合的 組成物,再添加有機粘結劑,於球磨機中均勻混合,製成 澆注成形用瓷漿,再使瓷漿均勻塗佈於基板上經烘乾後, 再印刷内電極材料,如此重覆數次達到積層陶瓷電容器所 需的陶瓷結構,經燒結而成的積層陶瓷電容器。 本發明解決問題之技術手段: 為達上述之目的,本發明有關之超低溫燒成系積層陶 瓷電容器之介電瓷粉組成由1 〇〇重量份之具有13.Omole% $ BaO ^ 20.5mole% 5 1 .Omole% ^ Bi203 ^ 8.5mole% 5 8.0mole% SNd2O3S16.0mole%,63.0mole%STi〇2$71.0mole%組成 之第一成份,與2〜16重量份由玻璃所組成的第二成份加以 配合組成,其中玻璃之組成為5%$3&amp;〇$30%,20%$3丨2〇3 $70%,0%SSiO2S30%,10%SZn〇S40%,10%$B2〇3 $60%。 7 .1251245 本發明對照先前技術之功效: 本發明選用適當主成份系統’添加不含pb、cd之燒結 助劑將燒成溫度降低至1000 °C以下,而可適用較 70%Ag/30%Pd更價廉的90%Ag/10%Pd之内電極,故可降低 成本,以製造更經濟的積層陶瓷電容器。 此外’採用本發明之技術所製造之積層陶究電容器, 其電氣特性之介電常數可達80〜105以上,Q值為1〇〇〇以上, 溫度係數符合Ε·Ι·Α·之ΝΡ0規格,即0± 30ppm/°c以内,適 合於供製造溫度補償型積層陶瓷電容器使用之介電曼粉組 成。 為進一步揭示本案之技術内容,請參閱以丁之實施 例: 【實施方式】 本發明以BaC03 (石厌酸顧)’ Bi2〇3 (二氧化二叙),Nd2〇3 (三氧化二鈥)或Nd2(C03)3 (碳酸鈥),Ti02 (二氧化鈦) 爲起始原料,依表(1)中所示之組成比例秤重,於球磨中 濕式混合16小時,倒出烘乾後於窯爐中以1〇5〇它以上高溫锻 燒2小時,暇燒料再經粗碎細磨至0.9 # m以下作為本發明中 之第一成份。 本發明第二成份之玻璃則以碳酸鋇(BaC〇3),二氧化 二祕(Bi203)、蝴酸(H3B03 )、氧化鋅(Zn〇)、氧化石夕() 為起始原料,依5%SBaO$30%,20%SBi2〇3g7Q%, 8 1251245 $Sl〇2$30%,10%$ΖηΟ$40%,10%$B2〇3$60%的總和 loo%之配方組成,依比例秤量、混合、烘乾後於11〇(rc熔 化水泮後再經粗碎細磨至以下。 再以表2之重量比例,秤量第一成份及第二成份之玻璃 於球磨中濕式混合16小時,烘乾後即得最終配方粉。此配方 私中再添加入20%含有1〇%聚乙烯醇(p〇iyVinyi aic〇h〇i,即 PVA)溶液,予以造粒後,以15T〇n/cm2的壓力來壓製成直 徑10mm,厚〇.5mm之圓板形生胚片,於忉⑻^左右燒結2小 時。燒結體兩面燒附電極後,依照下列的測試條件來測定其 電性及燒結密度:即頻率1MHz,測試電壓lVrms,測定電容 值並計算介電常數ε及量測D.f·值(即散逸因素tan5 );以 直流電壓500V,充電1分鐘,溫度25t,測定電阻值;以25 °〇的電容值為基準,測定-55。0與125。〇時之電容溫度變化係 數;測量燒結體重量及體積來計算出燒結體密度,並由光學 顯微鏡(0M)來觀察其顯微結構,由這些資料來综合研判 組成是否合乎要求。 上述的試料配方可再進一步製成積層陶瓷電容器,其 方法如下、:對配方粉100重量份,添加由聚曱基丙烯酸曱酯10 份,丁酮/乙醇溶劑30份,丁基苄基酞酸酯4份等成份所組成 之有機粘結劑,置於球磨機中均勻混合16小時,製成涛注成 形用瓷漿,再將此瓷漿放入塗佈機,使瓷漿均勻塗佈於基板 上’母次塗佈之介電層膜厚約20 // m,經80°C烘乾後,再印 刷内電極材料成份為90%Ag/10%Pd之内電極層,如此重覆 數次達到所需之厚度及層數後,再將此成形體切割成 9 1251245 4.0LX2.0wmm大小之生胚晶片,此生胚晶片先經低於500°C 脫脂處理80小時後,於1000°C燒結2小時,燒結後的晶片大 小約為3.2LX1.6wmm,再經外電極燒附後,依照下列測試條 件:頻率1MHz,測試電壓lVrms,測定D.F值及電容值並計算 其介電常數ε值;以直流電壓50V,充電1分鐘後,測定絕 緣電阻值;以每秒100V之速率昇高直流電壓,測定其破壞 電壓;以25°C之電容值為基準,測定-55°C與125°C時之電容 溫度變化係數,來完整評估積層陶瓷電容器之電氣特性。 本實施例結果如表3所示。 本發明係以介電常數80以上,電容溫度係數符合ΝΡ0 規格(即-55°C〜125°C,〇± 30ppm),D.F值(即散逸因數tan 占)為0.001以下,絕緣電阻在1Χ10ηΩ以上,燒結密度達 5.20g/cm3以上為目標。第2表之試料中除1,2,8,9,17, 18,21,23等試料無法符合本發明之目標外,其餘試料均 可符合目標,故以下就請求範圍之理由分述如下: 由試料1和試料2所示,當glass=0或1重量份時,D.F值 太高且燒結密度絶緣電阻皆較目標值為低,由試料8所示, 當glass=20重量份時,D.F值超出目標值,電容溫度係數偏 離目標值,而glass=2〜16重量份時,glass可增加燒結密度 且各項特性均可符合目標值,因此glass最適添加量範圍為 2.0%Sglass$ 16.0%。 試料8〜23主要係在調整第一成份之BaO,Bi203, Nd203,Ti02之莫耳比率,以尋求最佳範圍,在此範圍中試 料均可符合目標之電氣特性,燒結密度,和顯微結構。 1251245 由試料9〜17所示,當BaO=12.0莫耳比時或TiO2=72.0莫 耳比溫度係較偏離目標或有D.F值太高。Ba〇=21.0莫耳比或 TiO2=63.0莫耳比時,電容溫度係數偏離目標值,當 BaO= 13.0〜20.5莫耳比時,Ba〇增加,電容溫度係數往負方 向移動且各項性質皆滿足目標值,故Ba〇之最適範圍為 13.0mole% $ BaO S 20.5mole%,Ti02 之最適範圍為 63.0mole%$TiO2$71.0mole%。 由試料18〜21及9〜17所示,當Bi2〇3=0莫耳比時,燒結 密度不足,IR值皆偏離目標值,當Bi2〇3=9莫耳比時,D.F 值亦偏離目標值,當Bi2O3=1.0〜8.0莫耳比時,Bi2〇3增加, 可提昇介電常數值且各項性質皆滿足目標值,故Bi203之最 適範圍為 l.Omole%S Bi203S 8.5mole%。 由試料22〜23及9〜17所示,當Nd2〇3=17莫耳比時,溫 度係數偏離目標值,當Nd2〇3=8.0〜15.0莫耳比時,Nd2〇3增 加,電容溫度係數往負方向移動且各項性質皆滿足目標值, 故Nd203之最適範圍為 8.0mole%SNd2〇3$ 16.0mole%。 表(1)試料13之第一成份配料比例 原料 重量 莫耳比(mole% ) BaC03 4.74kg Ba〇 16 Bi203 4.19kg Bi2〇3 6 Nd2(C〇3)3 8.43kg Nd203 12 Ti02 7.91kg Ti〇2 66 11 1251245 表(2)實施例之成份表及測試特性結果 試 料 組成比 第二成 燒結 密度 電氣特性 第- -成份(100重 (重量 介 D.F 溫度係數 絶緣 主成份組成 份) 電 (ppm/ 電阻 Ba Bi2 Nd2 Ti02 glass g/cm ε % -55 125 Ω 1 19 3 10 68 0 3.49 36 1.5 -- —— 107 2 19 3 10 68 1 4.76 71 0.1 28 -39 109 3 19 3 10 68 2 5.23 82 0.0 -11 -22 4 19 3 10 68 4 5.43 94 0.0 -12 -23 5 19 3 10 68 8 5.47 92 0.0 -15 -26 6 19 3 10 68 12 5.50 93 0.0 9 -18 7 19 3 10 68 16 5.47 95 0.1 29 5 8 19 3 10 68 20 5.47 85 0.1 48 4 9 12 6 10 72 8 5.51 98 0.2 34 57 10 13. 