CN114734038A - 形成柔性碳复合材料自润滑密封件的方法 - Google Patents

形成柔性碳复合材料自润滑密封件的方法 Download PDF

Info

Publication number
CN114734038A
CN114734038A CN202210375085.6A CN202210375085A CN114734038A CN 114734038 A CN114734038 A CN 114734038A CN 202210375085 A CN202210375085 A CN 202210375085A CN 114734038 A CN114734038 A CN 114734038A
Authority
CN
China
Prior art keywords
carbon composite
carbon
binder
flexible
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210375085.6A
Other languages
English (en)
Inventor
赵磊
徐志跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of CN114734038A publication Critical patent/CN114734038A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/0036Cutting means, e.g. water jets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Sealing Devices (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)

Abstract

一种形成柔性碳复合材料自润滑密封件的方法包括将碳复合材料混合物压入模具,形成柔性碳复合材料自润滑环形密封件。

Description

形成柔性碳复合材料自润滑密封件的方法
本申请是申请日为2015年10月22日、申请号为201580060697.4并且发明名称为“形成柔性碳复合材料自润滑密封件的方法”的发明专利申请的分案申请。
相关申请的交叉引用
本专利申请要求提交于2014年11月25日的美国专利申请号14/553472的权益,所述专利申请全文以引用的方式并入本文。
背景技术
密封件广泛用于资源勘探、开采和CO2封存系统。密封件用于井上和井下。动态密封件提供了移动部件和静止部件之间的密封界面。通常,密封件从塑料和弹性体形成。塑料和弹性体二者在井上和井下的使用存在各种挑战。塑料和弹性体易受诸如存在于烃回收的高温、高压和腐蚀环境导致的磨损的影响。因此,从塑料和弹性体形成的密封件可经历使用寿命有限,或受到某些操作环境的限制。例如,很多弹性体在接近600℉(315.5℃)的温度下开始分解。
石墨是碳的同素异形体,并且具有层状平面结构。在每层中,碳原子通过共价键排列成六边形阵列或网络。然而,不同的碳层仅通过弱范德华力结合在一起。
石墨由于其优异的导热性和导电性、光亮度、低摩擦和高耐热性和耐腐蚀性,已用于许多应用,包括电子设备、原子能、热金属加工、涂料、航空航天等等。然而,常规的石墨是没有弹性的并且具有低强度,这可限制其另外的应用,诸如形成用于井下环境的密封件。本行业将易于接受密封技术的改进,包括从表现出柔性、化学稳定性、耐腐蚀性增加,以及耐高温和耐高压性质的材料形成的密封件。
发明内容
一种形成柔性碳复合材料自润滑密封件的方法包括将碳复合材料混合物压入模具,形成柔性碳复合材料自润滑环形密封件。
附图简述
现在参见附图,其中多个附图中类似元件的编号类似:
图1是包含在室温和大气压下共混的膨胀石墨和微米或纳米尺寸粘结剂的组合物的扫描电子显微(“SEM”)图像;
图2是根据本公开的一个实施方案的在高压和高温条件下从膨胀石墨和微米或纳米尺寸粘结剂形成的碳复合材料的SEM图像;
图3是根据本公开的另一个实施方案的碳微观结构的SEM图像;
图4是根据本公开的一个实施方案的碳复合材料的示意图;
图5示出了(A)天然石墨;(B)膨胀石墨;(C)膨胀石墨和微米或纳米尺寸粘结剂的混合物,其中所述样品在室温和高压下压实;(D)根据本公开的一个实施方案在高温和低压下从膨胀石墨和微米或纳米尺寸粘结剂的混合物压实的碳复合材料(也称为“软复合材料”);以及(E)根据本公开的另一个实施方案在高压和高温条件下从膨胀石墨和微米和纳米尺寸粘结剂形成的碳复合材料(也称为“硬复合材料”)的应力-应变曲线;
图6示出了碳复合材料在不同负载下的环路测试结果;
图7示出了分别在室温和500℉下测试的碳复合材料的迟滞结果;
图8比较了在500℃下暴露至空气25小时之前和之后的碳复合材料;
图9(A)是在热冲击之后的碳复合材料图片;图9(B)示出了热冲击的条件;
图10比较了在200℉下暴露至自来水20小时(A)之前和(B)之后,或(C)在200℉下暴露至自来水3天之后的碳复合材料样品;
图11比较了在200℉下暴露至含抑制剂的15%HCl溶液20小时(A)之前和(B)之后,或(C)在200℉下暴露至15%HCl溶液3天之后的碳复合材料样品;
图12示出了在600℉下的碳复合材料密封力弛豫测试结果;
图13示出了根据示例性实施方案的地下勘探系统,其包括管状支承件、自给供电的柔性自润滑碳复合材料密封件;
图14示出了流程图,其示出了形成柔性碳复合材料自润滑环形密封件的方法;
图15示出了引入模具的碳复合材料混合物;
图16示出了压入模具的碳复合材料混合物;
图17示出了压入被加热模具的碳复合材料混合物;
图18示出了从模具移除的柔性碳复合材料环形密封件;
图19示出了根据一个示例性实施方案的一个方面的具有集成偏置构件的柔性碳复合材料环形密封件;
图20示出了根据一个示例性实施方案的另一个方面的在多个偏置构件周围形成的柔性碳复合材料环形密封件;
图21示出了根据一个示例性实施方案的又一个方面的具有大致圆形横截面的柔性碳复合材料环形密封件;
图22示出了根据一个示例性实施方案的又一个方面的具有大致矩形横截面的柔性碳复合材料环形密封件;
图23示出了根据一个示例性实施方案的又一个方面的具有圆形横截面的柔性碳复合材料环形密封件;
图24示出了根据一个示例性实施方案的又一个方面的具有X形横截面的柔性碳复合材料环形密封件;以及
图25示出了根据一个示例性实施方案的柔性碳复合材料与其他材料比较的坐标图。
具体实施方式
发明人据此发现,在高温下从石墨和微米或纳米尺寸粘结剂形成的碳复合材料与单独石墨,从相同的石墨但不同的粘结剂形成的组合物,或相同的石墨和相同的粘结剂在室温、大气压或高压下共混的混合物相比,具有改善的平衡性质。新碳复合材料具有优异的弹性。此外,碳复合材料在高温下具有优异的机械强度、耐热性和耐化学性。在另一个有利的特征中,复合材料保持了石墨的各种优良性质,诸如导热性、导电性、润滑性等等。
不希望受理论的束缚,据信设置在碳微观结构之间的粘结相提供了机械强度的改善。碳微观结构之间不存在力或仅存在弱范德华力,因此石墨疏松材料具有弱机械强度。在高温下,微米和纳米尺寸粘结剂液化,并均匀分散在碳微观结构之间。在冷却时,粘结剂固化,并形成通过机械联锁将碳纳米结构粘结在一起的粘结相。
另外不希望受理论的束缚,对于具有改善的机械强度和改善的弹性二者的复合材料,据信碳微观结构本身是叠堆层之间具有空间的层状结构。粘结剂仅在微观结构的边缘选择性地将其锁定,而不渗入微观结构。因此,微观结构内的无界层提供了弹性,并且设置在碳微观结构之间的粘结相提供了机械强度。
碳微观结构是将石墨压成高度压缩状态之后形成的石墨微观结构。它们包括沿压缩方向叠堆在一起的石墨基面。如本文所用,碳基面是指基本上平坦、平行的碳原子片或层,其中每个片或层具有单原子厚度。石墨基面也称为碳层。碳微观结构是大致平坦的和薄的。它们可具有不同的形状,也可称为微片、微盘等等。在一个实施方案中,碳微观结构是基本上彼此平行的。
碳复合材料中有两种类型空隙-碳微观结构之间的空隙或间隙空间和每个单独碳微观结构内的空隙。碳微观结构之间的间隙空间具有约0.1至约100微米、具体地讲约1至约20微米的尺寸,而碳微观结构内的空隙更小,通常在约20纳米至约1微米、具体地讲约200纳米至约1微米之间。空隙或间隙空间的形状无特别限制。如本文所用,空隙或间隙空间的尺寸是指空隙或间隙空间的最大尺寸,并且可通过高分辨率电子或原子力显微技术测定。
碳微观结构之间的间隙空间填充有微米或纳米尺寸粘结剂。例如,粘结剂可占据碳微观结构之间约10%至约90%的间隙空间。然而,粘结剂不渗透单个碳微观结构,并且碳微观结构内的空隙是未填充的,即未填充任何粘结剂。因此,碳微观结构内的碳层不通过粘结剂锁定在一起。通过所述机制,可保持碳复合材料,具体地讲膨胀碳复合材料的柔性。
碳微观结构具有约1至约200微米、约1至约150微米、约1至约100微米、约1至约50微米或约10至约20微米的厚度。碳微观结构的直径或最大尺寸为约5至约500微米或约10至约500微米。碳微观结构厚径比可为约10至约500、约20至约400或约25至约350。在一个实施方案中,碳微观结构中碳层之间的距离为约0.3纳米至约1微米。碳微观结构可具有约0.5至约3g/cm3、或约0.1至约2g/cm3的密度。
如本文所用,石墨包括天然石墨、合成石墨、可膨胀石墨、膨胀石墨或包含上述中的至少一者的组合。天然石墨是天然形成的石墨。它可分为“片状”石墨、“脉状”石墨和“无定形”石墨。合成石墨是由碳材料制成的制品。热解石墨是合成石墨的一种形式。可膨胀石墨是指天然石墨或合成石墨的层之间插入插层材料的石墨。许多化学品用于插层石墨材料。这些化学品包括酸、氧化剂、卤化物等等。示例性插层材料包括硫酸、硝酸、铬酸、硼酸、SO3或卤化物诸如FeCl3、ZnCl2和SbCl5。在加热时,插层从液态或固态转化为气相。气体形成产生压力,推动邻近的碳层分离,产生膨胀石墨。膨胀石墨颗粒的外观是蠕虫状的,因此通常称为蠕虫。
有利地,碳复合材料包括膨胀石墨微观结构。与其他形式的石墨相比,膨胀石墨具有高柔性和压缩回复,以及较大的各向异性。因此,在高压和高温条件下从膨胀石墨和微米或纳米尺寸粘结剂形成的复合材料除所需机械强度之外,还可具有优异的弹性。
在碳复合材料中,碳微观结构通过粘结相结合在一起。粘结相包含粘结剂,其通过机械联锁结合碳微观结构。任选地,界面层在粘结剂和碳微观结构之间形成。界面层可包括化学键、固态溶液或它们的组合。当存在化学键、固态溶液或它们的组合时,可强化碳微观结构的联锁。可以理解的是,碳微观结构可通过机械联锁和化学键合二者结合在一起。例如,化学键合、固态溶液或它们的组合可形成于一些碳微观结构和粘结剂之间,或对于特定的碳微观结构,仅形成于碳微观结构表面上的一部分碳和粘结剂之间。对于不形成化学键、固态溶液或它们的组合的碳微观结构或碳微观结构的一部分,碳微观结构可由机械联锁界定。粘结相的厚度为约0.1至约100微米或约1至约20微米。粘结相可形成使碳微观结构结合在一起的连续或不连续网络。
示例性粘结剂包括SiO2、Si、B、B2O3、金属、合金或包含上述中的至少一者的组合。金属可以是铝、铜、钛、镍、钨、铬、铁、锰、锆、铪、钒、铌、钼、锡、铋、锑、铅、镉和硒。合金包括铝、铜、钛、镍、钨、铬、铁、锰、锆、铪、钒、铌、钼、锡、铋、锑、铅、镉和硒的合金。在一个实施方案中,粘结剂包含铜、镍、铬、铁、钛、铜的合金、镍的合金、铬的合金、铁的合金、钛的合金或包含上述金属或金属合金中的至少一者的组合。示例性合金包括钢、基于镍-铬的合金诸如因科镍合金(Inconel)*和基于镍-铜的合金诸如蒙乃尔(Monel)合金。基于镍-铬的合金可包含约40-75%的Ni、约10-35%的Cr。基于镍-铬的合金也可包含约1%至约15%的铁。少量Mo、Nb、Co、Mn、Cu、Al、Ti、Si、C、S、P、B或包含上述中的至少一者的组合也可包括于基于镍-铬的合金中。基于镍-铜的合金主要由镍(最多至约67%)和铜构成。基于镍-铜的合金也可包含少量铁、锰、碳和硅。这些材料可具有不同的形状,诸如颗粒、纤维和线材。可使用材料的组合。
用于制备碳复合材料的粘结剂是微米或纳米尺寸的。在一个实施方案中,粘结剂具有约0.05至约10微米,具体地讲约0.5至约5微米,更具体地讲约0.1至约3微米的平均粒度。不希望受理论的束缚,据信当粘结剂具有这些范围内的尺寸时,其在碳微观结构之间均匀分散。
当存在界面层时,粘结相包括粘结剂层(所述粘结剂层包含粘结剂)和界面层(所述界面层将至少两个碳微观结构中的一者键合至粘结剂层)。在一个实施方案中,粘结相包括粘结剂层、第一界面层(所述第一界面层将一个碳微观结构键合至粘结剂层)和第二界面层(所述第二界面层将另一个微观结构粘结至粘结剂层)。第一界面层和第二界面层可具有相同或不同的组成。
界面层包含C-金属键合、C-B键合、C-Si键合、C-O-Si键合、C-O-金属键合、金属碳溶液或包含上述中的至少一者的组合。所述键合从碳微观结构表面上的碳和粘结剂形成。
在一个实施方案中,界面层包含粘结剂的碳化物。所述碳化物包括铝、钛、镍、钨、铬、铁、锰、锆、铪、钒、铌、钼的碳化物或包含上述中的至少一者的组合。这些碳化物通过对应的金属或金属合金粘结剂与碳微观结构的碳原子反应来形成。粘结相也可包含SiO2或Si与碳微观结构的碳反应形成的SiC,或B或B2O3与碳微观结构的碳反应形成的B4C。当使用粘结剂材料的组合时,界面层可包含这些碳化物的组合。碳化物可以是盐类碳化物诸如碳化铝、共价碳化物诸如SiC、B4C、间隙碳化物诸如4族、5族和5族过渡金属的碳化物、或中间过渡金属碳化物例如Cr、Mn、Fe、Co和Ni的碳化物。
在另一个实施方案中,界面层包含碳的固态溶液和粘结剂。碳在某些金属基质中或在某些温度范围内具有溶解性,这有助于金属相润湿和粘结到碳微观结构上。通过热处理,可在低温下保持金属中碳的高溶解度。这些金属包括Co、Fe、La、Mn、Ni或Cu。粘结剂层也可包含固态溶液和碳化物的组合。
碳复合材料包含基于复合材料的总重量计约20至约95重量%、约20至约80重量%或约50至约80重量%的碳。粘结剂以基于复合材料的总重量计约5重量%至约75重量%或约20重量%至约50重量%的量存在。在碳复合材料中,碳相对于粘结剂的重量比为约1:4至约20:1,或约1:4至约4:1,或约1:1至约4:1。
图1是包含在室温和大气压下共混的膨胀石墨和微米或纳米尺寸粘结剂的组合物的SEM图像。如图1所示,粘结剂(白色区域)仅沉积于一些膨胀石墨蠕虫的表面。
图2是在高压和高温条件下从膨胀石墨和微米或纳米尺寸粘结剂形成的碳复合材料的SEM图像。如图2所示,粘结相(亮区域)均匀分布在膨胀石墨微观结构(暗区域)之间。
碳石墨微观结构的SEM图像如图3所示。碳复合材料的一个实施方案如图4所示。如图4所示,复合材料包括碳微观结构1和锁定碳微观结构的粘结相2。粘结相2包括粘结剂层3和设置在粘结剂层和碳微观结构之间的任选界面层4。碳复合材料包含碳微观结构1之间的间隙空间5。碳微观结构内存在未填充的空隙6。
碳复合材料可任选地包含填料。示例性填料包括碳纤维、炭黑、云母、粘土、玻璃纤维、陶瓷纤维和陶瓷中空结构。陶瓷材料包括SiC、Si3N4、SiO2、BN等等。填料可以约0.5至约10重量%或约1至约8%的量存在。
复合材料可具有任何所需的形状,包括条状、块状、片状、管状、圆柱形坯、环面、粉末、丸粒或可加工、形成或者用于形成有用制品的其他形式。这些形式的尺寸或大小无特别限制。如图所示,片状具有约10μm至约10cm的厚度和约10mm至约2m的宽度。粉末包括平均尺寸为约10μm至约1cm的颗粒。丸粒包括平均尺寸为约1cm至约5cm的颗粒。
形成碳复合材料的一种方式是通过冷压来压缩包含碳和微米或纳米尺寸粘结剂的组合从而得到生坯;以及压缩和加热生坯从而形成碳复合材料。在另一个实施方案中,所述组合可在室温下压缩形成压坯,然后在大气压下加热所述压坯形成碳复合材料。这些工艺可称为两步工艺。或者,可直接压缩和加热包含碳和微米或纳米尺寸粘结剂的组合形成碳复合材料。所述工艺可称为一步工艺。
在所述组合中,碳诸如石墨以基于组合的总重量计约20重量%至约95重量%、约20重量%至约80重量%或约50重量%至约80重量%的量存在。粘结剂以基于组合的总重量计约5重量%至约75重量%或约20重量%至约50重量%的量存在。所述组合中的石墨可为碎片、粉末、小片、薄片等等的形式。在一个实施方案中,石墨呈直径为约50微米至约5,000微米、优选地约100至约300微米的薄片的形式。石墨薄片可具有约1至约5微米的厚度。所述组合的密度为约0.01至约0.05g/cm3、约0.01至约0.04g/cm3、约0.01至约0.03g/cm3或约0.026g/cm3。所述组合可通过本领域已知的任何合适方法共混石墨和微米或纳米尺寸粘结剂来形成。合适方法的实例包括滚球混合、声波混合、带式共混、竖直螺杆混合和V-共混。
参见两步工艺,冷压意指在室温下或在高温下压缩包含石墨和微米尺寸或纳米尺寸粘结剂的组合,只要粘结剂不显著键合石墨微观结构即可。在一个实施方案中,生坯中大于约80重量%、大于约85重量%、大于约90重量%、大于约95重量%或大于约99重量%的微观结构不键合。形成生坯的压力可为约500psi至约10ksi,温度可为约20℃至约200℃。所述阶段的缩减比率,即生坯的体积相对于组合的体积为约40%至约80%。生坯的密度为约0.1至约5g/cm3、约0.5至约3g/cm3或约0.5至约2g/cm3
生坯可在约350℃至约1200℃,具体地讲约800℃至约1200℃的温度下加热形成碳复合材料。在一个实施方案中,所述温度高于粘结剂的熔点,例如比粘结剂的熔点高约20℃至约100℃或高约20℃至约50℃。当温度较高时,粘结剂的粘滞性变小,流动性变好,粘结剂均匀分布在碳微观结构之间的空隙所需的压力变小。然而,如果温度过高,可对仪器带来有害影响。
温度可根据预定的温度计划或缓增速率应用。加热的方式无特别限制。示例性加热方法包括直流(DC)加热、感应加热、微波加热和放电等离子烧结(SPS)。在一个实施方案中,加热通过DC加热进行。例如,包含石墨和微米或纳米尺寸粘结剂的组合可通过电流充电,电流通过所述组合非常迅速地产生热量。任选地,加热也可在惰性气氛中,例如在氩气或氮气中进行。在一个实施方案中,生坯在存在空气的情况下加热。
加热可在约500psi至约30,000psi或约1000psi至约5000psi的压力下进行。压力可为超大气压或负压。不希望受理论的束缚,据信当超大气压施加至组合时,通过渗透迫使微米或纳米尺寸粘结剂进入碳微观结构之间的空隙。当负压施加至组合时,也可通过毛细管力迫使微米或纳米尺寸粘结剂进入碳微观结构之间的空隙。
在一个实施方案中,形成碳复合材料所需的压力不同时施加。在加载生坯之后,在室温下或在低温下将低压初始施加至组合物,以密闭组合物中的大孔。或者,熔融粘结剂可流至模具的表面。一旦温度达到预定的最大温度,即可施加制备碳复合材料所需的压力。温度和压力可保持预定的最大温度和预定的最大温度5分钟至120分钟。
所述阶段的缩减比率,即碳复合材料的体积相对于生坯的体积为约10%至约70%或约20至约40%。碳复合材料的密度可通过控制压缩度来改变。碳复合材料具有约0.5至约10g/cm3、约1至约8g/cm3、约1至约6g/cm3、约2至约5g/cm3、约3至约5g/cm3或约2至约4g/cm3的密度。
或者,还可参见两步工艺,所述组合可首先在室温和约500psi至30,000psi的压力下压缩形成压坯;所述压坯可在高于粘结剂的熔点的温度下进一步加热,制备碳复合材料。在一个实施方案中,温度可高于粘结剂的熔点约20℃至约100℃或高于约20℃至约50℃。加热可在大气压下进行。
在另一个实施方案中,碳复合材料可直接由石墨和粘结剂的组合制成,无需制备生坯。压缩和加热可同时进行。对于两步工艺的第二步,合适的压力和温度可与本文讨论的相同。
热压缩是同时施加温度和压力的工艺。它可用于制备碳复合材料的一步和两步工艺。
碳复合材料可在模具中通过一步或两步工艺制备。所获得的碳复合材料可进一步加工或成型为形成条状、块状、管状、圆柱形坯或环面。加工包括使用例如磨床、锯子、车床、刻模机、放电加工机等等切割、锯开、消融、研磨、铺面、车床加工、钻孔等等。或者,碳复合材料可通过选择具有所需形状的模具直接模制成可用的形状。
片状材料诸如幅材、纸材、条带、带材、箔、垫等等也可通过热轧制备。在一个实施方案中,可进一步加热通过热轧制备的碳复合材料片材,以允许粘结剂有效地将碳微观结构键合在一起。
碳复合材料丸粒可通过挤出制备。例如,石墨和微米或纳米尺寸粘结剂的组合可首先装入容器。然后,通过活塞将组合推入挤出机。挤出温度可为约350℃至约1400℃或约800℃至约1200℃。在一个实施方案中,挤出温度高于粘结剂的熔点,例如高于粘结剂的熔点约20℃至约50℃。在一个实施方案中,线材从挤出获得,可切割所述线材形成丸粒。在另一个实施方案中,丸粒直接从挤出机获得。任选地,可将后处理工艺施加到丸粒。例如,如果碳微观结构在挤出期间未键合或未充分键合,则可在高于粘结剂的熔融温度的炉中加热丸粒,使得粘结剂可将碳微观结构键合在一起。
碳复合材料粉末可通过使用剪切力(切削力)研磨碳复合材料例如固块来制备。值得注意的是,不应击碎碳复合材料。或者,可破坏碳微观结构内的空隙,从而使碳复合材料丧失弹性。
碳复合材料具有可用于多种应用的许多有利性质。在特别有利的特征中,通过形成碳复合材料,改善了机械强度和弹性体性质。
为了示出碳复合材料实现的弹性能改善,图5中示出了以下样品的应力-应变曲线:(A)天然石墨,(B)膨胀石墨,(C)在室温和大气压下形成的膨胀石墨和微米或纳米尺寸粘结剂的混合物,(D)在高温和大气压下形成的膨胀石墨和微米或纳米尺寸粘结剂的混合物;以及(E)在高压和高温条件下从膨胀石墨和微米和纳米尺寸粘结剂形成的碳复合材料。对于天然石墨,样品通过在钢模中高压压缩天然石墨来制备。膨胀石墨样品也以类似的方式制备。
如图5所示,天然石墨具有非常低的弹性能(应力-应变曲线下面积),并且非常易碎。膨胀石墨的弹性能以及在室温和高压下压实的膨胀石墨和微米或纳米尺寸粘结剂的混合物的弹性能高于天然石墨。相反地,与单独天然石墨、单独膨胀石墨以及在室温和高压下压实的膨胀石墨和粘结剂的混合物相比,本公开的硬和软碳复合材料表现出弹性能显著增加所展示的弹性显著改善。在一个实施方案中,碳复合材料的弹性伸长为大于约4%、大于约6%或在约4%和约40%之间。
碳复合材料的弹性在图6和图7中进一步示出。图6示出了碳复合材料在不同负载下的环路测试结果。图7示出了分别在室温和500℉下测试的碳复合材料的迟滞结果。如图7所示,碳复合材料的弹性在500℉下得以保持。
除机械强度和弹性之外,碳复合材料在高温下也可具有优异的热稳定性。图8比较了在500℃下暴露至空气5天之前和之后的碳复合材料。图9(A)是在热冲击8小时之后碳复合材料样品的图片。图9(B)示出了热冲击的条件。如图8和图9(A)所示,在500℃下暴露至空气25小时之后或在热冲击之后,碳复合材料样品无变化。碳复合材料在从约-65℉最高至约1200℉,具体地讲最高至约1100℉,更具体地讲约1000℉的操作温度范围内可具有高耐热性。
碳复合材料在高温下也可具有优异的耐化学性。在一个实施方案中,复合材料具有耐水、油、盐水和酸的耐化学性,耐性评级为良好至优异。在一个实施方案中,碳复合材料可在高温和高压下,例如约68℉至约1200℉、或约68℉至约1000℉、或约68℉至约750℉,在潮湿条件,包括碱性和酸性条件下连续使用。因此,当碳复合材料长期暴露至化学试剂(如,水、盐水、烃、酸诸如HCl、溶剂诸如甲苯等),甚至在最高至200℉的高温下,以及在高压(大于大气压)下时,可抵抗溶胀和性质降解。碳复合材料的耐化学性如图10和图11所示。图10比较了在200℉下暴露至自来水20小时之前和之后,或在200℉下暴露至自来水3天之后的碳复合材料样品。如图10所示,样品无变化。图11比较了在200℉下暴露至含抑制剂的15%HCl溶液20小时之前和之后,或在200℉下暴露至15%HCl溶液3天之后的碳复合材料样品。另外,碳复合材料样品无变化。
碳复合材料是中硬至超硬的,硬度为约50(肖氏硬度A)最高至约75(肖氏硬度D)。
另外有利的特征是,碳复合材料在高温下具有稳定的密封力。在恒定压缩应变下,组分的应力衰减称为压缩应力弛豫。压缩应力弛豫测试也称为密封力弛豫测试,它测定在两块平板之间的压缩下密封件或O形环所施加的密封力。它通过测定样品的密封力衰减随时间、温度和环境的变化,为材料使用寿命预测提供确定信息。图12示出了在600℉下的碳复合材料样品的密封力弛豫测试结果。如图12所示,碳复合材料的密封力在高温下稳定。在一个实施方案中,复合材料样品的密封力在15%应变和600℉下保持约5800psi,而无需弛豫至少20分钟。
上文描述的碳复合材料可用于制备用于许多应用的制品,包括但不限于电子器件、所述热金属加工、涂料、航空航天、汽车、油气和航海应用。示例性制品包括密封件、轴承、轴承座、封隔器、阀门、引擎、反应器、冷却系统和散热器。因此,在一个实施方案中,制品包含碳复合材料。根据示例性实施方案的一个方面,碳复合材料可用于形成井下制品的全部或一部分,如下文更详细地讨论。当然,应当理解,碳复合材料可用于许多广泛的应用和环境。
根据一个示例性实施方案,地下勘探系统在图13中通常以200表示。地下开采系统200包括可操作地连接到井下系统206的井上系统204。井上系统204可包括有助于完井和/或开采工艺的泵208以及流体储存部分210。流体储存部分210可包含流体,所述流体可引入井下系统206。井下系统206可包括延伸至地层222中形成的井筒221的井下管柱220。井筒221可包括井筒套管223。井下管柱220可包括多个连接的井下管224。管224中的一者可支承柔性碳复合材料环形密封件228。
柔性碳复合材料环形密封件228包括山形或V形横截面,并且可根据图14所述的方法280制备。在方框300中,碳复合材料混合物302(图15)可通过使膨胀石墨与金属粘结剂组合/共混来形成。金属粘结剂可以50%或更大的重量比存在。根据一个示例性实施方案的一个方面,可研磨碳复合材料混合物形成粉末,如方框304所示。然而,应当理解,碳复合材料混合物也可在不研磨的情况下利用。
在方框306中,将碳复合材料混合物302引入具有模具销322的模具320中,如图15所示。模具销322包括对应于柔性碳复合材料环形密封件228的V形横截面的一部分的表面轮廓(未单独标出)。图16示出了引入模具320的第二模具销330。第二模具销330包括对应于柔性碳复合材料环形密封件228的V形横截面的另一部分的表面轮廓(未单独标出)。第二模具销330推向第一模具销322,压缩碳复合材料混合物302,如方框334所示。在图17中,可通过将电流引入第一和第二电极342和344,使碳复合材料混合物302加热至选择的温度,如方框350所示。加热可通过使电流通过碳复合材料混合物302来实现。当然,应当理解,碳复合材料混合物302可通过其他机制加热。另外,应当理解,选择的温度可根据柔性碳复合材料环形密封件228的所需性质而变化。
在方框360中,从模具320移除柔性碳复合材料环形密封件228,如图18所示。在这一点上,柔性碳复合材料环形密封件228可安装到井下管224。当然,应当理解,柔性碳复合材料密封件228可用于许多广泛的井下和井上应用。还应当理解,柔性碳复合材料密封件228可用于资源勘探、资源开采和CO2封存系统。还应当理解,柔性碳复合材料环形密封件228可采取多种形状。根据一个示例性实施方案的一个方面,柔性碳复合材料环形密封件228可加工形成选择的形状,如方框365所示。根据另一个示例性方面,如图19所示,柔性碳复合材料密封件362示出具有C形横截面。在这种情况下,以卷簧366的形式示出的偏置元件364可集成进柔性碳复合材料环形密封件362,如方框370所示。图20示出了柔性碳复合材料环形密封件380,其包括第一和第二偏置构件390和400。第一和第二偏置构件390和400被碳复合材料混合物302过度模塑或包封。
方法280也可用于形成其他环形密封件形状,诸如具有图21所示的大致圆形横截面的柔性碳复合材料环形密封件410、具有图22所示的大致矩形横截面的柔性碳复合材料环形密封件420、具有图23所示的大致T形横截面的柔性碳复合材料环形密封件430以及具有图24所示的大致X形横截面的柔性碳复合材料环形密封件440。还可以想到其他形状。
碳复合材料混合物的使用产生具有低摩擦系数的密封件。低摩擦系数为根据示例性实施方案形成的柔性碳复合材料环形密封件提供了自润滑品质。如图24所示,示例性实施方案的柔性碳复合材料包括摩擦系数更低的全氟弹性体(FFKM)、四氟乙烯/丙烯(FEPM)、腈橡胶(NBR)和聚醚醚酮(PEEK)。除自润滑特征之外,由于低摩擦系数,上述碳复合材料的使用使得能够将柔性密封件用于许多广泛的操作环境。柔性密封件抵抗磨损、刺激性化学品、腐蚀、氧化和暴露至高温。更具体地讲,柔性密封件可用于达到1200℉(648.8℃)的环境。另外,柔性密封件的机械性质,包括通过驱动金属熔体进入石墨层基面之间的间隙形成联锁结构,可通过调整金属相选择、石墨/金属比率、热处理加工等等调成专用品质。另外,应当理解,除烃勘探和回收应用之外,柔性密封件还可用于食品和药物应用。
虽然示出和描述了一个或多个实施方案,但在不脱离本发明的精神和范围的前提下,可对其进行修改和替换。因此,应当理解,本发明以举例而非限制的方式进行描述。

Claims (15)

1.一种形成柔性碳复合材料自润滑密封件(228)的方法(280),其包括:
将碳复合材料混合物(302)压入模具(320),形成柔性碳复合材料自润滑环形密封件(228)。
2.根据权利要求1所述的方法(280),还包括:在所述模具(320)中将所述碳复合材料混合物(302)加热至选择的温度。
3.根据权利要求2所述的方法(280),其中加热所述碳复合材料混合物(302)包括使电流通过所述碳复合材料混合物(302)。
4.根据权利要求2所述的方法(280),其中加热所述碳复合材料混合物(302)包括使金属粘结剂在所述碳复合材料混合物(302)中熔融,形成金属熔体。
5.根据权利要求4所述的方法(280),还包括:驱动所述金属熔体进入所述碳复合材料混合物(302)中石墨基面之间的间隙,形成联锁结构。
6.根据权利要求2所述的方法(280),其中加热所述碳复合材料混合物(302)包括感应加热所述碳复合材料混合物(302)。
7.根据权利要求1所述的方法(280),还包括:形成所述碳复合材料混合物(302)包括将膨胀石墨与金属粘结剂混合。
8.根据权利要求6所述的方法(280),其中形成所述碳复合材料混合物(302)包括将所述碳复合材料混合物(302)碾磨成粉末。
9.根据权利要求1所述的方法(280),还包括:从所述模具(320)移除所述柔性碳复合材料自润滑环形密封件(228)。
10.根据权利要求1所述的方法(280),还包括:将偏置构件(390,400)集成进所述柔性碳复合材料自润滑环形密封件(228)。
11.根据权利要求10所述的方法(280),其中集成所述偏置构件(390,400)包括将卷簧(366)布置于所述柔性碳复合材料自润滑环形密封件(228)中。
12.根据权利要求10所述的方法(280),其中集成所述偏置构件(390,400)包括将所述偏置构件(390,400)包封于所述柔性碳复合材料自润滑环形密封件(228)中。
13.根据权利要求1所述的方法(280),还包括:将所述柔性碳复合材料自润滑环形密封件(228)安装到井下管(224)。
14.根据权利要求13所述的方法(280),还包括:抑制所述井下管(224)上所述柔性碳复合材料自润滑环形密封件(228)之处的流动。
15.根据权利要求1所述的方法(280),还包括:加工所述柔性碳复合材料自润滑环形密封件(228),以建立选择的密封件形状。
CN202210375085.6A 2014-11-25 2015-10-22 形成柔性碳复合材料自润滑密封件的方法 Pending CN114734038A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14/553,472 2014-11-25
US14/553,472 US10300627B2 (en) 2014-11-25 2014-11-25 Method of forming a flexible carbon composite self-lubricating seal
PCT/US2015/056886 WO2016085596A1 (en) 2014-11-25 2015-10-22 Method of forming a flexible carbon composite self-lubricating seal
CN201580060697.4A CN107073572A (zh) 2014-11-25 2015-10-22 形成柔性碳复合材料自润滑密封件的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201580060697.4A Division CN107073572A (zh) 2014-11-25 2015-10-22 形成柔性碳复合材料自润滑密封件的方法

Publications (1)

Publication Number Publication Date
CN114734038A true CN114734038A (zh) 2022-07-12

Family

ID=56009689

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210375085.6A Pending CN114734038A (zh) 2014-11-25 2015-10-22 形成柔性碳复合材料自润滑密封件的方法
CN201580060697.4A Pending CN107073572A (zh) 2014-11-25 2015-10-22 形成柔性碳复合材料自润滑密封件的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201580060697.4A Pending CN107073572A (zh) 2014-11-25 2015-10-22 形成柔性碳复合材料自润滑密封件的方法

Country Status (6)

Country Link
US (1) US10300627B2 (zh)
EP (1) EP3224504B1 (zh)
JP (1) JP6736810B2 (zh)
CN (2) CN114734038A (zh)
CA (1) CA2968949C (zh)
WO (1) WO2016085596A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9963395B2 (en) 2013-12-11 2018-05-08 Baker Hughes, A Ge Company, Llc Methods of making carbon composites
US9325012B1 (en) 2014-09-17 2016-04-26 Baker Hughes Incorporated Carbon composites
US10315922B2 (en) 2014-09-29 2019-06-11 Baker Hughes, A Ge Company, Llc Carbon composites and methods of manufacture
US10480288B2 (en) 2014-10-15 2019-11-19 Baker Hughes, A Ge Company, Llc Articles containing carbon composites and methods of manufacture
US9962903B2 (en) 2014-11-13 2018-05-08 Baker Hughes, A Ge Company, Llc Reinforced composites, methods of manufacture, and articles therefrom
US9745451B2 (en) 2014-11-17 2017-08-29 Baker Hughes Incorporated Swellable compositions, articles formed therefrom, and methods of manufacture thereof
US11097511B2 (en) 2014-11-18 2021-08-24 Baker Hughes, A Ge Company, Llc Methods of forming polymer coatings on metallic substrates
US10300627B2 (en) 2014-11-25 2019-05-28 Baker Hughes, A Ge Company, Llc Method of forming a flexible carbon composite self-lubricating seal
US9840887B2 (en) 2015-05-13 2017-12-12 Baker Hughes Incorporated Wear-resistant and self-lubricant bore receptacle packoff tool
US10125274B2 (en) 2016-05-03 2018-11-13 Baker Hughes, A Ge Company, Llc Coatings containing carbon composite fillers and methods of manufacture
US10344559B2 (en) 2016-05-26 2019-07-09 Baker Hughes, A Ge Company, Llc High temperature high pressure seal for downhole chemical injection applications

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726738A (en) * 1969-08-27 1973-04-10 J Gellon Method of making a carbonized material of expanded graphite and carbon fibers
US4269391A (en) * 1977-04-28 1981-05-26 Nippon Petrochemicals Co., Ltd. Valve sealing device and a valve
US5225379A (en) * 1988-02-09 1993-07-06 Ucar Carbon Technology Corporation Composites of flexible graphite particles and amorphous carbon
US20020182387A1 (en) * 2001-05-31 2002-12-05 Mercuri Robert Angelo Method for preparing composite flexible graphite material
JP2003148630A (ja) * 2001-11-07 2003-05-21 Nippon Pillar Packing Co Ltd 複合SiC摺動部材、メカニカルシール用密封環、メカニカルシール、及び複合SiC摺動部材の製造方法
CN101134678A (zh) * 2006-05-04 2008-03-05 Sgl碳股份公司 耐高温的复合材料
CN101954676A (zh) * 2010-02-08 2011-01-26 湖南金博复合材料科技有限公司 碳/碳复合材料密封环及其生产方法
CN102864395A (zh) * 2012-09-24 2013-01-09 江苏利达不锈钢有限公司 一种添加MoSe2的高温耐磨自润滑复合材料及其制备方法
CN106660887A (zh) * 2014-09-17 2017-05-10 贝克休斯公司 碳复合材料

Family Cites Families (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2462067A (en) 1944-12-01 1949-02-22 Timken Axle Co Detroit Resilient lubricant seal
US3145778A (en) 1961-11-02 1964-08-25 Pan American Petroleum Corp Well completion apparatus
US3246369A (en) * 1964-03-09 1966-04-19 Federal Mogul Corp Mold for fluid seal
US3521853A (en) 1966-12-12 1970-07-28 Thomas S Gillis Jr Throttle and shutoff valve
US3561770A (en) * 1968-10-07 1971-02-09 Federal Mogul Corp Shaft seal
US3666852A (en) * 1970-01-06 1972-05-30 Federal Mogul Corp Method for making an elastomeric annular seal with enclosed garter spring
US3807996A (en) 1972-07-10 1974-04-30 Union Carbide Corp Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide
DE2244470C3 (de) 1972-09-11 1975-03-13 Deutsche Edelstahlwerke Ag, 4150 Krefeld Hochkorrosionsbeständige und -verschleißfeste Sinterstahllegierung
US3904405A (en) 1973-02-02 1975-09-09 Ametek Inc Sliding seal parts and process of making
JPS5614732B2 (zh) 1973-03-12 1981-04-06
US3981427A (en) 1975-04-28 1976-09-21 Brookes Ronald R Method of laminating graphite sheets to a metal substrate
JPS5313610A (en) 1976-07-23 1978-02-07 Nippon Carbon Co Ltd Compound sheet materials
US4223075A (en) 1977-01-21 1980-09-16 The Aerospace Corporation Graphite fiber, metal matrix composite
US4116451A (en) 1977-06-16 1978-09-26 Maurer Engineering, Inc. Shaft seal assembly and seal ring therefor
JPS54133256A (en) 1977-12-08 1979-10-16 Taiho Kogyo Co Ltd Slider material for shaft sealing
JPS5524949A (en) 1978-08-11 1980-02-22 Hitachi Ltd Manufacture of graphite-containing aluminium alloy
US4270569A (en) 1978-10-16 1981-06-02 Christensen Inc. Valve assembly for the remote control of fluid flow having an automatic time delay
US4358506A (en) 1980-06-09 1982-11-09 Josef Intrater Metal and carbon composites thereof
DE3172416D1 (en) 1981-06-08 1985-10-31 Advanced Tech Inc Metal, carbon, carbide and other compositions thereof, alloys and methods for preparing same
US4372393A (en) 1981-06-16 1983-02-08 Baker International Corporation Casing bore receptacle
FR2512154B1 (zh) * 1981-09-03 1984-06-15 Elf Aquitaine
JPS59129142A (ja) 1983-01-14 1984-07-25 日本ピラ−工業株式会社 複合成形体およびその製造方法
US4567103A (en) 1983-07-28 1986-01-28 Union Carbide Corporation Carbonaceous articles having oxidation prohibitive coatings thereon
DE3435043A1 (de) 1984-09-24 1986-04-03 C. Conradty Nürnberg GmbH & Co KG, 8505 Röthenbach Polygranularer kohlenstoffkoerper und verfahren zu seiner herstellung
US4732364A (en) 1984-12-17 1988-03-22 Ameron Iron Works USA, Inc. Wear resistant diamond cladding
JPS62109882A (ja) 1985-08-27 1987-05-21 インタ−カル カンパニ− シ−ル材
US4798771A (en) 1985-08-27 1989-01-17 Intercal Company Bearings and other support members made of intercalated graphite
US4743033A (en) * 1985-12-16 1988-05-10 Baker Oil Tools, Inc. Dynamic seal assembly for piston and cylinder operating in subterranean wells
JPS63135653A (ja) 1986-11-25 1988-06-08 Nippon Pillar Packing Co Ltd パツキン材料
GB2201679B (en) 1987-02-24 1990-11-07 Aisin Seiki Filter materials
CN87207110U (zh) 1987-05-29 1988-01-20 吴树济 金属—膨胀石墨复合垫片
US4780226A (en) 1987-08-03 1988-10-25 General Motors Corporation Lubrication for hot working rare earth-transition metal alloys
US4789166A (en) * 1987-09-14 1988-12-06 Microdot Inc. Rotary shaft wave seal
US4826181A (en) 1988-02-09 1989-05-02 Union Carbide Corporation Seal utilizing composites of flexible graphite particles and amorphous carbon
US5646231A (en) 1988-02-17 1997-07-08 Maxdem, Incorporated Rigid-rod polymers
US5228701A (en) 1988-03-22 1993-07-20 Ucar Carbon Technology Corporation Flexible graphite articles with an amorphous carbon phase at the surface
US5392982A (en) 1988-11-29 1995-02-28 Li; Chou H. Ceramic bonding method
US5163692A (en) * 1989-07-24 1992-11-17 Furon Company One-piece composite lip seal
GB2248255B (en) 1990-09-27 1994-11-16 Solinst Canada Ltd Borehole packer
US5117913A (en) 1990-09-27 1992-06-02 Dresser Industries Inc. Chemical injection system for downhole treating
DE4117074A1 (de) 1991-05-25 1992-11-26 Bayer Ag Verfahren zur herstellung von formkoerpern
JP2769523B2 (ja) 1994-01-31 1998-06-25 株式会社キッツ パッキンリングの構造とその製造方法並びにそれを用いたシール装置
DE4133546C2 (de) 1991-10-10 2000-12-07 Mahle Gmbh Kolben-Zylinderanordnung eines Verbrennungsmotors
EP0539011B1 (en) 1991-10-23 1997-05-07 Inco Limited Nickel coated carbon preforms
US5283121A (en) 1991-11-08 1994-02-01 Bordner Barry A Corrosion and abrasion resistant industrial roll coating with non-sticking properties
US5201532A (en) 1991-12-12 1993-04-13 Mark Controls Corporation Flexible non-planar graphite sealing ring
US5240766A (en) 1992-04-01 1993-08-31 Hollingsworth & Vose Company Gasket material
TW201341B (en) 1992-08-07 1993-03-01 Raychem Corp Low thermal expansion seals
US5362074A (en) * 1993-02-26 1994-11-08 Dana Corporation Reinforced core heavy duty gasket
JP3028171B2 (ja) 1993-08-31 2000-04-04 日本ピラー工業株式会社 複合ガスケット
US5499827A (en) * 1993-06-30 1996-03-19 Thermal Dynamics International, Inc. Seal for shafts and valve stems
CN2171734Y (zh) 1993-10-16 1994-07-13 慈溪市城关氟塑厂 柔性石墨增强密封板
CN2177841Y (zh) 1993-11-30 1994-09-21 茹春浩 密封填料
JP2645800B2 (ja) 1993-12-14 1997-08-25 日本ピラー工業株式会社 膨張黒鉛製シール素材およびその製造方法ならびにガスケット用シート
US5545474A (en) 1994-03-01 1996-08-13 Martin Marietta Corporation Electromagnetic-attenuating coating materials
GB2287734B (en) * 1994-03-22 1997-10-01 Fmc Corp Seals containing non-metallic springs
US5495979A (en) 1994-06-01 1996-03-05 Surmet Corporation Metal-bonded, carbon fiber-reinforced composites
US5509555A (en) 1994-06-03 1996-04-23 Massachusetts Institute Of Technology Method for producing an article by pressureless reactive infiltration
US5494753A (en) 1994-06-20 1996-02-27 General Electric Company Articles having thermal conductors of graphite
US5455000A (en) 1994-07-01 1995-10-03 Massachusetts Institute Of Technology Method for preparation of a functionally gradient material
KR960023949A (ko) * 1994-12-28 1996-07-20 수우 에이 그리핀 가요성 유체 시일
US5467814A (en) 1995-02-24 1995-11-21 The United States Of America As Represented By The Secretary Of The Navy Graphite/epoxy heat sink/mounting for common pressure vessel
US5765838A (en) * 1995-06-06 1998-06-16 Nippon Pillar Packing Co., Ltd. Sealing gasket made of expanded graphite, with opened thin-leaf surface structure
GB9600103D0 (en) 1996-01-04 1996-03-06 Nodeco Ltd Improvements to offshore drilling apparatus
US5968653A (en) 1996-01-11 1999-10-19 The Morgan Crucible Company, Plc Carbon-graphite/silicon carbide composite article
GB9604757D0 (en) 1996-03-06 1996-05-08 Flexitallic Sealing Materials Seal material
US5730444A (en) 1996-03-08 1998-03-24 Skf Usa Inc. Seal with embedded garter spring
US6182974B1 (en) 1996-03-22 2001-02-06 Garlock, Inc. Stuffing box packing assembly
WO1998001389A1 (fr) 1996-07-05 1998-01-15 Nippon Pillar Packing Co., Ltd. Pate obturatrice a base de graphite expanse et procede de fabrication associe
GB2317929B (en) 1996-10-01 2000-11-22 Flexitallic Sealing Materials Sealing system
US5775429A (en) 1997-02-03 1998-07-07 Pes, Inc. Downhole packer
JP3812035B2 (ja) 1997-02-10 2006-08-23 オイレス工業株式会社 球帯状シール体ならびにその製造方法
US6131651A (en) 1998-09-16 2000-10-17 Advanced Ceramics Corporation Flexible heat transfer device and method
DE19804283B4 (de) 1998-02-04 2006-10-12 Sgl Carbon Ag Metallverstärkter Graphitschichtstoff
US6050572A (en) 1998-03-09 2000-04-18 Bal Seal Engineering Company, Inc. Rotary cartridge seals with retainer
US5988202A (en) 1998-11-02 1999-11-23 Spitzer, Sr.; Harry L. Pre-set maximum flow metering and mixing valves
US20010003389A1 (en) 1999-02-16 2001-06-14 C. James Bushman High temperature static seal
US6128874A (en) 1999-03-26 2000-10-10 Unifrax Corporation Fire resistant barrier for dynamic expansion joints
JP3987656B2 (ja) 1999-03-30 2007-10-10 財団法人鉄道総合技術研究所 摺動集電用チタン銅炭素複合材料、及び摺動集電用チタン銅炭素複合材料の製造方法
US6923631B2 (en) 2000-04-12 2005-08-02 Advanced Energy Technology Inc. Apparatus for forming a resin impregnated flexible graphite sheet
US6075701A (en) 1999-05-14 2000-06-13 Hughes Electronics Corporation Electronic structure having an embedded pyrolytic graphite heat sink material
US6506482B1 (en) 1999-05-24 2003-01-14 Carbon Ceramics Company, Llc Vitreous carbon composite and method of making and using same
JP3547078B2 (ja) 1999-06-11 2004-07-28 ニチアス株式会社 シリンダブロックの製造方法
US6234490B1 (en) 1999-07-09 2001-05-22 George B. Champlin Leakfree pumpback packing
GB9923092D0 (en) 1999-09-30 1999-12-01 Solinst Canada Ltd System for introducing granular material into a borehole
US6273431B1 (en) 1999-11-15 2001-08-14 Garlock Inc Forged valve stem packing set
CN1178297C (zh) 1999-12-24 2004-12-01 日本碍子株式会社 散热材料及其制造方法
AT412302B (de) 2000-03-28 2004-12-27 Hoerbiger Ventilwerke Gmbh Selbsttätiges ventil
DE20019051U1 (de) * 2000-11-09 2001-01-11 Reinz Dichtungs Gmbh U Co Kg Glimmer für Auspuff
DE10060839A1 (de) 2000-12-07 2002-06-13 Sgl Carbon Ag Imprägnierter Körper aus expandiertem Graphit
US20030024611A1 (en) 2001-05-15 2003-02-06 Cornie James A. Discontinuous carbon fiber reinforced metal matrix composite
US6585053B2 (en) 2001-09-07 2003-07-01 Weatherford/Lamb, Inc. Method for creating a polished bore receptacle
US6641143B2 (en) 2002-01-18 2003-11-04 The Metraflex Company Multi-linked seal assembly having material that swells when exposed to fire
DE10212486A1 (de) 2002-03-21 2003-10-16 Sgl Carbon Ag Verbundwerkstoff mit Verstärkungsfasern aus Kohlenstoff
US6834722B2 (en) 2002-05-01 2004-12-28 Bj Services Company Cyclic check valve for coiled tubing
AU2003243264B2 (en) 2002-05-30 2008-07-03 Baker Hughes Incorporated High pressure and temperature seal for downhole use
US7475882B2 (en) 2002-06-14 2009-01-13 Dana Heavy Vehicle Systems Group, Llc Silicone foam rubber sealing bead on composite gasket and method of manufacturing
KR100642923B1 (ko) 2002-06-18 2006-11-03 도요탄소 가부시키가이샤 가요성을 갖는 고순도 팽창 흑연시트와 그 제조방법, 및상기 시트를 이용한 카본 도가니의 내층
US6880639B2 (en) 2002-08-27 2005-04-19 Rw Capillary Tubing Accessories, L.L.C. Downhole injection system
US20040127621A1 (en) 2002-09-12 2004-07-01 Board Of Trustees Of Michigan State University Expanded graphite and products produced therefrom
DE10242566A1 (de) 2002-09-13 2004-03-25 Sgl Carbon Ag Faserverstärkte Verbundkeramik und Verfahren zu deren Herstellung
US20040155382A1 (en) 2002-12-03 2004-08-12 Dai Huang Manufacture of carbon/carbon composites by hot pressing
US20040121152A1 (en) 2002-12-19 2004-06-24 Certainteed Corporation Flame-resistant insulation
FR2849651B1 (fr) * 2003-01-08 2008-02-15 Carbone Lorraine Composants Structures isolante comprenant des couches en particules de graphite expanse comprimees a des densites differentes, elements isolants thermiques realises a partir de ces structures
US7601425B2 (en) 2003-03-07 2009-10-13 The Curators Of The University Of Missouri Corrosion resistant coatings containing carbon
US7207603B2 (en) 2003-03-11 2007-04-24 Grant Prideco, L.P. Insulated tubular assembly
WO2004087572A1 (en) 2003-03-31 2004-10-14 Young Woo Shin Manufacturing method of expanded graphite products
US6789634B1 (en) 2003-05-28 2004-09-14 Smith International, Inc Self-lubricating elastomeric seal with polarized graphite
US20050019114A1 (en) 2003-07-25 2005-01-27 Chien-Min Sung Nanodiamond PCD and methods of forming
US7527095B2 (en) 2003-12-11 2009-05-05 Shell Oil Company Method of creating a zonal isolation in an underground wellbore
JP4766587B2 (ja) 2004-02-02 2011-09-07 第一高周波工業株式会社 クラッドパイプ
NO325434B1 (no) 2004-05-25 2008-05-05 Easy Well Solutions As Fremgangsmate og anordning for a ekspandere et legeme under overtrykk
US7063870B2 (en) 2004-05-25 2006-06-20 Honeywell International Inc. Manufacture of functionally graded carbon-carbon composites
KR101299836B1 (ko) 2004-07-15 2013-08-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 오염 제어 요소 장착 시스템 및 오염 제어 장치
JP4224438B2 (ja) 2004-07-16 2009-02-12 日信工業株式会社 炭素繊維複合金属材料の製造方法
GB0418736D0 (en) 2004-08-21 2004-09-22 Univ Catholique Louvain Machinable metallic composites
US20060042801A1 (en) 2004-08-24 2006-03-02 Hackworth Matthew R Isolation device and method
US7936863B2 (en) 2004-09-30 2011-05-03 Avaya Inc. Method and apparatus for providing communication tasks in a workflow
US7422071B2 (en) 2005-01-31 2008-09-09 Hills, Inc. Swelling packer with overlapping petals
EP1858694A4 (en) 2005-02-25 2012-04-04 Superior Graphite Co GRAPHITE COATING OF PARTICLE MATERIALS
US20060249917A1 (en) 2005-04-07 2006-11-09 Saint-Gobain Performance Plastics Corporation Composite sealing device
US7328685B2 (en) * 2005-06-01 2008-02-12 Dana Corporation Slip joint exhaust manifolds
US20090194205A1 (en) 2005-10-03 2009-08-06 Loffler Jorg F Bulk Metallic Glass/Graphite Composites
DE102005059614A1 (de) 2005-12-12 2007-06-14 Nano-X Gmbh Beschichtungsmaterial zum Schutz von Metallen, insbesondere Stahl, vor Korrosion und/oder Verzunderung, Verfahren zum Beschichten von Metallen und Metallelement
US7604049B2 (en) 2005-12-16 2009-10-20 Schlumberger Technology Corporation Polymeric composites, oilfield elements comprising same, and methods of using same in oilfield applications
US20070158619A1 (en) 2006-01-12 2007-07-12 Yucong Wang Electroplated composite coating
JP4580889B2 (ja) 2006-04-05 2010-11-17 日本ピラー工業株式会社 燃料電池用セパレータ及びその製造方法
EP1860165A1 (en) 2006-05-24 2007-11-28 ARCELOR France Organic coated metallic substrate with enhanced heat transfer properties and method of production thereof
WO2008021033A2 (en) 2006-08-10 2008-02-21 Dow Global Technologies, Inc. Polymers filled with highly expanded graphite
RU2330931C2 (ru) 2006-09-22 2008-08-10 Schlumberger Technology B.V. Устройство, выполняющее функцию пакера или временной пробки
US20080128067A1 (en) 2006-10-08 2008-06-05 Momentive Performance Materials Inc. Heat transfer composite, associated device and method
KR100824430B1 (ko) * 2006-10-16 2008-04-23 요업기술원 고밀도를 갖는 흑연 및 이의 제조방법
KR20080042551A (ko) 2006-11-10 2008-05-15 삼성에스디아이 주식회사 연료 전지용 전극, 이를 포함하는 막-전극 어셈블리 및이를 포함하는 연료 전지 시스템
US20080152577A1 (en) 2006-12-21 2008-06-26 Addiego William P Ordered mesoporous carbons and method for manufacturing same
EP1938690B1 (de) 2006-12-22 2013-10-23 Preentec AG Sterilisierung und Konservierung von Fluiden
EP2104795A1 (de) 2006-12-22 2009-09-30 SGL Carbon SE Dichtungsmaterial
FR2914206B1 (fr) 2007-03-27 2009-09-04 Sas Varel Europ Soc Par Action Procede pour fabriquer une piece comprenant au moins un bloc en materiau dense constitue de particules dures dispersees dans une phase liante : application a des outils de coupe ou de forage.
ES2304314B2 (es) 2007-03-27 2009-06-22 Universidad De Alicante Produccion de materiales compuestos con alta conductividad termica.
EP1978071B1 (en) 2007-04-06 2010-07-14 Services Pétroliers Schlumberger Method and composition for zonal isolation of a well
US8691129B2 (en) 2007-05-08 2014-04-08 Nanotek Instruments, Inc. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates
US20080286191A1 (en) * 2007-05-14 2008-11-20 Stansberry Peter G Process For The Production Of Highly Graphitizable Carbon Foam
US7992642B2 (en) 2007-05-23 2011-08-09 Schlumberger Technology Corporation Polished bore receptacle
US7948739B2 (en) 2007-08-27 2011-05-24 Nanotek Instruments, Inc. Graphite-carbon composite electrode for supercapacitors
US8043703B2 (en) 2007-09-13 2011-10-25 Metal Matrix Cast Composites LLC Thermally conductive graphite reinforced alloys
US7758783B2 (en) 2007-09-17 2010-07-20 Nanotek Instruments, Inc. Continious production of exfoliated graphite composite compositions and flow field plates
WO2009051094A1 (ja) 2007-10-18 2009-04-23 Shimane Prefectural Government 高熱伝導性を有する金属-黒鉛複合材料およびその製造方法
EP2056004A1 (en) 2007-10-29 2009-05-06 General Electric Company Mechanical seals and methods of making
US20090151847A1 (en) 2007-12-17 2009-06-18 Aruna Zhamu Process for producing laminated exfoliated graphite composite-metal compositions for fuel cell bipolar plate applications
US7828301B2 (en) 2008-01-25 2010-11-09 Intelliserv, Llc Self-energized backup ring for annular seals
EP2113546A1 (en) 2008-04-28 2009-11-04 Schlumberger Holdings Limited Swellable compositions for borehole applications
US8075794B2 (en) 2008-07-01 2011-12-13 Teledyne Scientific & Imaging, Llc Magnetic graphite nanoplatelets
US8573314B2 (en) 2008-11-20 2013-11-05 Schlumberger Technology Corporation Packer system with reduced friction during actuation
US20110027603A1 (en) 2008-12-03 2011-02-03 Applied Nanotech, Inc. Enhancing Thermal Properties of Carbon Aluminum Composites
US8940192B2 (en) 2008-12-26 2015-01-27 Sekisui Chemical Co., Ltd. Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
TWI403576B (zh) 2008-12-31 2013-08-01 Ind Tech Res Inst 含碳金屬複合材料及其製作方法
US20100203340A1 (en) 2009-02-09 2010-08-12 Ruoff Rodney S Protective carbon coatings
KR101213658B1 (ko) 2009-02-17 2012-12-18 니폰 덴꾜꾸 가부시끼가이샤 탄소질 내화물 및 그 제조 방법 및 고로의 노 바닥 또는 측벽
US20100266790A1 (en) 2009-04-16 2010-10-21 Grzegorz Jan Kusinski Structural Components for Oil, Gas, Exploration, Refining and Petrochemical Applications
US20100289198A1 (en) 2009-04-28 2010-11-18 Pete Balsells Multilayered canted coil springs and associated methods
US8272816B2 (en) 2009-05-12 2012-09-25 TDY Industries, LLC Composite cemented carbide rotary cutting tools and rotary cutting tool blanks
DE102009022082A1 (de) * 2009-05-19 2010-11-25 Arno Cloos Werkstoffe, welche Kohlenstoffnanoteilchen enthalten und deren Verwendung
WO2010137592A1 (ja) * 2009-05-26 2010-12-02 株式会社インキュベーション・アライアンス 炭素材料及びその製造方法
WO2010148028A1 (en) * 2009-06-15 2010-12-23 Dietle Lannie L Rotary seal with supported inlet
US20110027573A1 (en) 2009-08-03 2011-02-03 United Technologies Corporation Lubricated Abradable Coating
US8518531B2 (en) 2009-08-07 2013-08-27 Pradeep K. Rohatgi Self healing metals and alloys—including structural alloys and self-healing solders
US8298969B2 (en) 2009-08-19 2012-10-30 Milliken & Company Multi-layer composite material
GB0917098D0 (en) 2009-09-29 2009-11-11 Morganite Elect Carbon Carbon materials
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US8315039B2 (en) 2009-12-28 2012-11-20 Nanotek Instruments, Inc. Spacer-modified nano graphene electrodes for supercapacitors
DE102010002989A1 (de) 2010-03-17 2011-09-22 Sgl Carbon Se Materialzusammensetzung, deren Herstellung und Verwendung
US8967301B2 (en) * 2010-02-03 2015-03-03 Baker Hughes Incorporated Composite metallic elastomeric sealing components for roller cone drill bits
US9193879B2 (en) 2010-02-17 2015-11-24 Baker Hughes Incorporated Nano-coatings for articles
WO2011133778A2 (en) 2010-04-23 2011-10-27 Unifrax I Llc Multi-layer thermal insulation composite
CA2807691C (en) 2010-08-11 2019-02-26 Timcal S.A. Ground expanded graphite agglomerates, methods of making, and applications of the same
EP2625376A4 (en) 2010-10-06 2015-09-23 Packers Plus Energy Serv Inc EXTRUSION RING ASSEMBLY FOR A TRIM FOR A DRILLING WELL, TRIM AND METHOD
CA2827462C (en) * 2011-02-16 2016-01-19 Weatherford/Lamb, Inc. Anchoring seal
DE102011075810A1 (de) 2011-05-13 2012-11-15 Voith Patent Gmbh Korrosionsbeständige walzenbeschichtung
US20130012644A1 (en) 2011-07-05 2013-01-10 Schlumberger Technology Corporation Carbon Fiber Composite Material, Oilfield Apparatus Thereof, and Method for Manufacture of The Same
US9120898B2 (en) 2011-07-08 2015-09-01 Baker Hughes Incorporated Method of curing thermoplastic polymer for shape memory material
US20130045423A1 (en) 2011-08-18 2013-02-21 Hong Kong Applied Science and Technology Research Institute Company Limited Porous conductive active composite electrode for litihium ion batteries
US8939222B2 (en) 2011-09-12 2015-01-27 Baker Hughes Incorporated Shaped memory polyphenylene sulfide (PPS) for downhole packer applications
KR101354712B1 (ko) 2011-10-12 2014-01-24 광주과학기술원 입상화 탄소 메조 기공 구조체의 제조 방법
EP2586963A1 (en) 2011-10-28 2013-05-01 Welltec A/S Sealing material for annular barriers
US20130114165A1 (en) 2011-11-07 2013-05-09 Hitachi Global Storage Technologies Netherlands B.V. FePt-C BASED MAGNETIC RECORDING MEDIA WITH ONION-LIKE CARBON PROTECTION LAYER
US8604157B2 (en) 2011-11-23 2013-12-10 Baker Hughes Incorporated Crosslinked blends of polyphenylene sulfide and polyphenylsulfone for downhole applications, methods of manufacture, and uses thereof
US9144925B2 (en) 2012-01-04 2015-09-29 Baker Hughes Incorporated Shape memory polyphenylene sulfide manufacturing, process, and composition
KR20130096947A (ko) 2012-02-23 2013-09-02 삼성전자주식회사 위치에 따라 스터브 저항이 삽입되는 메모리 모듈 및 그것의 온-다이 터미네이션 설정 방법
US20150027567A1 (en) 2012-03-08 2015-01-29 Waters Technologies Corporation Back pressure regulation
EP2644819A1 (en) 2012-03-30 2013-10-02 Welltec A/S An annular barrier having expansion tubes
EP2644820A1 (en) 2012-03-30 2013-10-02 Welltec A/S An annular barrier with a seal
US20130287326A1 (en) 2012-04-27 2013-10-31 Roller Bearing Company Of America, Inc. Spherical plain bearing with solid graphite lubricating plugs
US20130284737A1 (en) 2012-04-30 2013-10-31 National Cheng Kung University Graphite foil-bonded device and method for preparing same
US9260926B2 (en) * 2012-05-03 2016-02-16 Weatherford Technology Holdings, Llc Seal stem
US9404030B2 (en) 2012-08-14 2016-08-02 Baker Hughes Incorporated Swellable article
RU2510387C1 (ru) * 2012-11-22 2014-03-27 Открытое акционерное общество "Авиационная корпорация "Рубин" (ОАО "АК "Рубин") Способ получения фрикционного композиционного углерод-углеродного материала и материал
JP2014141746A (ja) 2012-12-27 2014-08-07 Shibaura Institute Of Technology 放熱用複合材及びその製造方法並びに放熱用複合材製造用の混合粉
US10087073B2 (en) 2013-02-14 2018-10-02 Nanotek Instruments, Inc. Nano graphene platelet-reinforced composite heat sinks and process for producing same
US9803439B2 (en) 2013-03-12 2017-10-31 Baker Hughes Ferrous disintegrable powder compact, method of making and article of same
US20140272592A1 (en) 2013-03-14 2014-09-18 Energ2 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
WO2015021627A1 (en) 2013-08-15 2015-02-19 Norgren Inc. Apparatus and method for a one-way fuse valve
WO2015081243A1 (en) 2013-11-26 2015-06-04 S.P.M. Flow Control, Inc. Valve seats for use in fracturing pumps
US9963395B2 (en) 2013-12-11 2018-05-08 Baker Hughes, A Ge Company, Llc Methods of making carbon composites
KR102263351B1 (ko) * 2014-03-21 2021-06-14 생-고뱅 퍼포먼스 플라스틱스 코포레이션 회전축 시일
US10315922B2 (en) 2014-09-29 2019-06-11 Baker Hughes, A Ge Company, Llc Carbon composites and methods of manufacture
US10196875B2 (en) 2014-09-30 2019-02-05 Baker Hughes, A Ge Company, Llc Deployment of expandable graphite
US10480288B2 (en) 2014-10-15 2019-11-19 Baker Hughes, A Ge Company, Llc Articles containing carbon composites and methods of manufacture
US20160130519A1 (en) 2014-11-06 2016-05-12 Baker Hughes Incorporated Methods for preparing anti-friction coatings
US9962903B2 (en) 2014-11-13 2018-05-08 Baker Hughes, A Ge Company, Llc Reinforced composites, methods of manufacture, and articles therefrom
US9745451B2 (en) 2014-11-17 2017-08-29 Baker Hughes Incorporated Swellable compositions, articles formed therefrom, and methods of manufacture thereof
US11097511B2 (en) 2014-11-18 2021-08-24 Baker Hughes, A Ge Company, Llc Methods of forming polymer coatings on metallic substrates
US20160145965A1 (en) 2014-11-25 2016-05-26 Baker Hughes Incorporated Flexible graphite packer
US9726300B2 (en) 2014-11-25 2017-08-08 Baker Hughes Incorporated Self-lubricating flexible carbon composite seal
US10300627B2 (en) 2014-11-25 2019-05-28 Baker Hughes, A Ge Company, Llc Method of forming a flexible carbon composite self-lubricating seal
US9714709B2 (en) 2014-11-25 2017-07-25 Baker Hughes Incorporated Functionally graded articles and methods of manufacture
US20160186031A1 (en) 2014-12-08 2016-06-30 Baker Hughes Incorporated Carbon composites having high thermal conductivity, articles thereof, and methods of manufacture
US9670747B2 (en) 2014-12-08 2017-06-06 Baker Hughes Incorporated Annulus sealing arrangement and method of sealing an annulus
US9840887B2 (en) 2015-05-13 2017-12-12 Baker Hughes Incorporated Wear-resistant and self-lubricant bore receptacle packoff tool
US10125274B2 (en) 2016-05-03 2018-11-13 Baker Hughes, A Ge Company, Llc Coatings containing carbon composite fillers and methods of manufacture
US10344559B2 (en) 2016-05-26 2019-07-09 Baker Hughes, A Ge Company, Llc High temperature high pressure seal for downhole chemical injection applications

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726738A (en) * 1969-08-27 1973-04-10 J Gellon Method of making a carbonized material of expanded graphite and carbon fibers
US4269391A (en) * 1977-04-28 1981-05-26 Nippon Petrochemicals Co., Ltd. Valve sealing device and a valve
US5225379A (en) * 1988-02-09 1993-07-06 Ucar Carbon Technology Corporation Composites of flexible graphite particles and amorphous carbon
US20020182387A1 (en) * 2001-05-31 2002-12-05 Mercuri Robert Angelo Method for preparing composite flexible graphite material
JP2003148630A (ja) * 2001-11-07 2003-05-21 Nippon Pillar Packing Co Ltd 複合SiC摺動部材、メカニカルシール用密封環、メカニカルシール、及び複合SiC摺動部材の製造方法
CN101134678A (zh) * 2006-05-04 2008-03-05 Sgl碳股份公司 耐高温的复合材料
CN101954676A (zh) * 2010-02-08 2011-01-26 湖南金博复合材料科技有限公司 碳/碳复合材料密封环及其生产方法
CN102864395A (zh) * 2012-09-24 2013-01-09 江苏利达不锈钢有限公司 一种添加MoSe2的高温耐磨自润滑复合材料及其制备方法
CN106660887A (zh) * 2014-09-17 2017-05-10 贝克休斯公司 碳复合材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
丁华东;张吟秋;马康竹;程时和;江发明;: "膨胀石墨铜密封材料研制", 湖南冶金, no. 01, pages 5 - 7 *
吴树济;: "新型双金属自密封复合垫片的研制开发", 化工机械, vol. 39, no. 04, pages 456 - 459 *
王丽军;章国华;马志博;: "BKR热采井口装置研制及推广应用", 石油机械, vol. 37, no. 06, pages 52 - 54 *

Also Published As

Publication number Publication date
US20160145967A1 (en) 2016-05-26
US10300627B2 (en) 2019-05-28
JP2018503703A (ja) 2018-02-08
EP3224504B1 (en) 2023-08-16
CA2968949A1 (en) 2016-06-02
CN107073572A (zh) 2017-08-18
WO2016085596A1 (en) 2016-06-02
CA2968949C (en) 2022-06-21
JP6736810B2 (ja) 2020-08-05
EP3224504A1 (en) 2017-10-04
EP3224504A4 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
CN107110401B (zh) 自润滑挠性碳复合密封件
EP3224504B1 (en) Method of forming a flexible carbon composite self-lubricating seal
US10501323B2 (en) Carbon composites and methods of manufacture
CN107108213B (zh) 含有碳复合材料的制品及其制造方法
CN106660887B (zh) 碳复合材料
US20160145965A1 (en) Flexible graphite packer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination