CN114672767A - 一种大尺寸二碲化铂的化学气相沉积制备方法 - Google Patents

一种大尺寸二碲化铂的化学气相沉积制备方法 Download PDF

Info

Publication number
CN114672767A
CN114672767A CN202210390587.6A CN202210390587A CN114672767A CN 114672767 A CN114672767 A CN 114672767A CN 202210390587 A CN202210390587 A CN 202210390587A CN 114672767 A CN114672767 A CN 114672767A
Authority
CN
China
Prior art keywords
platinum
substrate
ditelluride
deposition
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210390587.6A
Other languages
English (en)
Inventor
王学锋
王喆
陈中强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202210390587.6A priority Critical patent/CN114672767A/zh
Publication of CN114672767A publication Critical patent/CN114672767A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种大尺寸二碲化铂的化学气相沉积制备方法,方法在真空腔室内放入基片与金属铂靶材,通过石英晶振标定校准沉积速率,在室温条件下将金属铂沉积在基片上,之后在沉积炉中放入沉积铂的基片以及高纯度碲单质,将炉内抽至真空后通入载气,在一定的退火温度与时间条件下,对基片进行退火处理,退火结束后停止通入载气并将基片从沉积炉中取出完成制备。本发明方法所制备的二碲化铂厚度也可以通过改变所沉积铂的厚度进行调控,满足不同的实验要求,能够稳定制备出厘米级别大面积二碲化铂材料,较传统方法更加符合现代化工业制备二碲化铂的工艺要求。

Description

一种大尺寸二碲化铂的化学气相沉积制备方法
技术领域
本发明涉及一种大尺寸二碲化铂的化学气相沉积制备方法,属于电子新材料技术领域。
背景技术
自2004年通过机械剥离技术得到的石墨烯材料出现以来,其独特的物理性质和电子输运特性引起了研究者们极大的兴趣,先后出现了包括六方氮化硼(h-BN)、黑磷(BP)、过渡金属硫属化合物(TMDs)等二维材料。在这其中,过渡金属硫属化合物种类繁多,其结构、电学、磁学等性质也不尽相同,导电性从绝缘体、半导体、半金属到金属,磁性也从铁磁、反铁磁到顺磁,这些新材料的出现为探索新奇的物理现象和物理机理提供了理想的平台。
过渡金属二硫属化合物广义化学式通常表示为MX2,M代表过渡金属元素,而X表示硫族元素(如硫、硒、碲)。这类材料不存在表面悬挂键,层与层之间通过范德瓦尔斯力耦合,在与其他材料结合构建异质结时,可以不用严格考虑晶格匹配的问题。除此之外,随着层数的降低,MX2的带隙也会随之变化,可以实现金属到半导体的转变,使得其器件性能具有很大的调谐范围,因此在光电探测器等传感器领域有着极高的潜在应用价值。
近年来,二碲化铂(PtTe2)材料由于其超高的电导率和中红外光电探测性能引起了人们的注意,其所具备的较强的空气稳定性也进一步提升了二碲化铂的潜在应用价值。此外,二碲化铂已被证实为Ⅱ类狄拉克半金属,具有Ⅱ类狄拉克费米子、手性反常等独特物理性质,由此引起了越来越多的关注。目前二碲化铂薄层的制备方法包括单晶样品机械剥离法、分子束外延方法进行沉积、化学气相沉积一步法制备单晶纳米片等,然而上述方法难以实现大尺寸、低成本的二碲化铂样品制备,因此寻找一种兼顾质量和产量的制备方法显得尤为重要。
发明内容
发明要解决的技术问题
本发明针对现有技术缺少大尺寸、低成本的二碲化铂制备方法的问题,提出一种大尺寸二碲化铂的化学气相沉积制备方法。
技术方案
为达到上述目的,本发明提供的技术方案为:
一种大尺寸二碲化铂的化学气相沉积制备方法,包括如下步骤:
步骤1,将基片放入沉积薄膜的真空腔内,同时放入所需金属铂靶材,通过石英晶振标定校准沉积速率,在室温条件下将金属铂沉积在基片上;
步骤2,将步骤1所得基片从真空腔内取出,放入化学气相沉积炉中,在沉积炉中放置适量高纯度碲单质,将炉内抽至真空后通入载气;
步骤3,设定沉积炉的退火温度、时间等条件,对上述基片进行退火处理,使碲原子与铂原子相互作用从而形成有序的二碲化铂晶态材料;
步骤4,退火结束后停止通入载气,从沉积炉中取出基片,二碲化铂制备完成。
进一步地,步骤1中基底为硅片或蓝宝石片。
进一步地,步骤1中将金属铂沉积在基底的方法为磁控溅射法或脉冲激光沉积法。
进一步地,步骤2中载气为氢氩混合气,载气流量为200-300sccm。
进一步地,步骤3中退火操作为:从室温加热至400℃退火温度,根据金属铂的沉积厚度不同,设定保温时长为20-90min,退火结束后将基片自然冷却降至室温。
有益效果
本发明方法原理简单易于推广,所制备的二碲化铂厚度也可以通过改变沉积铂的厚度进行调控,满足不同的实验要求;
本发明方法较传统方法更加符合现代化工业制备二碲化铂的工艺要求,能够稳定制备出厘米级别大面积二碲化铂材料。
附图说明
图1为本发明制备方法的流程图;
图2为本发明所制备二碲化铂的原子结构示意图;
图3为本发明所制备二碲化铂材料的光学照片;
图4为本发明所制备二碲化铂的拉曼光谱;
图5为本发明所制备二碲化铂的原子力显微镜图。
具体实施方式
为进一步了解本发明的内容,结合附图和具体实施方式对本发明作详细描述。
本实施例首先在基底上沉积铂金属材料,并通过化学气相沉积碲元素并退火得到二碲化铂材料,整体制备步骤如图1所示。沉积铂的过程为:将清洁的衬底放入磁控溅射真空腔内,在真空腔内通过石英晶振标定校准金属铂的沉积速率,本实施例设置铂沉积厚度为3nm,沉积完成后从真空腔中取出样品,转移至化学气相沉积炉中。化学气相沉积碲元素的过程为:称量一定量的碲粉倒入两端开口的石英管中,本实施例中碲粉为0.13g,从石英管另一端放入上一步所制备的3nm金属铂样品后,将盛有碲粉和样品的石英管放置在单温区管式炉中,借助油泵将管式炉内真空度抽至10-1Pa,在管式炉中通入氢氩混合气体,调节气流量为250sccm。设置退火程序为:从室温经过30min后升温至400℃,保温30min后自然冷却降至室温。
退火结束后停止通入载气,从炉中取出基片,二碲化铂制备完成,图2所示为本发明所制备二碲化铂的原子结构示意图,铂-碲-铂的三层结构在平面内扩展。方法最终可得到银白色金属光泽的二碲化铂材料,图3为上述实施例所制二碲化铂材料的光学照片,可以看出其样品尺寸可以达到0.5×0.5cm2
图4为本发明所制二碲化铂的拉曼(Raman)光谱,其中二碲化铂的特征峰Eg和A1g分别位于110.6cm-1和157.3cm-1处,这一结果与文献中报道的二碲化铂相符合,表明成功制备了二碲化铂结晶样品。
图5为本发明所制二碲化铂的原子力显微镜(AFM)图,图中可以观察到制备得到的样品厚度约为25nm,粗糙度约为1.935nm,体现了样品表面形貌的高质量。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (5)

1.一种大尺寸二碲化铂的化学气相沉积制备方法,其特征在于,包括如下步骤:
步骤S1,将基片放入真空腔室内,同时放入金属铂靶材,通过石英晶振标定校准沉积速率,在室温条件下将金属铂沉积在基片上;
步骤S2,将步骤S1所得基片从真空腔内取出,放入化学气相沉积炉中,在沉积炉中放置适量高纯度碲单质,将炉内抽至真空后通入载气;
步骤S3,设定沉积炉的退火温度、时间条件,对步骤S2所得基片进行退火处理。
步骤S4,退火结束后停止通入载气,从沉积炉中取出基片,二碲化铂制备完成。
2.如权利要求1所述的一种大尺寸二碲化铂的化学气相沉积制备方法,其特征在于,所述步骤S1中基片为硅片或蓝宝石片。
3.如权利要求1所述的一种大尺寸二碲化铂的化学气相沉积制备方法,其特征在于,所述步骤S1中将金属铂沉积在基片上所采用的方法为磁控溅射法或脉冲激光沉积法。
4.如权利要求1所述的一种大尺寸二碲化铂的化学气相沉积制备方法,其特征在于,所述步骤S2中载气为氢氩混合气,载气流量为200-300sccm。
5.如权利要求1所述的一种大尺寸二碲化铂的化学气相沉积制备方法,其特征在于,所述步骤S3中退火处理操作为:从室温加热至400℃退火温度,根据金属铂的沉积厚度不同,设定保温时长为20-90min,退火结束后将基片自然冷却降至室温。
CN202210390587.6A 2022-04-14 2022-04-14 一种大尺寸二碲化铂的化学气相沉积制备方法 Pending CN114672767A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210390587.6A CN114672767A (zh) 2022-04-14 2022-04-14 一种大尺寸二碲化铂的化学气相沉积制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210390587.6A CN114672767A (zh) 2022-04-14 2022-04-14 一种大尺寸二碲化铂的化学气相沉积制备方法

Publications (1)

Publication Number Publication Date
CN114672767A true CN114672767A (zh) 2022-06-28

Family

ID=82078488

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210390587.6A Pending CN114672767A (zh) 2022-04-14 2022-04-14 一种大尺寸二碲化铂的化学气相沉积制备方法

Country Status (1)

Country Link
CN (1) CN114672767A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784303A (zh) * 2016-11-17 2017-05-31 南京大学 一种可弯曲的超大不饱和磁阻材料制备方法及制备的材料
CN108914062A (zh) * 2018-07-23 2018-11-30 重庆科技学院 一种大面积和图形化过渡金属硫化物薄膜的制备方法
CN109904059A (zh) * 2019-01-16 2019-06-18 清华大学 贵金属化合物的制备方法及其应用
CN109980491A (zh) * 2017-12-28 2019-07-05 香港理工大学 可饱和吸收体制备方法、可饱和吸收体及锁模激光器
CN110212025A (zh) * 2019-05-17 2019-09-06 中国科学院上海技术物理研究所 一种基于二硒化铂半导体的场效应管阵列及制备方法
CN110491966A (zh) * 2019-08-28 2019-11-22 合肥工业大学 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法
CN209929312U (zh) * 2019-05-17 2020-01-10 中国科学院上海技术物理研究所 一种基于二硒化铂半导体的场效应管阵列
US20210332469A1 (en) * 2020-04-23 2021-10-28 National Cheng Kung University Method for manufacturing two-dimensional material
CN113823703A (zh) * 2021-11-24 2021-12-21 中国科学院苏州纳米技术与纳米仿生研究所 室温碲化铂阵列太赫兹探测器及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784303A (zh) * 2016-11-17 2017-05-31 南京大学 一种可弯曲的超大不饱和磁阻材料制备方法及制备的材料
CN109980491A (zh) * 2017-12-28 2019-07-05 香港理工大学 可饱和吸收体制备方法、可饱和吸收体及锁模激光器
CN108914062A (zh) * 2018-07-23 2018-11-30 重庆科技学院 一种大面积和图形化过渡金属硫化物薄膜的制备方法
CN109904059A (zh) * 2019-01-16 2019-06-18 清华大学 贵金属化合物的制备方法及其应用
CN110212025A (zh) * 2019-05-17 2019-09-06 中国科学院上海技术物理研究所 一种基于二硒化铂半导体的场效应管阵列及制备方法
CN209929312U (zh) * 2019-05-17 2020-01-10 中国科学院上海技术物理研究所 一种基于二硒化铂半导体的场效应管阵列
CN110491966A (zh) * 2019-08-28 2019-11-22 合肥工业大学 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法
US20210332469A1 (en) * 2020-04-23 2021-10-28 National Cheng Kung University Method for manufacturing two-dimensional material
CN113823703A (zh) * 2021-11-24 2021-12-21 中国科学院苏州纳米技术与纳米仿生研究所 室温碲化铂阵列太赫兹探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王兴悦等: "超高真空条件下分子束外延生长的单层二维原子晶体材料的研究进展", 《物理学报》 *

Similar Documents

Publication Publication Date Title
CN110277468B (zh) 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法
CN103526297B (zh) 一种制备拓扑绝缘体Bi2Se3薄膜的方法
KR100825765B1 (ko) 산화물계 나노 구조물의 제조 방법
US20210039949A1 (en) Method and apparatus for producing a nanometer thick film of black phosphorus
CN112359421B (zh) 一种反向气流法制备层状铋氧硒半导体薄膜的方法
KR101467118B1 (ko) 스퍼터링 방법을 이용한 산화갈륨 나노와이어의 제조 방법
CN110790313A (zh) 一种3r相过渡金属硫属化合物二维纳米片的制备方法
CN109868454B (zh) 一种二维硫化铬材料的制备方法
CN112853290B (zh) 一种大面积二硫化钼薄膜的制备方法
CN109437124B (zh) 一种合成单层过渡金属硫族化合物的方法
CN111620325B (zh) 一种制备石墨烯纳米带阵列的方法
CN101746961A (zh) 在平板玻璃上沉积多晶β-Ga2O3薄膜的方法
KR102109347B1 (ko) 도핑된 금속 칼코게나이드 박막의 제조 방법
CN101339906A (zh) 新型环境半导体光电子材料β-FeSi2薄膜的制备工艺
US20230114347A1 (en) Method of forming transition metal dichalcogenide thin film
Fan et al. Novel micro-rings of molybdenum disulfide (MoS 2)
Uglov et al. Effect of explosive thermal evaporation conditions on the phase composition, crystallite orientation, electrical and magnetic properties of heteroepitaxial InSb films on semi-insulating GaAs (100)
CN111206230B (zh) 一种新型二维硫化铬材料的制备方法
EP3662505B1 (en) Mono- and multilayer silicene prepared by plasma-enhanced chemical vapor deposition
Ullah et al. Continuous large area few layers MoS2 films by pulsed laser deposition and effect of annealing in sulfur environment
CN110616413A (zh) 一种基于原子层沉积工艺的大面积二硫化铪薄膜制备方法
CN114672767A (zh) 一种大尺寸二碲化铂的化学气相沉积制备方法
Huber et al. New CVD-based method for the growth of high-quality crystalline zinc oxide layers
KR20230000470A (ko) 유기금속화학기상증착 방법을 이용한 Bi2O2Se 박막 제조방법 및 이를 위한 전구체
CN115874151A (zh) 一种大面积硫化钯或/和二硫化钯纳米薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220628