6 13 67.5 4 5.52 97 0.0 8 26 11 15 8 12.5 64.5 4 5.61 105 0.0 6 -12 12 15 6 15 64 4 5.56 87 0.0 4 -8 12 1251245 (2)實施例之成份表及測試特^^ 士罢η啬、And temperature compensation type (TC). The high dielectric constant type has a side of ~15000, but its value varies greatly with temperature. The dielectric constant of the dielectric constant type is about 1_~3_'. The dielectric constant varies little with temperature but is often nonlinear. The temperature-compensated dielectric constant is about 8 to 11 Å, and the dielectric constant varies minimally with temperature and is often linear. The internal electrode of the multilayer ceramic capacitor and the ceramic dielectric layer must be co-fired together. Therefore, the ceramic powder composition of the commercially available laminated ceramic capacitor is classified into two types: a high temperature firing system and a low temperature firing system. The firing temperature of the high-burning system is about 125 〇. (: ~mere, because its firing temperature is higher, so its internal electrode is like a high point, and expensive | Pd is a precious metal. Low temperature firing because the firing temperature is below 115 (rc) Therefore, the inner electrode can be reduced in cost by using a silver-palladium alloy metal 5 1251245 (Ag/Pd) having a lower melting point and a lower silver content, and is more economical. The body/m degree supplemental electric valley is Mann. The dielectric constant of the powder composition is about 8 to 110. However, if the current temperature compensation type composition has a high dielectric constant, Pb is usually added to increase the dielectric constant, and the composition is filled with a glass frit. The low dielectric constant material 'also often lowers the dielectric constant. Generally, the low temperature firing is a dielectric powder composition, usually a high temperature fired main component and then added various sintering aids such as glass. Glass frit (fdt) or flux (flux) to reduce the firing temperature. Generally, the glass or glass frit contains low-melting components such as lead (Pb) or cadmium (Cd), while Pb and Cd are environmentally friendly. Hazardous substances, in response to environmental trends, the development of dielectric porcelain powder without Pb, Cd SUMMARY OF THE INVENTION [Technical Problem] The present invention solves the technical problems of the present invention. The invention relates to a low-temperature firing type temperature-compensated ceramic capacitor composition, and a main component Ba〇 disclosed in U.S. Patent No. 4,500,942. _pb〇_ Nd203-Bi203-Ti02 and the composition of the subcomponent Pb0-Ba0-Bi20rB203-SiO2 glass are required to meet the specifications of Ε0, Ι·A, but the firing temperature must be above 1100 °C. And the composition of the porcelain powder contains Pb-poor environmentally harmful substances. Moreover, although the composition disclosed in U.S. Patent No. 4,500,942 can increase the dielectric constant to 120, it can be added at ii 〇〇 °c after adding glass. The dielectric constant obtained by co-firing with a 70% Ag/30% Pd internal electrode is below 90. Therefore, the firing temperature is 1000 ° C or less, and the 90% Ag/10% Pd internal electrode can be co-fired without inclusion in the composition. The composition of the temperature-compensated multilayer ceramic capacitor ceramic powder having a dielectric constant of Pb and Cd of 80 to 105 has not yet appeared. 6 1251245 The object of the present invention is to develop a laminated ceramic capacitor which can be fired at an ultra-low temperature and which is free of lead. , cadmium, etc. Another object of the present invention is Providing a dielectric porcelain powder for use in manufacturing a temperature-compensated multilayer ceramic capacitor, the electrical property of which has a dielectric constant of 80 to 105 or more, a Q value of 1000 or more, and a temperature coefficient conforming to EIA's NPO specification, that is, 〇±30 ppm Within / °C, it is suitable for the dielectric ceramic powder used for manufacturing the temperature-compensated multilayer ceramic capacitor. Another object of the present invention is to provide a temperature-compensated multilayer ceramic capacitor, which is composed of a dielectric material used for the multilayer ceramic capacitor. The composition comprises the composition of the first component Ba0-Bi203-Nd203-Ti02 and the second component glass, and then the organic binder is added, and uniformly mixed in a ball mill to prepare a porcelain slurry for casting molding, and then the porcelain slurry is uniformly coated. After the substrate is dried on the substrate, the internal electrode material is printed, and the ceramic structure required to laminate the ceramic capacitor is repeated several times to form a laminated ceramic capacitor. The technical means for solving the problem of the present invention: For the above purpose, the dielectric porcelain powder composition of the ultra-low temperature fired laminated ceramic capacitor of the present invention has a composition of 1 〇〇% by weight of 1.Omole% $ BaO ^ 20.5 mole% 5 1.Omole% ^ Bi203 ^ 8.5mole% 5 8.0mole% SNd2O3S16.0mole%, 63.0mole%STi〇2$71.0mole% The first component of the composition, combined with 2~16 parts by weight of the second component composed of glass Composition, wherein the composition of the glass is 5%$3&amp; 〇$30%, 20%$3丨2〇3 $70%, 0% SSiO2S30%, 10% SZn〇S40%, 10%$B2〇3 $60%. 7.1251245 The present invention compares the efficacy of the prior art: The present invention selects a suitable main component system 'adding a sintering aid containing no pb or cd to lower the firing temperature to below 1000 ° C, and is applicable to 70% Ag/30%. Pd's cheaper 90% Ag/10% Pd internal electrode reduces cost to make a more economical multilayer ceramic capacitor. In addition, the laminated ceramic capacitor manufactured by the technique of the present invention has a dielectric constant of 80 to 105 or more, a Q value of 1 〇〇〇 or more, and a temperature coefficient conforming to the specifications of Ε·Ι·Α·ΝΡ0. , that is, within 0±30ppm/°c, it is suitable for the composition of dielectric powder used in the manufacture of temperature-compensated multilayer ceramic capacitors. In order to further disclose the technical content of the present case, please refer to the example of Ding: [Embodiment] The present invention is based on BaC03 (stone anaerobic acid) 'Bi2〇3 (2D2), Nd2〇3 (antimony trioxide) Or Nd2(C03)3 (鈥3), Ti02 (titanium dioxide) as the starting material, weighed according to the composition ratio shown in Table (1), wet mixed in the ball mill for 16 hours, poured out and dried in the kiln The furnace was calcined at a temperature of 1 〇 5 〇 for 2 hours, and the sinter was finely ground to 0.9 # m or less as the first component of the present invention. The glass of the second component of the invention is based on barium carbonate (BaC〇3), second-order dioxide (Bi203), butterfly acid (H3B03), zinc oxide (Zn〇), and oxidized stone (). %SBaO$30%, 20%SBi2〇3g7Q%, 8 1251245 $Sl〇2$30%, 10%$ΖηΟ$40%, 10%$B2〇3$60% of the total loo% of the formula, scaled, mixed, After drying, the mixture is smelted with water and then coarsely ground to the following. After weighing the weight of Table 2, the first and second components of the glass are wet-mixed in a ball mill for 16 hours, and dried. The final formula powder is obtained. The formula is further added with 20% solution containing 1% polyvinyl alcohol (p〇iyVinyi aic〇h〇i, PVA), and then granulated to 15T〇n/cm2. The pressure was pressed into a round-shaped green plate with a diameter of 10 mm and a thickness of 5 mm, and sintered for about 2 hours at about 8 (8). After burning the electrodes on both sides of the sintered body, the electrical properties and the sintered density were measured according to the following test conditions: That is, the frequency is 1MHz, the test voltage is 1Vrms, the capacitance value is measured, and the dielectric constant ε and the measured Df· value (ie, the dissipation factor tan5) are calculated; the DC voltage is 500V, and the charging is 1 minute. , the temperature is 25t, the resistance value is measured; the capacitance value of -55. 0 and 125 is measured with a capacitance value of 25 ° 〇; the coefficient of variation of the temperature of the capacitor is measured; the weight and volume of the sintered body are measured to calculate the density of the sintered body, and the optical density is calculated by the optical Microscope (0M) to observe the microstructure, from these data to comprehensively determine whether the composition is satisfactory. The above sample formulation can be further made into a laminated ceramic capacitor, the method is as follows: 100 parts by weight of the formula powder, added by the poly 10 parts of decyl decyl acrylate, 30 parts of methyl ethyl ketone / ethanol solvent, 4 parts of butyl benzyl phthalate, etc., were uniformly mixed in a ball mill for 16 hours to prepare for the injection molding. The porcelain pulp is placed in a coater to uniformly coat the porcelain slurry on the substrate. The mother-coated dielectric layer has a film thickness of about 20 // m, dried at 80 ° C, and then printed. The internal electrode material composition is an inner electrode layer of 90% Ag/10% Pd. After repeating the desired thickness and number of layers several times, the shaped body is cut into 9 1251245 4.0LX 2.0wmm size green embryo chip. The raw embryonic wafer is degreased for less than 500 ° C for 80 hours. After sintering at 1000 ° C for 2 hours, the size of the wafer after sintering is about 3.2LX1.6wmm, and after being baked by the external electrode, according to the following test conditions: frequency 1MHz, test voltage lVrms, DF value and capacitance value are measured and calculated Dielectric constant ε value; after charging for 1 minute with DC voltage 50V, measure the insulation resistance value; increase the DC voltage at a rate of 100V per second, measure the breakdown voltage; determine the -55 with the capacitance value of 25 °C The electrical characteristics of the multilayer ceramic capacitor are fully evaluated by the coefficient of variation of the capacitance temperature at °C and 125 °C. The results of this example are shown in Table 3. The present invention has a dielectric constant of 80 or more, a temperature coefficient of capacitance conforming to the ΝΡ0 specification (ie, -55 ° C to 125 ° C, 〇 ± 30 ppm), a DF value (that is, a dissipation factor tan) of 0.001 or less, and an insulation resistance of 1 Χ 10 ηΩ or more. The target has a