CN110491966A - 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法 - Google Patents

碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法 Download PDF

Info

Publication number
CN110491966A
CN110491966A CN201910804843.XA CN201910804843A CN110491966A CN 110491966 A CN110491966 A CN 110491966A CN 201910804843 A CN201910804843 A CN 201910804843A CN 110491966 A CN110491966 A CN 110491966A
Authority
CN
China
Prior art keywords
film
ptte
mapbbr
perovskite monocrystalline
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910804843.XA
Other languages
English (en)
Other versions
CN110491966B (zh
Inventor
梁凤霞
赵兴远
陈红云
罗林保
蒋静静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Hefei Polytechnic University
Original Assignee
Hefei Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Polytechnic University filed Critical Hefei Polytechnic University
Priority to CN201910804843.XA priority Critical patent/CN110491966B/zh
Publication of CN110491966A publication Critical patent/CN110491966A/zh
Application granted granted Critical
Publication of CN110491966B publication Critical patent/CN110491966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法,是在绝缘基底上生长有PtTe2薄膜,在PtTe2薄膜上的局部区域生长有MAPbBr3钙钛矿单晶,PtTe2薄膜与MAPbBr3钙钛矿单晶形成异质结。本发明的光电探测器,制备过程简单、性能稳定、性能好,为过渡族金属碲化物及钙钛矿材料在光电探测器中的应用开拓了新的前景。

Description

碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作 方法
技术领域
本发明属于半导体光电探测器领域,具体涉及一种PtTe2/MAPbBr3钙钛矿单晶异质结光电探测器及其制作方法。
背景技术
有机/无机卤化物钙钛矿材料在过去十年中因其优异的光电性能而受到广泛的研究兴趣,包括长扩散长度、低捕获密度、大吸收系数和多波段光吸收。因具有这些独特的性质,这一组混合卤化物材料作为组装各种光电器件的构件具有很大的潜力,包括发光二极管(LED)、激光器、太阳能电池和光电探测器等。在这些光电子器件中,光电探测器对于它们在基础科学和工业领域的有前景的应用非常重要,例如成像传感、光通信、夜视和环境监测等。利用钙钛矿薄膜可以制备高性能宽波段的光电探测器,其薄膜的制备可通过简单旋涂获得,但其较差的稳定性制约了其进一步应用,通常研究者们通过表面修饰或表面覆膜的方式来提高其稳定性,但同时亦提高了制备成本并且抑制了钙钛矿材料本身的光电性能,因此开始逐渐转向钙钛矿单晶的合成及其光电性能的研究。钙钛矿单晶不仅拥有优异光电性能,而且由于单晶具备较低的缺陷态以及较高的结晶度,使其具备相对较高的稳定性。
二维(2D)层状过渡金属二硫化物(TMD)材料由于独特的厚度依赖性、高载流子迁移率和良好的空气稳定性,而在电子和光电子应用中显示出巨大的潜力。由于这些出色的性能,2D层状TMD(例如MoS2、WS2和PdSe2)已成功与钙钛矿薄膜结合来制作光电探测器,包括光电导体、光电晶体管和光电二极管。这些检测器虽表现出增强的光电导增益和光响应特性,但其性能仍有待进一步提高。相较于传统的TMD半导体材料,PtTe2具有更加优异的导电性能,或可以大幅提高器件载流子传输能力,从而提高器件性能。但是作为特殊的半金属材料,PtTe2能否与钙钛矿材料结合、与何种钙钛矿材料可以结合以及如何结合可以获得高性能的器件,具有重要的研究价值。
发明内容
本发明的目的在于构建碲化铂/甲基氨铅溴钙钛矿单晶异质结制光电探测器,以期可以利用钙钛矿单晶较高的吸光度、高载流子浓度以及较高的稳定性,和碲化铂较高的导电性能及较高的温度性,来制备具有较高稳定性的高性能光电探测器。
本发明解决技术问题,采用如下技术方案:
碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器,其特点在于:是在绝缘基底上生长有PtTe2薄膜,在所述PtTe2薄膜上的局部区域生长有MAPbBr3钙钛矿单晶,所述PtTe2薄膜与所述MAPbBr3钙钛矿单晶形成异质结;在所述绝缘基底还设置有两金属电极,其中一金属电极位于MAPbBr3钙钛矿单晶上,另一金属电极位于未生长MAPbBr3钙钛矿单晶的PtTe2薄膜上。
进一步地,所述PtTe2薄膜的厚度在20-40nm之间。更进一步地,所述PtTe2薄膜是先在绝缘基底上通过电子束蒸发法蒸镀一层5-10nm厚的铂薄膜,再用热辅助转化法,在碲氛围中将铂转化为碲化铂,从而获得PtTe2薄膜。
进一步地,所述MAPbBr3钙钛矿单晶厚度在0.5-3mm之间。更进一步地,所述MAPbBr3钙钛矿单晶是通过溶液法在PtTe2薄膜上生长获得。
进一步地,所述金属电极为Au电极、Ti电极或Ag电极,所述金属电极的厚度为50nm-200nm。
本发明所述碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器的制作方法,包括如下步骤:
A、将绝缘基底依次用丙酮、酒精、去离子水超声清洗后,吹干备用;
B、在绝缘基底上通过电子束蒸镀法,在真空度6.7×10-3Pa以下,蒸镀一层5-10nm厚的铂薄膜;
C、将表面覆盖有铂薄膜的绝缘基底放入双温区管式炉的右温区,将盛有0.1g纯度为99.99%的碲粉的瓷舟放入双温区管式炉的左温区;通入流量为50sccm的氩氢混合气为保护气体,将左温区升温至250℃,将右温区升温至500-560℃,保持管式炉内压强为20Pa;维持反应条件1h之后,关闭双温区管式炉的加热系统,继续通入流量为50sccm的氩氢混合气,等待双温区管式炉冷却至室温时取出绝缘基底,即在绝缘基底表面生长有厚度在20-40nm之间的PtTe2薄膜;
D、将PtTe2薄膜上不需生长MAPbBr3钙钛矿单晶的区域覆盖;
将MABr和PbBr2按摩尔比1:1溶于DMF溶液中,获得二者摩尔浓度皆为0.5mol/L的前驱体溶液;然后将覆盖后的绝缘基底水平浸放在所述前驱体溶液中,80℃下保温6-12h,即在未覆盖区域生长出0.5-3mm厚的MAPbBr3钙钛矿单晶;
E、将不需蒸镀金属电极的区域覆盖,然后通过电子束蒸发法在绝缘基底上蒸镀两金属电极,其中一金属电极位于MAPbBr3钙钛矿单晶上,另一金属电极位于未生长MAPbBr3钙钛矿单晶的PtTe2薄膜上,即完成光电探测器的制备。
与已有技术相比,本发明的有益效果体现在:
1、本发明基于PtTe2薄膜和MAPbBr3钙钛矿单晶的异质结光电探测器,器件制备过程简单、性能稳定、性能良好,为过渡族金属碲化物和钙钛矿单晶材料在光电探测器中的应用开拓了新的前景。
2、本发明选用PtTe2,其具有较高的稳定性和优异的导电性能,从而提高了器件的光电性能。
3、本发明的光电探测器,MAPbBr3钙钛矿单晶在紫外可见光范围内具有较高吸收系数、较高的载流子浓度以及较高的稳定性,与PtTe2协同,因此制备的器件性能好,稳定性高。
4、本发明中的PtTe2薄膜和MAPbBr3钙钛矿单晶异质结光电探测器可以工作于零电压下,无需消耗外部能量,因而可有效降低功耗。
附图说明
图1为PtTe2/MAPbBr3钙钛矿单晶异质结制光电探测器的结构示意图,其中:1为PtTe2薄膜,2为MAPbBr3钙钛矿单晶,3为金属电极,4为绝缘基底。
图2为本发明实施例1中所得光电探测器在黑暗条件下的电流-电压特性曲线。
图3为本发明实施例1中所得光电探测器在黑暗条件下和520nm波长(11.5mW/cm2)光照下的电流-电压特性曲线。
图4为本发明实施例1中所得光电探测器在零工作电压下,在520nm波长(11.5mW/cm2)光照下的时间电流响应。
图5为本发明实施例1中所得光电探测器在5伏工作电压下,在520nm波长(11.5mW/cm2)光照下的时间电流响应。
具体实施方式
下面结合附图对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1所示,PtTe2/MAPbBr3钙钛矿单晶异质结光电探测器,是在绝缘基底4上生长有PtTe2薄膜1,在PtTe2薄膜1上的局部区域生长有MAPbBr3钙钛矿单晶2,PtTe2薄膜1与MAPbBr3钙钛矿单晶2形成异质结;在绝缘基底4还设置有两金属电极3,其中一金属电极位于MAPbBr3钙钛矿单晶上,另一金属电极位于未生长MAPbBr3钙钛矿单晶的PtTe2薄膜上。
进一步地,本实施例中所用绝缘基底为氧化硅片,所用金属电极为50nm金电极。
本实施例光电探测器的制作方法,包括如下步骤:
A、将氧化硅片依次用丙酮、酒精、去离子水超声清洗后,吹干备用。
B、在氧化硅片上通过电子束蒸镀法,在真空度6.7×10-3Pa以下,蒸镀一层8nm厚的铂薄膜;
C、将表面覆盖有铂薄膜的氧化硅片放入双温区管式炉的右温区,将盛有0.1g纯度为99.99%的碲粉的瓷舟放入双温区管式炉的左温区;通入流量为50sccm的氩氢混合气(氢气体积百分比占5%)为保护气体,将左温区升温至250℃,将右温区升温至550℃,保持管式炉内压强为20Pa;维持反应条件1h之后,关闭双温区管式炉的加热系统,继续通入流量为50sccm的氩氢混合气,等待双温区管式炉冷却至室温时取出绝缘基底,即在绝缘基底表面生长有厚度在32-35nm之间的PtTe2薄膜;
D、将PtTe2薄膜上不需生长MAPbBr3钙钛矿单晶的区域粘上胶带覆盖;
将MABr和PbBr2按摩尔比1:1溶于DMF溶液中,获得二者摩尔浓度皆为0.5mol/L的前驱体溶液;然后将覆盖后的氧化硅片水平浸放在所述前驱体溶液中,80℃下保温6h,即在未覆盖区域生长出2-3mm厚的MAPbBr3钙钛矿单晶;
E、将不需蒸镀金属电极的区域用铜箔覆盖,然后通过电子束蒸发法在绝缘基底上蒸镀两50nm的金电极,其中一金电极位于MAPbBr3钙钛矿单晶上,另一金电极位于未生长MAPbBr3钙钛矿单晶的PtTe2薄膜上,即完成PtTe2/MAPbBr3钙钛矿单晶异质结光电探测器的制备。
本实施例所制备的PtTe2/MAPbBr3钙钛矿单晶异质结光电探测器在黑暗下的电流-电压特性曲线如图2所示,从图中可以看出探测器具有明显的整流特性,整流比约等于10。
本实施例所制备的PtTe2/MAPbBr3钙钛矿单晶异质结光电探测器在黑暗下和波长为520nm、强度为11.5mW/cm2的光照下的电流-电压特性曲线如图3所示,从图中可以看出探测器在正向偏压下具有明显的光电响应特性。
本实施例所制备的PtTe2/MAPbBr3钙钛矿单晶异质结光电探测器在零工作电压下,在波长为520nm、强度为11.5mW/cm2的光照下的时间响应曲线如图4所示,从图中可以看出探测器对被探测光非常敏感,且具有超快的响应速度。此外制备的PtTe2/MAPbBr3钙钛矿单晶异质结光电探测器在零工作电压下可以正常工作,可有效降低器件功耗。
本实施例所制备的PtTe2/MAPbBr3单晶异质结光电探测器在5V工作电压下,在波长为520nm、强度为11.5mW/cm2的光照下的时间响应曲线如图5所示,从图中可以看出探测器具有较快的响应速度,电流开关比约为15,且在正向偏压下有明显的光响应。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器,其特征在于:是在绝缘基底上生长有PtTe2薄膜,在所述PtTe2薄膜上的局部区域生长有MAPbBr3钙钛矿单晶,所述PtTe2薄膜与所述MAPbBr3钙钛矿单晶形成异质结;在所述绝缘基底还设置有两金属电极,其中一金属电极位于MAPbBr3钙钛矿单晶上,另一金属电极位于未生长MAPbBr3钙钛矿单晶的PtTe2薄膜上。
2.根据权利要求1所述的碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器,其特征在于:所述PtTe2薄膜的厚度在20-40nm之间。
3.根据权利要求1或2所述的碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器,其特征在于:所述PtTe2薄膜是先在绝缘基底上通过电子束蒸发法蒸镀一层5-10nm厚的铂薄膜,再用热辅助转化法,在碲氛围中将铂转化为碲化铂,从而获得PtTe2薄膜。
4.根据权利要求1所述的碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器,其特征在于:所述MAPbBr3钙钛矿单晶厚度在0.5-3mm之间。
5.根据权利要求1所述的碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器,其特征在于:所述MAPbBr3钙钛矿单晶是通过溶液法在PtTe2薄膜上生长获得。
6.根据权利要求1所述的碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器,其特征在于:所述金属电极为Au电极、Ti电极或Ag电极,所述金属电极的厚度为50nm-200nm。
7.一种权利要求1~5中任意一项所述光电探测器的制作方法,其特征在于,包括如下步骤:
A、将绝缘基底依次用丙酮、酒精、去离子水超声清洗后,吹干备用;
B、在绝缘基底上通过电子束蒸镀法,在真空度6.7×10-3Pa以下,蒸镀一层5-10nm厚的铂薄膜;
C、将表面覆盖有铂薄膜的绝缘基底放入双温区管式炉的右温区,将盛有0.1g纯度为99.99%的碲粉的瓷舟放入双温区管式炉的左温区;通入流量为50sccm的氩氢混合气为保护气体,将左温区升温至250℃,将右温区升温至500-560℃,保持管式炉内压强为20Pa;维持反应条件1h之后,关闭双温区管式炉的加热系统,继续通入流量为50sccm的氩氢混合气,等待双温区管式炉冷却至室温时取出绝缘基底,即在绝缘基底表面生长有厚度在20-40nm之间的PtTe2薄膜;
D、将PtTe2薄膜上不需生长MAPbBr3钙钛矿单晶的区域覆盖;
将MABr和PbBr2按摩尔比1:1溶于DMF溶液中,获得二者摩尔浓度皆为0.5mol/L的前驱体溶液;然后将覆盖后的绝缘基底水平浸放在所述前驱体溶液中,80℃下保温6-12h,即在未覆盖区域生长出0.5-3mm厚的MAPbBr3钙钛矿单晶;
E、将不需蒸镀金属电极的区域覆盖,然后通过电子束蒸发法在绝缘基底上蒸镀两金属电极,其中一金属电极位于MAPbBr3钙钛矿单晶上,另一金属电极位于未生长MAPbBr3钙钛矿单晶的PtTe2薄膜上,即完成光电探测器的制备。
CN201910804843.XA 2019-08-28 2019-08-28 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法 Active CN110491966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910804843.XA CN110491966B (zh) 2019-08-28 2019-08-28 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910804843.XA CN110491966B (zh) 2019-08-28 2019-08-28 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法

Publications (2)

Publication Number Publication Date
CN110491966A true CN110491966A (zh) 2019-11-22
CN110491966B CN110491966B (zh) 2021-05-04

Family

ID=68554998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910804843.XA Active CN110491966B (zh) 2019-08-28 2019-08-28 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法

Country Status (1)

Country Link
CN (1) CN110491966B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310238A (zh) * 2020-10-27 2021-02-02 合肥工业大学 基于二维碲化铂纳米薄膜与硅的自驱动肖特基结型超宽波段光电探测器及其制备方法
CN114672767A (zh) * 2022-04-14 2022-06-28 南京大学 一种大尺寸二碲化铂的化学气相沉积制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108217608A (zh) * 2017-12-27 2018-06-29 中国科学院化学研究所 二维材料纳米卷及其制备方法和应用
WO2018134581A1 (en) * 2017-01-18 2018-07-26 The University Of Manchester Inkjet printed electronic devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134581A1 (en) * 2017-01-18 2018-07-26 The University Of Manchester Inkjet printed electronic devices
CN108217608A (zh) * 2017-12-27 2018-06-29 中国科学院化学研究所 二维材料纳米卷及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASHIYAT SUMAIYA SHAWKAT ET.AL.: ""Two一Dimensional/Three-Dimensional Schottky Junction Photovoltaic Devices Realized by the Direct CVD Growth of vdW 2D PtSe2 Layers on silicon"", 《APPLIED MATERIALS》 *
韩娜等: ""二维层状钙钛矿材料及其应用研究进展"", 《激光与光电子学进展》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310238A (zh) * 2020-10-27 2021-02-02 合肥工业大学 基于二维碲化铂纳米薄膜与硅的自驱动肖特基结型超宽波段光电探测器及其制备方法
CN114672767A (zh) * 2022-04-14 2022-06-28 南京大学 一种大尺寸二碲化铂的化学气相沉积制备方法

Also Published As

Publication number Publication date
CN110491966B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
Nguyen et al. Transparent photovoltaic cells and self-powered photodetectors by TiO2/NiO heterojunction
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
CN110165000B (zh) 一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器及其制备方法
Cao et al. Novel perovskite/TiO 2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors
Ismail et al. A new route for fabricating CdO/c-Si heterojunction solar cells
Mahdi et al. Growth and characterization of CdS single-crystalline micro-rod photodetector
CN109461790A (zh) 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法
Periasamy et al. Large-area and nanoscale n-ZnO/p-Si heterojunction photodetectors
US3978510A (en) Heterojunction photovoltaic devices employing i-iii-vi compounds
CN101853894B (zh) 一种纳米线异质结阵列基紫外光探测器及其制备方法
Zhou et al. The investigation of Al-doped ZnO as an electron transporting layer for visible-blind ultraviolet photodetector based on n-ZnO nanorods/p-Si heterojunction
Xie et al. High-performance quasi-solid-state photoelectrochemical-type ultraviolet photodetector based on ZnO nanowire arrays
Diachenko et al. The influence of optical and recombination losses on the efficiency of thin-film solar cells with a copper oxide absorber layer
Kim et al. Cu4O3-based all metal oxides for transparent photodetectors
Mohammadi et al. High performance n-ZnO/p-metal-oxides UV detector grown in low-temperature aqueous solution bath
Rana et al. Influence of N2 flow rate on UV photodetection properties of sputtered p-ZnO/n–Si heterojuctions
CN110491966A (zh) 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法
Dong et al. Semi-transparent, high-performance lead-free Cs3Bi2I9 single crystal self-driven photodetector
Fang et al. Band offset and an ultra-fast response UV-VIS photodetector in γ-In 2 Se 3/p-Si heterojunction heterostructures
Zhou et al. Self-powered heterojunction photodetector based on thermal evaporated p-CuI and hydrothermal synthesised n-TiO 2 nanorods
Zhang et al. Ultra-broadband, self-powered and high performance vertical WSe2/AlOx/Ge heterojunction photodetector with MXene electrode
Liu et al. High-performance self-driven ultraviolet photodetector based on SnO2 pn homojunction
Wang et al. High-sensitivity silicon: PbS quantum dot heterojunction near-infrared photodetector
Ghosh et al. High performance broad-band ultraviolet-B to visible photodetection based on planar Al-Zn2SnO4-Al structure
Qi et al. Enhanced Ultraviolet Detection by Constructing Ga 2 O 3/TiO 2 Heterojunction Photodiode Featuring Weak Light Signal Sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant