CN114686746A - 一种镀镍烧结钕铁硼废料的回收利用方法 - Google Patents

一种镀镍烧结钕铁硼废料的回收利用方法 Download PDF

Info

Publication number
CN114686746A
CN114686746A CN202210456413.5A CN202210456413A CN114686746A CN 114686746 A CN114686746 A CN 114686746A CN 202210456413 A CN202210456413 A CN 202210456413A CN 114686746 A CN114686746 A CN 114686746A
Authority
CN
China
Prior art keywords
neodymium iron
iron boron
nickel
sintered neodymium
boron waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210456413.5A
Other languages
English (en)
Inventor
陈栋
卢国文
刘云中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU CHANNELON ELECTRONIC GROUP CO Ltd
Original Assignee
JIANGSU CHANNELON ELECTRONIC GROUP CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU CHANNELON ELECTRONIC GROUP CO Ltd filed Critical JIANGSU CHANNELON ELECTRONIC GROUP CO Ltd
Priority to CN202210456413.5A priority Critical patent/CN114686746A/zh
Publication of CN114686746A publication Critical patent/CN114686746A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • B22F3/101Changing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F8/00Manufacture of articles from scrap or waste metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及稀土磁材料技术领域,具体涉及一种镀镍烧结钕铁硼废料的回收利用方法,包括以下步骤:高温真空退磁、干式研磨法去镍层、速凝法制备富稀土合金、吸氢破碎、加防氧剂搅拌、气流喷射粉碎、加润滑剂搅拌、振动筛过筛、试样磁场成型、试样真空烧结、试样性能检测等;本发明利用干式研磨法除去烧结钕铁硼电镀镍废料表面的镍层,解决了原有化学法、高温蒸发法和破碎法存在的收得率低、环境污染和成本高等缺点,工艺简单,可实现了烧结钕铁硼镀镍废料的100%全回收;本发明采用几种稀土元素组合添加制备富稀土合金作为烧结助剂,有效降低了烧结助剂的熔点,烧结温度下提高了晶界的液相浸润性,改善晶界结构和成分,可以提升材料的内禀矫顽力。

Description

一种镀镍烧结钕铁硼废料的回收利用方法
技术领域
本发明涉及稀土磁材料技术领域,具体涉及一种镀镍烧结钕铁硼废料的回收利用方法。
背景技术
为了烧结钕铁硼产品在使用过程中的防腐,镀镍是常用的一种表面处理方式。生产过程中因为缺角、磁性能不良、尺寸不良和外观不良等会产生的报废品导致了稀土资源的浪费,增加了企业的制造成本。如何有效利用镀镍烧结钕铁硼报废品一直是一个难题。
目前,钕铁硼镀镍废料可以利用化学萃取分离冶炼技术,提取纯度较高的稀土材料,如镨钕、镝铁等。但这种方法工艺复杂、成本高,且制作过程中易产生大量的有害废弃物,污染环境。也可以采用化学法退除表面的镍镀层,再氢碎和气流磨粉碎后利用,但这种方法环境污染严重且成本较高。
现有专利CN 103426579B公告了一种利用钕铁硼镀镍废料烧结钕铁硼磁体的方法,它通过将钕铁硼废料直接破碎后过筛去除镍镀层片状物,再通过氢破碎、气流磨粉碎,但这种方法由于镍的柔软性,镍层很难被粉碎到很小的粒径,会在材料中形成杂质。且在镍镀层片状物上很容易粘连烧结永磁材料,导致材料回收利用率只有60%左右。
另外,现有专利CN103117143A公告了一种用钕铁硼镀镍废料烧结钕铁硼磁体的方法,它先将镀镍烧结钕铁硼废料用真空炉高温焙烧,真空蒸发掉表面镍层,然后回收利用。但这种方法能耗高,且蒸发掉的镍对真空烧结炉产生污染。因此,镀镍烧结钕铁硼废料的回收利用方法还需进一步改进提高。
发明内容
针对以上问题,本发明提供了一种镀镍烧结钕铁硼废料的回收利用方法,通过添加富含各种稀土元素的合金,改善钕铁硼晶界成分和结构,提高了烧结钕铁硼磁体的性能。
为了实现上述目的,本发明采用的技术方案如下:
一种镀镍烧结钕铁硼废料的回收利用方法,包括以下步骤:
步骤1、镀镍烧结钕铁硼废料装入真空烧结炉中,抽真空至大于2.0E-2Pa,升温至500-600℃,保温5-6Hr,去除磁性。
步骤2、利用干式研磨法去除表面镀镍层,按废料:碳化硅=1:(2~5)的料比将烧结钕铁硼镀镍废料加入振动研磨机内,振动6-20Hr,去除表面镀镍层;
步骤3、采用速凝法制备富稀土合金,该富稀土合金通过真空或惰性气体气氛制备,优选在氩气气氛中熔化金属或合金原料,并将熔融钢液浇铸入冷却铜模或旋转铜棍来制备,获得在烧结温度下作为液相助剂的富稀土合金;
步骤4、将烧结钕铁硼废料中加入上述步骤3中制得的3-8%的富稀土合金,混合后氢化破碎,氩气保护下550-600℃脱去氢气,得钕铁硼废粉;
步骤5、将上述步骤4制得的氢碎后的钕铁硼废粉装入密封容器中,加入0.1-0.5wt%的防氧化剂搅拌1-3小时,得烧结钕铁硼废料粗粉;
步骤6、将上述步骤5制得的烧结钕铁硼废料粗粉用气流磨机粉碎成2.5-5μm的细粉颗粒,在惰性气体保护下加入润滑剂0.1-0.5%,得烧结钕铁硼废料粉料;
步骤7、将上述步骤6制得的烧结钕铁硼废料粉料在密封压机内压力成型,成型压坯用真空塑料袋密封包装,并在200MPa压力下冷等静压20-60s,得钕铁硼坯料;
步骤8、氮气保护下将上述步骤7制得的钕铁硼坯料用烧结料钵装入真空烧结炉内进行烧结处理,得烧结磁体;该烧结料钵可以是碳钢、石墨或莫来石等材质。
步骤9、将上述步骤8制得的烧结磁体在真空气氛下,首先一级热处理880-900℃保温3-5小时,然后二级热处理460-520℃保温5-10小时,制得磁体,并对其进行性能检测。
优选地,所述步骤3中,富稀土合金的成分组成为(PrNd1-XRX)34TYMZBW,其中R是Tb、Dy、Gd、Ce、Er中的至少一种元素,T是Fe、Co、Ni中的至少一种元素,M是Cu、Al、Ga、Sn中的至少一种元素,B是硼元素;表示合金中响应元素原子百分比的X、Y、Z、W的值在下列范围内:10≤X≤30,45≤Y≤55,5≤Z≤15,1≤W≤5。
优选地,所述步骤5中,防氧化剂为聚环氧乙烷稀丙基醚。
优选地,所述步骤6中,润滑剂包括溶剂油。
优选地,所述步骤7中,成型前用氮气或氩气置换密封压机内的空气,使氧浓度控制在0-50ppm之间,取向磁场强度大于1.5T。
优选地,所述步骤8中,抽真空至2.0x10-2Pa,开始升温,300℃保温0.5小时,继续升温至600℃保温0.5小时,继续升温至800℃保温2小时,升温至1050-1070℃烧结4-10小时,充入氩气风冷至80℃以下出炉。
本发明有益效果:
1、本发明利用干式研磨法除去烧结钕铁硼电镀镍废料表面的镍层,解决了原有化学法、高温蒸发法和破碎法存在的收得率低、环境污染和成本高等缺点,工艺简单,可实现了烧结钕铁硼镀镍废料的100%全回收。
2、本发明不同于现有废料处理专利技术采用的添加氢化镨钕或氢化钆等,采用几种稀土元素组合添加制备富稀土合金作为烧结助剂,有效降低了烧结助剂的熔点,烧结温度下提高了晶界的液相浸润性,改善晶界结构和成分,可以提升材料的内禀矫顽力。其中,Ce、Gd元素的添加可以降低材料成本,Dy元素的添加可以增强内禀矫顽力。
附图说明
图1是本发明的流程图。
具体实施方式
下面结合附图将对本发明实施例中的技术方案进行清楚、完整地描述,以使本领域的技术人员能够更好的理解本发明的优点和特征,从而对本发明的保护范围做出更为清楚的界定。本发明所描述的实施例仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
烧结钕铁硼镀镍废料真空退磁后用干式研磨法去除表面镍层,用鄂式破碎机粗破成10mm以下的粗颗粒,备用。
配制富稀土合金(PrNd1-XRX)34TYMZBW。优选方案R为Ce元素,T为Fe,M为Cu、Al、Ga。优选X为23at%,Y为51at%,Z为10.8at%,W为4.2at%。在氩气气氛中高频熔化,并且将合金熔体浇铸到一定速度旋转(线速度1.2m/s)单一铜冷却辊上(通过流延技术)来制备薄片形合金。
按废料:富稀土合金=95:5的比例将合金装入氢碎炉中,预抽真空至5Pa,充入高纯氢气,至吸氢饱和停止充氢。抽真空,升温至550℃保温脱氢,至完全脱氢后冷却至100℃下出炉。
随后,将氢化破碎后的粗粉添加0.1wt%的防氧化剂搅拌1小时,在一定压力氮气下喷磨,通过气流磨分选轮细分成平均粒度2.8-3.0微米的细粉末,加入千分之一的防氧化剂和润滑剂搅拌3小时。在氮气气氛下在20kOe的磁场下使细粉末取向,并且在1吨/平方厘米的压力下压制。然后将压制品在氮气保护下装入真空烧结炉,抽真空至2.0×10-2Pa,开始加热,温度升至300℃,保温0.5-1.5小时,脱油处理;继续升温至600℃保温0.5-1.5小时,脱气处理,继续升温至820℃,保温3-5小时至真空度达到2.0×10-2Pa,升温至1065℃保温4-5小时,充入氩气风冷至80℃以下出炉。随后使烧结磁体在真空气氛下于900℃处理3小时,然后在500℃下时效处理5小时并且淬火,获得本发明范围内的磁体,该磁体被称为PM1。
比较实施例1
为了比较,通过使用至少99%重量纯度的Nd、Pr、Dy、Co、Al和Fe金属以及硼铁,称重预定的量,在氩气气氛中高频熔化,并且将合金熔体浇铸到一定速度旋转(线速度1.2m/s)单一铜冷却辊上(通过流延技术)来制备薄片形合金。该合金组成为at%Nd8.1Pr2.6Gd3.1Co0.55Al1.45Nb0.21Cu0.2Ga0.05B6.05Febal。
通过氢化处理将合金预破碎至30目以下的大小,在使用压力下的氮气的气流磨上,将粗粉末细磨成平均粒度为2.8-3.0的粉末。加入千分之一的防氧化剂和润滑剂搅拌1小时。在氮气气氛下在20kOe的磁场下使细粉末取向,并且在1吨/平方厘米的压力下压制。然后将压制品在氮气保护下装入真空烧结炉,抽真空至2.0×10-2Pa,开始加热,温度升至300℃,保温0.5-1.5小时,脱油处理;继续升温至600℃保温0.5-1.5小时,脱气处理,继续升温至820℃,保温3-5小时至真空度达到2.0×10-2Pa,升温至1072℃保温4-5小时,充入氩气风冷至80℃以下出炉。随后使烧结磁体在真空气氛下于900℃处理3小时,然后在485℃下时效处理5小时并且淬火,获得本发明范围内的磁体,该磁体被称为CM1。
测量磁体PM1和CM1的磁性能Br、Hcj、(BH)max,计算原材料成本,结果在表1中表示。本发明专利范围内磁体与比较实施例磁体相比,主要磁性能Br、Hcj、(BH)max都高于比较实施例,但原材料成本大幅下降了15%,而且充分利用了生产过程产生的大量烧结钕铁硼镍层废料,实现了稀土资源的绿色循环利用。
实施例2
烧结钕铁硼镀镍废料真空退磁后用干式研磨法去除表面镍层,用鄂式破碎机粗破成10mm以下的粗颗粒,备用。
配制富稀土合金(PrNd1-XRX)34TYMZBW。优选方案R为Gd元素,T为Fe,M为Cu、Al、Ga。优选X为22at%,Y为52at%,Z为10a%,W为4at%。在氩气气氛中高频熔化,并且将合金熔体浇铸到一定速度旋转(线速度1.2m/s)单一铜冷却辊上(通过流延技术)来制备薄片形合金。
按废料:富稀土合金=95:5的比例将合金装入氢碎炉中,预抽真空至5Pa,充入高纯氢气,至吸氢饱和停止充氢。抽真空,升温至550℃保温脱氢,至完全脱氢后冷却至100℃下出炉。
随后,将氢化破碎后的粗粉添加0.1wt%的防氧化剂搅拌1小时,在一定压力氮气下喷磨,通过气流磨分选轮细分成平均粒度2.8-3.0微米的细粉末,加入千分之一的防氧化剂和润滑剂搅拌3小时。在氮气气氛下在20kOe的磁场下使细粉末取向,并且在1吨/平方厘米的压力下压制。然后将压制品在氮气保护下装入真空烧结炉,抽真空至2.0×10-2Pa,开始加热,温度升至300℃,保温0.5-1.5小时,脱油处理;继续升温至600℃保温0.5-1.5小时,脱气处理,继续升温至820℃,保温3-5小时至真空度达到2.0×10-2Pa,升温至1065℃保温4-5小时,充入氩气风冷至80℃以下出炉。随后使烧结磁体在真空气氛下于900℃处理3小时,然后在500℃下时效处理5小时并且淬火,获得本发明范围内的磁体,该磁体被称为PM2。
比较实施例2
为了比较,通过使用至少99%重量纯度的Nd、Pr、Dy、Co、Al和Fe金属以及硼铁,称重预定的量,在氩气气氛中高频熔化,并且将合金熔体浇铸到一定速度旋转(线速度1.2m/s)单一铜冷却辊上(通过流延技术)来制备薄片形合金。该合金组成为at%Nd9.7Pr3.1Dy0.4Ho0.99Co0.9Al2.2Nb0.15Ga0.25B5.7Cu0.2Febal。
通过氢化处理将合金预破碎至30目以下的大小,在使用压力下的氮气的气流磨上,将粗粉末细磨成平均粒度为2.8-3.0的粉末。加入千分之一的防氧化剂和润滑剂搅拌1小时。在氮气气氛下在20kOe的磁场下使细粉末取向,并且在1吨/平方厘米的压力下压制。然后将压制品在氮气保护下装入真空烧结炉,抽真空至2.0×10-2Pa,开始加热,温度升至300℃,保温0.5-1.5小时,脱油处理;继续升温至600℃保温0.5-1.5小时,脱气处理,继续升温至820℃,保温3-5小时至真空度达到2.0×10-2Pa,升温至1072℃保温4-5小时,充入氩气风冷至80℃以下出炉。随后使烧结磁体在真空气氛下于900℃处理3小时,然后在485℃下时效处理5小时并且淬火,获得本发明范围内的磁体,该磁体被称为CM2。
测量磁体PM2和CM2的磁性能Br、Hcj、(BH)max,计算原材料成本,结果在表1中表示。本发明专利范围内磁体与比较实施例磁体相比,主要磁性能Br、Hcj、(BH)max相当,但原材料成本大幅下降了35%,而且充分利用了生产过程产生的大量烧结钕铁硼镀镍废产品,实现了稀土资源的绿色循环利用。
实施例3
烧结钕铁硼镀镍废料真空退磁后用干式研磨法去除表面镍层,用鄂式破碎机粗破成10mm以下的粗颗粒,备用。
配制富稀土合金(PrNd1-XRX)34TYMZBW。优选方案R为Dy元素,T为Fe,M为Cu。优选X为22at%,Y为52at%,Z为10a%,W为4at%。在氩气气氛中高频熔化,并且将合金熔体浇铸到一定速度旋转(线速度1.2m/s)单一铜冷却辊上(通过流延技术)来制备薄片形合金。
按废料:富稀土合金=95:5的比例将合金装入氢碎炉中,预抽真空至5Pa,充入高纯氢气,至吸氢饱和停止充氢。抽真空,升温至550℃保温脱氢,至完全脱氢后冷却至100℃下出炉。
随后,将氢化破碎后的粗粉添加0.1wt%的防氧化剂搅拌1小时,在一定压力氮气下喷磨,通过气流磨分选轮细分成平均粒度2.8-3.0微米的细粉末,加入千分之一的防氧化剂和润滑剂搅拌3小时。在氮气气氛下在20kOe的磁场下使细粉末取向,并且在1吨/平方厘米的压力下压制。然后将压制品在氮气保护下装入真空烧结炉,抽真空至2.0×10-2Pa,开始加热,温度升至300℃,保温0.5-1.5小时,脱油处理;继续升温至600℃保温0.5-1.5小时,脱气处理,继续升温至820℃,保温3-5小时至真空度达到2.0×10-2Pa,升温至1065℃保温4-5小时,充入氩气风冷至80℃以下出炉。随后使烧结磁体在真空气氛下于900℃处理3小时,然后在500℃下时效处理5小时并且淬火,获得本发明范围内的磁体,该磁体被称为PM3。
比较实施例3
为了比较,通过使用至少99%重量纯度的Nd、Pr、Dy、Co、Al和Fe金属以及硼铁,称重预定的量,在氩气气氛中高频熔化,并且将合金熔体浇铸到一定速度旋转(线速度1.2m/s)单一铜冷却辊上(通过流延技术)来制备薄片形合金。该合金组成为at%Nd8.7Pr2.8Dy1.69Gd1.1Co1.1A2.67Cu0.21Nb0.07Ga0.28Zr0.07B5.7Febal。
通过氢化处理将合金预破碎至30目以下的大小,在使用压力下的氮气的气流磨上,将粗粉末细磨成平均粒度为2.8-3.0的粉末。加入千分之一的防氧化剂和润滑剂搅拌1小时。在氮气气氛下在20kOe的磁场下使细粉末取向,并且在1吨/平方厘米的压力下压制。然后将压制品在氮气保护下装入真空烧结炉,抽真空至2.0×10-2Pa,开始加热,温度升至300℃,保温0.5-1.5小时,脱油处理;继续升温至600℃保温0.5-1.5小时,脱气处理,继续升温至820℃,保温3-5小时至真空度达到2.0×10-2Pa,升温至1072℃保温4-5小时,充入氩气风冷至80℃以下出炉。随后使烧结磁体在真空气氛下于900℃处理3小时,然后在485℃下时效处理5小时并且淬火,获得本发明范围内的磁体,该磁体被称为CM3。
测量磁体PM3和CM3的磁性能Br、Hcj、(BH)max,计算原材料成本,结果在表1中表示。本发明专利范围内磁体与比较实施例磁体相比,主要磁性能Br、(BH)max都高于比较实施例,Hcj相当,但原材料成本大幅下降了30%,而且充分利用了生产过程产生的大量钕铁硼镀镍废产品,实现了稀土资源的绿色循环利用。
表1
Figure BDA0003618904130000071
以上对本发明的实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (6)

1.一种镀镍烧结钕铁硼废料的回收利用方法,其特征在于:包括以下步骤:
步骤1、镀镍烧结钕铁硼废料装入真空烧结炉中,抽真空至大于2.0E-2Pa,升温至500-600℃,保温5-6Hr,去除磁性;
步骤2、利用干式研磨法去除表面镀镍层,按废料:碳化硅=1:(2~5)的料比将烧结钕铁硼镀镍废料加入振动研磨机内,振动6-20Hr,去除表面镀镍层;
步骤3、采用速凝法制备富稀土合金,在氩气气氛中熔化金属或合金原料,并将熔融钢液浇铸入冷却铜模或旋转铜棍来制备,获得在烧结温度下作为液相助剂的富稀土合金;
步骤4、将烧结钕铁硼废料中加入上述步骤3中制得的3-8%的富稀土合金,混合后氢化破碎,氩气保护下550-600℃脱去氢气,得钕铁硼废粉;
步骤5、将上述步骤4制得的氢碎后的钕铁硼废粉装入密封容器中,加入0.1-0.5wt%的防氧化剂搅拌1-3小时,得烧结钕铁硼废料粗粉;
步骤6、将上述步骤5制得的烧结钕铁硼废料粗粉用气流磨机粉碎成2.5-5μm的细粉颗粒,在惰性气体保护下加入润滑剂0.1-0.5%,得烧结钕铁硼废料粉料;
步骤7、将上述步骤6制得的烧结钕铁硼废料粉料在密封压机内压力成型,成型压坯用真空塑料袋密封包装,并在200MPa压力下冷等静压20-60s,得钕铁硼坯料;
步骤8、氮气保护下将上述步骤7制得的钕铁硼坯料用烧结料钵装入真空烧结炉内进行烧结处理,得烧结磁体;
步骤9、将上述步骤8制得的烧结磁体在真空气氛下,首先一级热处理880-900℃保温3-5小时,然后二级热处理460-520℃保温5-10小时,制得磁体,并对其进行性能检测。
2.根据权利要求1所述的一种镀镍烧结钕铁硼废料的回收利用方法,其特征在于:所述步骤3中,富稀土合金的成分组成为(PrNd1-XRX)34TYMZBW,其中R是Tb、Dy、Gd、Ce、Er中的至少一种元素,T是Fe、Co、Ni中的至少一种元素,M是Cu、Al、Ga、Sn中的至少一种元素,B是硼元素;表示合金中响应元素原子百分比的X、Y、Z、W的值在下列范围内:10≤X≤30,45≤Y≤55,5≤Z≤15,1≤W≤5。
3.根据权利要求1所述的一种镀镍烧结钕铁硼废料的回收利用方法,其特征在于:所述步骤5中,防氧化剂为聚环氧乙烷稀丙基醚。
4.根据权利要求1所述的一种镀镍烧结钕铁硼废料的回收利用方法,其特征在于:所述步骤6中,润滑剂包括溶剂油。
5.根据权利要求1所述的一种镀镍烧结钕铁硼废料的回收利用方法,其特征在于:所述步骤7中,成型前用氮气或氩气置换密封压机内的空气,使氧浓度控制在0-50ppm之间。
6.根据权利要求1所述的一种镀镍烧结钕铁硼废料的回收利用方法,其特征在于:所述步骤8中,抽真空至2.0x10-2Pa,开始升温,300℃保温0.5小时,继续升温至600℃保温0.5小时,继续升温至800℃保温2小时,升温至1050-1070℃烧结4-10小时,充入氩气风冷至80℃以下出炉。
CN202210456413.5A 2022-04-27 2022-04-27 一种镀镍烧结钕铁硼废料的回收利用方法 Pending CN114686746A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210456413.5A CN114686746A (zh) 2022-04-27 2022-04-27 一种镀镍烧结钕铁硼废料的回收利用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210456413.5A CN114686746A (zh) 2022-04-27 2022-04-27 一种镀镍烧结钕铁硼废料的回收利用方法

Publications (1)

Publication Number Publication Date
CN114686746A true CN114686746A (zh) 2022-07-01

Family

ID=82145280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210456413.5A Pending CN114686746A (zh) 2022-04-27 2022-04-27 一种镀镍烧结钕铁硼废料的回收利用方法

Country Status (1)

Country Link
CN (1) CN114686746A (zh)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340902A (ja) * 1993-06-02 1994-12-13 Shin Etsu Chem Co Ltd 希土類焼結永久磁石の製造方法
CN102031445A (zh) * 2010-12-17 2011-04-27 中国科学院宁波材料技术与工程研究所 一种制备高磁能积、高矫顽力、低成本烧结钕铁硼的方法
CN102412044A (zh) * 2011-11-16 2012-04-11 宁波同创强磁材料有限公司 一种超低失重烧结钕铁硼磁性材料及其制备方法
CN103093914A (zh) * 2013-01-25 2013-05-08 宁波同创强磁材料有限公司 一种高性能钕铁硼磁体及其制备方法
CN103117143A (zh) * 2013-01-25 2013-05-22 宁波同创强磁材料有限公司 一种用钕铁硼镀镍废料烧结而成的钕铁硼磁体
CN103426579A (zh) * 2013-09-05 2013-12-04 宁波科田磁业有限公司 镀镍烧结钕铁硼废料一种再利用方法
CN104064346A (zh) * 2014-05-30 2014-09-24 宁波同创强磁材料有限公司 一种钕铁硼磁体及其制备方法
CN104124052A (zh) * 2014-07-25 2014-10-29 安徽大地熊新材料股份有限公司 一种高性能稀土-铁-硼系烧结永磁体的制备方法
CN104240887A (zh) * 2014-09-12 2014-12-24 沈阳中北通磁科技股份有限公司 一种低锰含量钕铁硼永磁铁及制造方法
CN104801719A (zh) * 2015-05-07 2015-07-29 安徽万磁电子有限公司 一种镀镍烧结钕铁硼废料的再利用工艺
CN106920613A (zh) * 2017-02-28 2017-07-04 湖南稀土新能源材料有限责任公司 镀防护层烧结钕铁硼废料再利用的方法
CN106971802A (zh) * 2017-04-14 2017-07-21 钢铁研究总院 一种再生烧结钕铁硼永磁体制备方法
CN106992052A (zh) * 2017-03-17 2017-07-28 京磁材料科技股份有限公司 利用烧结钕铁硼废料制作高性能钕铁硼的方法
CN107442550A (zh) * 2017-07-04 2017-12-08 京磁材料科技股份有限公司 电镀后的钕铁硼废料的回收再利用方法
CN107564647A (zh) * 2017-08-14 2018-01-09 浙江东阳东磁稀土有限公司 一种稀土钕铁硼镀层废品回收再利用的方法
WO2018040299A1 (zh) * 2016-08-31 2018-03-08 浙江东阳东磁稀土有限公司 一种制备稀土永磁材料的方法
CN108188146A (zh) * 2017-12-28 2018-06-22 京磁材料科技股份有限公司 烧结钕铁硼镀锌废料的再利用工艺
CN109604615A (zh) * 2018-12-17 2019-04-12 江苏晨朗电子集团有限公司 低成本制备烧结钕铁硼永磁体的方法
CN111370219A (zh) * 2020-04-22 2020-07-03 安徽吉华新材料有限公司 一种钕铁硼废旧磁钢全循环回收利用生产新永磁体的制备工艺
CN112201428A (zh) * 2020-07-28 2021-01-08 宁波科田磁业有限公司 一种利用钕铁硼回收料制备高性能磁钢的方法
WO2021219063A1 (zh) * 2020-04-30 2021-11-04 烟台正海磁性材料股份有限公司 一种细晶、高矫顽力烧结钕铁硼磁体及其制备方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340902A (ja) * 1993-06-02 1994-12-13 Shin Etsu Chem Co Ltd 希土類焼結永久磁石の製造方法
CN102031445A (zh) * 2010-12-17 2011-04-27 中国科学院宁波材料技术与工程研究所 一种制备高磁能积、高矫顽力、低成本烧结钕铁硼的方法
CN102412044A (zh) * 2011-11-16 2012-04-11 宁波同创强磁材料有限公司 一种超低失重烧结钕铁硼磁性材料及其制备方法
CN103093914A (zh) * 2013-01-25 2013-05-08 宁波同创强磁材料有限公司 一种高性能钕铁硼磁体及其制备方法
CN103117143A (zh) * 2013-01-25 2013-05-22 宁波同创强磁材料有限公司 一种用钕铁硼镀镍废料烧结而成的钕铁硼磁体
CN103426579A (zh) * 2013-09-05 2013-12-04 宁波科田磁业有限公司 镀镍烧结钕铁硼废料一种再利用方法
CN104064346A (zh) * 2014-05-30 2014-09-24 宁波同创强磁材料有限公司 一种钕铁硼磁体及其制备方法
CN104124052A (zh) * 2014-07-25 2014-10-29 安徽大地熊新材料股份有限公司 一种高性能稀土-铁-硼系烧结永磁体的制备方法
CN104240887A (zh) * 2014-09-12 2014-12-24 沈阳中北通磁科技股份有限公司 一种低锰含量钕铁硼永磁铁及制造方法
CN104801719A (zh) * 2015-05-07 2015-07-29 安徽万磁电子有限公司 一种镀镍烧结钕铁硼废料的再利用工艺
WO2018040299A1 (zh) * 2016-08-31 2018-03-08 浙江东阳东磁稀土有限公司 一种制备稀土永磁材料的方法
CN106920613A (zh) * 2017-02-28 2017-07-04 湖南稀土新能源材料有限责任公司 镀防护层烧结钕铁硼废料再利用的方法
CN106992052A (zh) * 2017-03-17 2017-07-28 京磁材料科技股份有限公司 利用烧结钕铁硼废料制作高性能钕铁硼的方法
CN106971802A (zh) * 2017-04-14 2017-07-21 钢铁研究总院 一种再生烧结钕铁硼永磁体制备方法
CN107442550A (zh) * 2017-07-04 2017-12-08 京磁材料科技股份有限公司 电镀后的钕铁硼废料的回收再利用方法
CN107564647A (zh) * 2017-08-14 2018-01-09 浙江东阳东磁稀土有限公司 一种稀土钕铁硼镀层废品回收再利用的方法
CN108188146A (zh) * 2017-12-28 2018-06-22 京磁材料科技股份有限公司 烧结钕铁硼镀锌废料的再利用工艺
CN109604615A (zh) * 2018-12-17 2019-04-12 江苏晨朗电子集团有限公司 低成本制备烧结钕铁硼永磁体的方法
CN111370219A (zh) * 2020-04-22 2020-07-03 安徽吉华新材料有限公司 一种钕铁硼废旧磁钢全循环回收利用生产新永磁体的制备工艺
WO2021219063A1 (zh) * 2020-04-30 2021-11-04 烟台正海磁性材料股份有限公司 一种细晶、高矫顽力烧结钕铁硼磁体及其制备方法
CN112201428A (zh) * 2020-07-28 2021-01-08 宁波科田磁业有限公司 一种利用钕铁硼回收料制备高性能磁钢的方法

Similar Documents

Publication Publication Date Title
JP6419869B2 (ja) セリウム含有ネオジム鉄ホウ素磁石およびその製造方法
EP2944403B1 (en) Methods for powdering ndfeb rare earth permanent magnetic alloy
US9427804B2 (en) Method for producing a high-performance neodymium—iron—boron rare earth permanent magnetic material
US10563276B2 (en) High-performance NdFeB permanent magnet comprising nitride phase and production method thereof
CN112466643B (zh) 一种烧结钕铁硼材料的制备方法
CN102368439B (zh) 钕铁硼中添加重稀土氢化物制备高矫顽力永磁体的优化处理方法
EP0576055B1 (en) Fine-grained anisotropic powder from melt-spun ribbons
CN102903472A (zh) 一种烧结钕铁硼磁体及其制备方法
JP2017188661A (ja) ネオジム鉄ホウ素廃棄物で製造されるネオジム鉄ホウ素永久磁石およびその製造方法
CN111655891B (zh) 永久磁铁
CN103680918A (zh) 一种制备高矫顽力磁体的方法
CN106683814B (zh) 钕铁硼磁体粉末的制备方法
CN103506626A (zh) 一种提高烧结钕铁硼磁体矫顽力的制造方法
TW201716598A (zh) 複合含有Pr和W的R-Fe-B系稀土燒結磁鐵
CN108269668B (zh) 低成本提高烧结钕铁硼矫顽力的方法
CN109216007B (zh) 一种钐钴磁体的制备工艺
CN112201428A (zh) 一种利用钕铁硼回收料制备高性能磁钢的方法
CN109411225B (zh) 一种钐钴磁体的制备工艺
WO2024119728A1 (zh) 一种含Mg的高性能钕铁硼磁体及其制备方法
CN109550945B (zh) 一种利用白云鄂博共伴生原矿混合稀土制备的永磁材料及其制备方法
CN113871120B (zh) 一种混合稀土永磁材料及其制备方法
CN114686746A (zh) 一种镀镍烧结钕铁硼废料的回收利用方法
CN114864263A (zh) 一种废旧钕铁硼磁体循环制备工艺
JP2007266026A (ja) 希土類焼結磁石の製造方法
CN113921218A (zh) 一种高剩磁钕铁硼磁体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220701