sintered density of 5.20 g/cm3 or more. In the samples of the second table, except for the samples of 1, 2, 8, 9, 17, 18, 21, 23, etc., which can not meet the objectives of the present invention, the other samples can meet the objectives, so the following reasons for the scope of the request are as follows: As shown in Sample 1 and Sample 2, when glass = 0 or 1 part by weight, the DF value was too high and the sintered density insulation resistance was lower than the target value, as shown by the sample 8, when glass = 20 parts by weight, DF When the value exceeds the target value, the temperature coefficient of the capacitor deviates from the target value, and when glass=2~16 parts by weight, the glass can increase the sintered density and the characteristics can meet the target value. Therefore, the optimal range of glass is 2.0% Sglass$16.0%. . Samples 8 to 23 are mainly used to adjust the molar ratio of BaO, Bi203, Nd203, and Ti02 of the first component to find the optimum range in which the sample can meet the electrical characteristics, sintered density, and microstructure of the target. . 1251245 is shown by Samples 9 to 17, when BaO = 12.0 Mo ratio or TiO2 = 72.0 Mo ratio is more deviated from the target or has a D.F value too high. When Ba〇=21.0 Mo Er ratio or TiO2=63.0 Mo Er ratio, the temperature coefficient of capacitance deviates from the target value. When BaO=13.0~20.5 Mo Er ratio, Ba〇 increases, the temperature coefficient of capacitance moves in the negative direction and all properties are The target value is satisfied, so the optimum range of Ba〇 is 13.0 mole% $ BaO S 20.5 mole%, and the optimum range of Ti02 is 63.0 mole%$TiO2$71.0 mole%. As shown in samples 18 to 21 and 9 to 17, when the Bi2〇3=0 molar ratio, the sintered density is insufficient, and the IR values deviate from the target value. When Bi2〇3=9 molar ratio, the DF value deviates from the target. Value, when Bi2O3=1.0~8.0 molar ratio, Bi2〇3 increases, the dielectric constant value can be increased and each property satisfies the target value, so the optimum range of Bi203 is l.Omole%S Bi203S 8.5mole%. As shown by the samples 22 to 23 and 9 to 17, when the Nd2 〇 3 = 17 molar ratio, the temperature coefficient deviates from the target value, and when Nd2 〇 3 = 8.0 to 15.0 mol ratio, Nd2 〇 3 increases, and the temperature coefficient of capacitance increases. Moving in the negative direction and each property satisfies the target value, the optimum range of Nd203 is 8.0 mole% SNd2〇3$16.0 mole%. Table (1) Composition of the first component of sample 13 Proportion of raw material weight molar ratio (mole%) BaC03 4.74kg Ba〇16 Bi203 4.19kg Bi2〇3 6 Nd2(C〇3)3 8.43kg Nd203 12 Ti02 7.91kg Ti〇 2 66 11 1251245 Table (2) Ingredients Table and Test Characteristics Results Sample Composition Ratio Second Sintering Density Electrical Characteristics No. - Component (100 Weight (weight DF temperature coefficient insulation main component) Electricity (ppm/ Resistance Ba Bi2 Nd2 Ti02 glass g/cm ε % -55 125 Ω 1 19 3 10 68 0 3.49 36 1.5 -- —— 107 2 19 3 10 68 1 4.76 71 0.1 28 -39 109 3 19 3 10 68 2 5.23 82 0.0 -11 -22 4 19 3 10 68 4 5.43 94 0.0 -12 -23 5 19 3 10 68 8 5.47 92 0.0 -15 -26 6 19 3 10 68 12 5.50 93 0.0 9 -18 7 19 3 10 68 16 5.47 95 0.1 29 5 8 19 3 10 68 20 5.47 85 0.1 48 4 9 12 6 10 72 8 5.51 98 0.2 34 57 10 13. 6 13 67.5 4 5.52 97 0.0 8 26 11 15 8 12.5 64.5 4 5.61 105 0.0 6 -12 12 15 6 15 64 4 5.56 87 0.0 4 -8 12 1251245 (2) The composition table of the example and the test special ^^ 士 啬 啬,

表^3)試料11及試料13製成之積層陶奢雷宄哭 __試料編號 11 13 __電極種類 90Ag/ l〇Pd 9〇Ag/ i〇Pd 燒結溫度 1000°C 1000°C 效層數(η) 6 6 j後膜厚(# 14.5 13.5 電氣特性 13 ,1251245Table ^3) Sample 11 and sample 13 made of laminated ceramics, luxury 宄 宄 __ sample number 11 13 __ electrode type 90Ag / l 〇 Pd 9 〇 Ag / i 〇 Pd sintering temperature 1000 ° C 1000 ° C effect layer Number (η) 6 6 j after film thickness (# 14.5 13.5 Electrical characteristics 13, 1251245

平均電容量 790pF 780pF D.F 0.09% 0.06% 絶緣電阻 1.5 X 1012 5 x 1012Ω 溫度係數(-5 5 7ppm / °C 4ppm / °C 溫度係數(125 -14ppm / 〇C -21ppm / °C 介電常數 105 100 破壞電壓 1480V 1450V • 【圖式簡單說明】 無 【主要元件符號說明】Average capacitance 790pF 780pF DF 0.09% 0.06% Insulation resistance 1.5 X 1012 5 x 1012Ω Temperature coefficient (-5 5 7ppm / °C 4ppm / °C Temperature coefficient (125 -14ppm / 〇C -21ppm / °C Dielectric constant 105 100 breakdown voltage 1480V 1450V • [Simple description of the diagram] No [Main component symbol description]

Claims (1)

俗 1245 4·如申請專利範圍第1項所述之溫度補償型積層陶瓷電容器 介電材料組成物’其中該第二成份中之各組成成份依比 例秤量、混合、烘乾後於議t耗水淬後再經粗碎細 磨至1·5 // m以下。 5· —種溫度補償型積層陶瓷電容器,該積層陶瓷電容器之 介電材料組成物是由1〇〇重量份之第一成份 Nd2〇rTi〇2與2〜16重量份的第二成份玻璃加以配合的組 成物,该第二成份之玻璃之組成,聽 ^Bi2〇3^70% . 0%^SiO2^30% . 10%^Zn〇^40% , 10% 化〇3^6〇%,該組成物於添加有機減劑之後,於球 磨機中均勻混合H堯注成形用£漿,再使£漿均勻 塗佈於基板上經烘乾後,再印刷内電極材料,如此重覆 數次達到積層陶£電容器所需的陶£結構,經燒結而成 的積層陶瓷電容器。 6.如申4專利範圍第5項所述之溫度補償型積層陶究電容 器,其中該第一成份之組成成份由1〇〇重量份如下所示之 13.0mole% ^BaO^20.5mole% ^ l.〇mole%^Bi〇 &lt; ’ 8.〇m()le“Nd2(^i5 ()m〇ie%,㈣_ “Tl〇2S71.Gm。㈣與2〜16重量份之玻璃所組成的第 二成份組合而成該介電瓷粉組成物。 .如申請專利範圍第6項所述之溫度補償型積層陶竟電容 16 1251245 % • 器,其中該第二成份之玻璃之近似組成為5% S Ba〇$ 30%,20%SBi2〇3$70%,0%SSi〇2$30%,10%SZn〇 ^40%,10%$B203g60%。 8.如申請專利範圍第5項所述之溫度補償型積層陶瓷電容 器,其中該有機粘結劑由聚曱基丙烯酸曱酯,丁酮/乙醇 溶劑,丁基苄基S太酸酯等成份所組成。 | 9.如申請專利範圍第5項所述之溫度補償型積層陶瓷電容 器,其中該内電極材料之成份為含90%Ag/10%Pd之内電 極材料。Custom 1245 4. The temperature-compensated multilayer ceramic capacitor dielectric material composition as described in claim 1 wherein the components of the second component are weighed, mixed, dried and then consumed. After quenching, finely grind it to less than 1. 5 // m. 5. A temperature-compensated multilayer ceramic capacitor, the dielectric material composition of the laminated ceramic capacitor is matched by 1 part by weight of the first component Nd2〇rTi〇2 and 2 to 16 parts by weight of the second component glass. The composition of the glass of the second component, listening to ^Bi2〇3^70%. 0%^SiO2^30%. 10%^Zn〇^40%, 10% 〇3^6〇%, After adding the organic reducing agent, the composition is uniformly mixed with H slurry in a ball mill, and then the slurry is uniformly coated on the substrate and dried, and then the internal electrode material is printed, so that the laminate is repeated several times to reach the layer. The ceramic structure required for the capacitor, the sintered ceramic capacitor. 6. The temperature-compensated laminated ceramic capacitor according to claim 5, wherein the composition of the first component is 1% by mole as shown below: 13.0 mole% ^BaO^20.5 mole% ^ l .〇mole%^Bi〇&lt; ' 8.〇m()le"Nd2(^i5 ()m〇ie%, (4)_"Tl〇2S71.Gm. (4) and 2~16 parts by weight of glass The two components are combined to form the dielectric porcelain powder composition. As claimed in claim 6, the temperature-compensated laminated ceramic capacitor 16 1251245%, wherein the second component of the glass has an approximate composition of 5%. S Ba〇$ 30%, 20%SBi2〇3$70%, 0%SSi〇2$30%, 10% SZn〇^40%, 10%$B203g60% 8. Temperature as stated in claim 5 A compensating multilayer ceramic capacitor, wherein the organic binder is composed of a polydecyl methacrylate, a methyl ethyl ketone/ethanol solvent, a butyl benzyl S tartanate, etc. The temperature-compensated multilayer ceramic capacitor, wherein the inner electrode material is composed of an inner electrode material containing 90% Ag/10% Pd. 1717
TW94111730A 2005-04-13 2005-04-13 Temperature-compensated type laminated ceramic capacitor and its dielectric composite material TWI251245B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94111730A TWI251245B (en) 2005-04-13 2005-04-13 Temperature-compensated type laminated ceramic capacitor and its dielectric composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94111730A TWI251245B (en) 2005-04-13 2005-04-13 Temperature-compensated type laminated ceramic capacitor and its dielectric composite material

Publications (2)

Publication Number Publication Date
TWI251245B true TWI251245B (en) 2006-03-11
TW200636777A TW200636777A (en) 2006-10-16

Family

ID=37433538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94111730A TWI251245B (en) 2005-04-13 2005-04-13 Temperature-compensated type laminated ceramic capacitor and its dielectric composite material

Country Status (1)

Country Link
TW (1) TWI251245B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102737836A (en) * 2011-04-07 2012-10-17 徐孝华 Dielectric material composition of temperature compensation type multilayer ceramic capacitor
TWI498309B (en) * 2012-12-12 2015-09-01

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102737836A (en) * 2011-04-07 2012-10-17 徐孝华 Dielectric material composition of temperature compensation type multilayer ceramic capacitor
TWI498309B (en) * 2012-12-12 2015-09-01

Also Published As

Publication number Publication date
TW200636777A (en) 2006-10-16

Similar Documents

Publication Publication Date Title
JP4817199B2 (en) Dielectric composition for low-temperature firing and high-temperature insulation resistance enhancement and multilayer ceramic capacitor using the same
KR100313232B1 (en) Dielectric Ceramic Composition and Laminated Ceramic Capacitor
KR100444230B1 (en) Nonreducible dielectric ceramic composition
JP5111462B2 (en) Borosilicate glass composition for sintering aid, dielectric composition, and multilayer ceramic capacitor using the same
US8305731B2 (en) Lead and cadmium free, low temperature fired X7R dielectric ceramic composition and method of making
KR100264646B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor using the same
KR100632001B1 (en) Glass compositions for low temperature sintering, glass frit, dielectric compositions and multilayer ceramic condenser using the same
TWI433184B (en) Ultra low temperature fired x7r and bx dielectric ceramic composition and method of making
JP5461774B2 (en) Electronic component and manufacturing method thereof
KR20020011120A (en) Reduction-Resistant Dielectric Ceramic Compact and Laminated Ceramic Capacitor
KR100444229B1 (en) Nonreducible dielectric ceramic composition
JPH05152158A (en) Ceramic capacitor
KR101994745B1 (en) Low temperature sintering dielectric composition and multilayer cderamic capacitor
JP2000143341A (en) Dielectric ceramic composition and multilayer ceramic part
JP2011201761A (en) Dielectric ceramic composition and ceramic electronic part
TWI648240B (en) Low dielectric constant dielectric porcelain powder composition which is ultra-low temperature sintered in a reducing atmosphere and Preparation method and temperature-compensated
JP2006347782A (en) Dielectric ceramic composition and laminated ceramic capacitor
JP4717302B2 (en) Dielectric porcelain composition and electronic component
JP4654478B2 (en) Dielectric composition and ceramic capacitor using the same
JPWO2012023406A1 (en) Multilayer ceramic electronic components
JP2004323315A (en) Dielectric ceramic composition, its production method, and multilayer ceramic capacitor obtained by using the same
TWI251245B (en) Temperature-compensated type laminated ceramic capacitor and its dielectric composite material
KR100790682B1 (en) Glass compositions for low temperature sintering, glass frit, dielectric compositions and multilayer ceramic capacitor using the same
TW201422560A (en) Ultra-low temperature fired low dielectric constant dielectric porcelain powder composition and temperature compensation type laminated ceramic capacitor made of the same
JP5151039B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor