CN110277468B - 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法 - Google Patents

一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法 Download PDF

Info

Publication number
CN110277468B
CN110277468B CN201910561872.8A CN201910561872A CN110277468B CN 110277468 B CN110277468 B CN 110277468B CN 201910561872 A CN201910561872 A CN 201910561872A CN 110277468 B CN110277468 B CN 110277468B
Authority
CN
China
Prior art keywords
graphene
substrate
telluride
dimensional
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910561872.8A
Other languages
English (en)
Other versions
CN110277468A (zh
Inventor
杨志远
赵莉莉
张飒飒
赵显�
左致远
李志强
程秀凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201910561872.8A priority Critical patent/CN110277468B/zh
Publication of CN110277468A publication Critical patent/CN110277468A/zh
Application granted granted Critical
Publication of CN110277468B publication Critical patent/CN110277468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法,该方法在半导体衬底上镀复合金属,然后合金化,通入碳源气体,通过复合金属薄膜的金属通道引入外部碳源生长石墨烯,制备出大尺寸高品质石墨烯,再利用CVD法制备出较大面积的碲化物,形成范德瓦耳斯异质结;通过微电子器件工艺制作碲化物基背栅场效应晶体管,然后器件经过退火处理得到大尺寸石墨烯/二维碲化物异质结红外光电探测器。本发明的制备方法可以避免传统CVD方法转移过程中对二维材料的破坏,能够得到质量更好的范德瓦耳斯异质结,从而使得近红外光电探测器质量更好、更稳定,并且得到的器件具有显著的光响应,具有较高的比探测率、响应率以及快的探测速度。

Description

一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制 备方法
技术领域
本发明涉及一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法,属于半导体光电器件技术领域。
背景技术
光电探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。由于现代军事对精确作战情报的需要,光电探测器在此发挥了它极大的优势。传统的红外光电探测器一般由某些窄带隙半导体如铟镓砷、碲镉汞等制成。但是,这些光电探测器的应用受到其复杂的制备工艺、高成本和低温操作条件的限制。
与传统的块状半导体材料相比,二维材料更适合于制备光电探测器:首先,二维材料的宽光谱响应可以为设计在不同波长下工作的光电探测器提供更大的灵活性;其次,二维材料表面上的自由悬键使得它们可以与其他半导体结合,克服晶格的限制;第三,二维材料的强光物质相互作用提供了设计小型化红外光电探测器的可能性,这在传统的基于块状半导体的红外光电探测器中很难实现。鉴于上述优点,二维材料为高性能红外光电探测器的制备提供了理想的设计平台。
近年来,随着能够稳定存在的二维材料石墨烯被两位曼彻斯特大学教授发现,石墨烯作为FETs沟道材料所展现出来独特的光电性能,迅速成为了光电探测器的研究热点,但是,由于理想的石墨烯带隙为零,开关比低,关态电流却很高,极大的限制了石墨烯在高性能、低功耗器件中的应用。
碲化物特别是碲化钼和碲化铟因其吸收范围宽、光电响应快响应快,是FETs的理想沟道材料;但目前碲化钼和碲化铟的制备主要是剥离和化学液相合成,尺寸小,纯度低。
有必要寻找一种更合适的二维材料来与石墨烯进行复合,甚至代替石墨烯,因此,通过通过构建石墨烯异质结结构或许可以进一步增强其光电探测性能。
发明内容
本发明针对现有技术存在的问题,提供一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法。
发明简述:
本发明在半导体衬底上镀铜镍复合金属,然后高温加热使其表面变成铜镍合金,然后在CVD工艺的生长温度下,通入碳源,通过复合金属薄膜的金属通道引入外部碳源生长石墨烯,降温后在衬底上制备出大尺寸高品质石墨烯,避免了传统CVD方法转移过程;再利用CVD法在石墨烯上制备出较大面积的碲化物,形成范德瓦耳斯异质结;然后通过微电子器件工艺制作碲化物基背栅场效应晶体管,器件经过退火处理得到石墨烯/二维碲化物异质结红外光电探测器。本发明的制备方法可以避免传统CVD方法转移过程中对二维材料的破坏,能够得到质量更好的范德瓦耳斯异质结,从而使得红外光电探测器质量更好、更稳定。
术语解释:
电子束蒸发:将蒸发材料置于水冷坩埚中,利用电子束直接加热使蒸发材料汽化并在衬底上凝结形成薄膜。
等离子体溅射:用直流或射频的方法使稀有气体电离成等离子体,再通过偏置等方法轰击靶材,使靶上的原子有足够的能力脱离出来,落在基板上,形成薄膜。
发明详述:
本发明是通过如下技术方案实现的:
一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法,包括如下步骤:
(1)提供一半导体衬底,对半导体衬底清洗、除杂、干燥,得到除杂后衬底;
(2)在除杂后衬底表面沉积一层厚度为100~800nm的溶碳、析碳的金属,然后在沉积的金属表面沉积一层厚度为10~100nm的金属铜,得半导体/复合金属复合衬底;
(3)将步骤(2)得到的半导体/复合金属复合衬底置于CVD炉腔中,金属面朝上,预处理后,炉腔抽真空,快速升温至600-700℃,保温1~5min,然后通入高纯氩气,压力控制在100~300mbar,继续升温至950-1150℃,保温10-30min,复合金属在半导体衬底表面形成合金;
然后通入高纯氢气和外部碳源气体,压力控制在100-300mbar,保温10-30min进行生长石墨烯;
石墨烯生长完成后,关闭碳源气体和氢气,继续通高纯氩气,快速降温至600-700℃,然后自然降温到室温,在半导体衬底与金属夹层中生长出石墨烯;
(4)将步骤(3)生长出石墨烯的半导体/复合金属复合衬底除去复合金属,清洗,干燥,得到生长石墨烯的半导体衬底;
(5)将生长石墨烯的半导体衬底平放到双温区CVD管式炉中下游区的石英舟中,石墨烯面朝上,旁边放入MoO3粉或In2O3粉;在上游区的石英舟中放入碲粉,对双温区CVD管式炉抽真空,通入高纯氩气和高纯氢气,压力控制在100-300mbar;上游区升温至700-800℃,下游区升温至600-800℃,保温生长10-60min;生长完成后,继续通高纯氩气和高纯氢气,自然降温到室温,在生长石墨烯的半导体衬底上生长出碲化物,与石墨烯形成范德瓦耳斯异质结,得到石墨烯/二维碲化物异质结衬底;
(6)将步骤(5)石墨烯/二维碲化物异质结衬底,在石墨烯/二维碲化物异质结衬底上制作石墨烯/二维碲化物异质结背栅场效应晶体管,然后退火处理,得到大尺寸石墨烯/二维碲化物异质结红外光电探测器。
根据本发明优选的,步骤(1)中,所述的半导体衬底为表面覆有300nm厚SiO2的N型Si片或N型轻掺杂锗片(Ge)或N型轻掺杂砷化镓(GaAs)。
根据本发明优选的,步骤(1)中,所述的清洗为将衬底依次放入丙酮、酒精、去离子水进行超声清洗。
本发明优选的,步骤(2)中,溶碳、析碳的金属为金属镍,厚度为400-600nm,金属铜的厚度为20-50nm,使得铜镍的质量比为1:10-1:5000。
本发明优选的,步骤(2)中,所述的沉积为采用电子束蒸发、热蒸发或等离子体溅射沉积。
本发明所述制备方法中,步骤(3)所述的预处理为:先用机械泵和分子泵对炉腔抽真空度至10-4Pa,并升温至1200-1300℃,对半导体/复合金属复合衬底及反应腔体内部进行预烘烤,使半导体/复合金属复合衬底表面及腔体内部吸附的气体脱附并排出腔体。经过预处理后以达到降低腔体内残余氧含量并且进一步提升真空度。
本发明优选的,步骤(3)中,炉腔抽真空真空度为10-4-10-6Pa,升温至600-700℃的升温速率为300-600℃/min。
本发明优选的,步骤(3)中,高纯氩气通入流量为10-100sccm。
本发明优选的,步骤(3)中,升温至950-1150℃的升温速率为10-60℃/min。
本发明优选的,步骤(3)中,高纯氢气通入流量为4-20sccm;高纯氩气、高纯氢气为5N以上的氩气、氢气。
本发明优选的,步骤(3)中外部碳源气体为5N及以上的CH4或C3H8气体,外部碳源气体的通入流量为1-20sccm。
本发明优选的,步骤(3)中继续通氩气的通入流量为10-100sccm,压力控制在100-300mbar,降温至600-700℃的降温速率为600-900℃/min。
本发明优选的,步骤(4)中,除去复合金属为:将生长出石墨烯的半导体/复合金属复合衬底放入1mol/L的FeCl3与硝酸(FeCl3与硝酸质量比为1:1)混合溶液中,浸泡2h-10h,除去复合金属;所述的清洗、干燥为:用载玻片捞出衬底到去离子水中,分别去离子水、酒精进行清洗,最后用氮气枪吹干。
本发明优选的,步骤(5)中,MoO3粉的放入量为10-20mg,In2O3粉的放入量为15-30mg,当放入MoO3粉时,碲粉的放入量为20-40mg;当放入In2O3粉时,碲粉的放入量为30-50mg。
本发明优选的,步骤(5)中,抽真空真空度为10-4-10-6Pa。
本发明优选的,步骤(5)中,高纯氩气通入流量为2-100sccm,高纯氢气通入流量为1-20sccm,上游区、下游区升温速率分别为10-30℃/min,下游区升温速率为10-30℃/min;高纯氩气、高纯氢气为5N以上的氩气、氢气。
本发明优选的,步骤(6)中,上制作石墨烯/二维碲化物异质结背栅场效应晶体管包括样品图形化和金属电极制备,具体如下:首先制备定位用标记(mark),在mark点区域找到要曝光的样品区域;在样品上,旋涂一层电子束光刻胶PMMA;利用记录的定位坐标进行源漏电极图案的曝光,显影后,采用电子束蒸发系统进行20nmTi金属的沉积,之后采用磁控溅射系统进行100nmAu金属的沉积进行制作金属电极,经过lift-off工艺后,得到背栅场效应晶体管器件。
本发明优选的,步骤(6)中退火处理在通有高纯Ar和H2的管式炉中进行,退火温度为200℃,退火时间2h。退火处理去除残余的电子束光刻胶PMMA,改善器件电极接触。
本发明方法中所有原料均为市售产品。没有特别限定的部分均可参照现有技术。
本发明的技术特点及优良效果在于:
1、本发明的制备方法在半导体衬底上镀铜镍复合金属,然后高温加热使其表面变成铜镍合金,然后在CVD工艺的生长温度下,通入碳源,通过复合金属薄膜的金属通道引入外部碳源生长石墨烯,降温时制备出大尺寸高品质石墨烯,可以避免传统CVD方法转移过程;再利用CVD法制备出较大面积的碲化物,形成范德瓦耳斯异质结;通过微电子器件工艺制作碲化物基背栅场效应晶体管,然后器件经过退火处理得到二维碲化物异质结红外光电探测器件。本发明的制备碲化物/石墨烯异质结方法可以避免传统CVD方法转移过程中对二维材料的破坏,能够得到质量更好的范德瓦耳斯异质结,从而使得近红外光电探测器质量更好、更稳定。
2、本发明的制备方法工艺简单、成本低廉,二维过渡金属硫族化合物(2D-TMDCs)半导体材料因其拥有1-2eV天然带隙弥补了石墨烯的缺陷。
3、本发明得到的大尺寸石墨烯/二维碲化物异质结红外光电探测器具有显著的光响应,具有较高的比探测率、响应率以及快的探测速度。
附图说明
图1为本发明大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法的工艺流程图。
图2为本发明实施例1步骤(4)制得的石墨烯的拉曼图。横坐标是拉曼位移(cm-1),纵坐标是强度(a.u.)。
图3为实施例1、实施例2的步骤(5)生长得到碲化物的SEM图。图中a是实施例1步骤(5)生长得到碲化物的SEM图,b是实施例2步骤(5)生长得到碲化物的SEM图。
图4为实施例1制得的大尺寸石墨烯/二维碲化物异质结与石墨烯的光谱响应曲线。
图5为实施例1制得的大尺寸石墨烯/二维碲化物异质结光电探测器件在不同光强下的I-V曲线图,a图为波长为405nm的I-V曲线图,b图为波长是625nm的I-V曲线图。
图6为实施例1制得的大尺寸石墨烯/二维碲化物异质结光电探测器件在不同光功率密度下的光电流密度。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明的保护范围不限于此。
实施例中所用双温区CVD炉为OTF-1200型CVD炉,加热速率可到30℃/min,降温速率最快可到300℃/min。
冷壁式CVD快速生长炉,现有技术,市场购得,加热速率可到1200℃/min,降温速率最快可到1000℃/min。
实施例1:
一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法,加工工艺流程如图1所示,包括如下步骤:
(1)将大小为100mm2的表面覆有300nm厚SiO2的N型Si片,依次放入丙酮、酒精、去离子水进行超声清洗,去除表面杂质,放入真空干燥箱得到除杂后的半导体衬底;
(2)将步骤(1)清洗干净的半导体衬底采用热蒸发蒸沉积上一层厚度为400nm金属镍,然后再采用等离子体溅射沉积一层厚度为20nm金属铜,得半导体/复合金属复合衬底;
(3)将步骤(2)半导体/复合金属复合衬底平放在冷壁式CVD快速生长炉样品台上,金属面朝上,排出气体预处理后,用机械泵和分子泵抽真空至10-4Pa,快速升温至600℃,升温速率为600℃/min,保温2min;通入高纯氩气,流量为20sccm,压力控制在200mbar,然后升温至1080℃,升温速率为60℃/min,复合金属在半导体衬底表面形成合金;
通入高纯氢气和甲烷碳源气体,流量分别为10sccm和5sccm,压力控制在200mbar,保温20min;进行生长石墨烯;
石墨烯生长完成后,关闭甲烷气体和氢气,继续通氩气,流量为40sccm,压力控制在200mbar,快速降温至700℃,降温速率为600℃/min;然后自然降温到室温,在SiO2/Si半导体衬底跟金属夹层中生长出石墨烯;
(4)将步骤(3)生长出石墨烯的SiO2/Si晶片/镍复合衬底放入1mol/L的FeCl3与硝酸(FeCl3与硝酸质量比为1:1)中,浸泡6h,除去复合金属;用载玻片捞出衬底到去离子水中,分别去离子水、酒精进行清洗,最后用氮气枪吹干,得到生长石墨烯的半导体衬底;生长出的石墨烯拉曼图如图2所示;
(5)将生长石墨烯的半导体衬底平放到双温区CVD管式炉中下游区的石英舟中,石墨烯面朝上,旁边放入20mg的MoO3粉;在上游区的石英舟中加入40mg的碲粉;用机械泵和分子泵抽真空至10-4Pa,抽取20min;通入高纯氩气和高纯氢气,流量分别为80sccm和10sccm,压力控制在200mbar,上游区升温至780℃,升温速率为10℃/min,下游区升温至750℃,升温速率为10℃/min,生长时间20min;生长完成后,继续高纯氩气和高纯氢气,流量均为30sccm,生长石墨烯的半导体衬底上生长出碲化钼,与石墨烯形成范德瓦耳斯异质结,得到石墨烯/碲化钼异质结衬底;
(6)将步骤(5)石墨烯/碲化钼异质结衬底,通过样品图形化和金属电极制备等微电子器件工艺制作石墨烯/碲化钼异质结背栅场效应晶体管,然后为了去除残余的电子束光刻胶PMMA,改善器件电极接触,进行退火处理,整个过程在通有高纯Ar和H2的管式炉中进行,退火温度为200℃,退火时间2h,得到大尺寸石墨烯/二维碲化钼异质结红外光电探测器。
实施例2:
一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法,包括如下步骤:
(1)将大小为100mm2的表面覆有300nm厚SiO2的N型Si片,依次放入丙酮、酒精、去离子水进行超声清洗,去除表面杂质,放入真空干燥箱得到除杂后的半导体衬底;
(2)将步骤(1)清洗干净的半导体衬底采用热蒸发蒸沉积上一层厚度为400nm金属镍,然后再采用等离子体溅射沉积一层厚度为20nm金属铜,得半导体/复合金属复合衬底;
(3)将步骤(2)半导体/复合金属复合衬底平放在冷壁式CVD快速生长炉样品台上,金属面朝上,排出气体预处理后,用机械泵和分子泵抽真空至10-4Pa,快速升温至600℃,升温速率为600℃/min,保温2min;通入高纯氩气,流量为20sccm,压力控制在200mbar,然后升温至1080℃,升温速率为60℃/min,复合金属在半导体衬底表面形成合金;
通入高纯氢气和甲烷碳源气体,流量分别为10sccm和5sccm,压力控制在200mbar,保温20min;进行生长石墨烯;
石墨烯生长完成后,关闭甲烷气体和氢气,继续通氩气,流量为40sccm,压力控制在200mbar,快速降温至700℃,降温速率为600℃/min;然后自然降温到室温,在SiO2/Si半导体衬底跟金属夹层中生长出石墨烯;
(4)将步骤(3)生长出石墨烯的SiO2/Si晶片/镍复合衬底放入1mol/L的FeCl3与硝酸(FeCl3与硝酸质量比为1:1)中,浸泡8h,除去复合金属;用载玻片捞出衬底到去离子水中,分别去离子水、酒精进行清洗,最后用氮气枪吹干,得到生长石墨烯的半导体衬底;
(5)将生长石墨烯的半导体衬底平放到双温区CVD管式炉中下游区的石英舟中,石墨烯面朝上,旁边放入30mg的In2O3粉;在上游区的石英舟中加入50mg的碲粉;用机械泵和分子泵抽真空至10-4Pa,抽取20min;通入高纯氩气和高纯氢气,流量分别为80sccm和10sccm,压力控制在200mbar,上游区升温至780℃,升温速率为10℃/min,下游区升温至650℃,升温速率为10℃/min,生长时间15min;生长完成后,继续高纯氩气和高纯氢气,流量均为30sccm,生长石墨烯的半导体衬底上生长出碲化铟,与石墨烯形成范德瓦耳斯异质结,得到石墨烯/碲化铟异质结衬底;
(6)将步骤(5)石墨烯/碲化铟异质结衬底,通过样品图形化和金属电极制备等微电子器件工艺制作石墨烯/碲化铟异质结背栅场效应晶体管,然后为了去除残余的电子束光刻胶PMMA,改善器件电极接触,进行退火处理,整个过程在通有高纯Ar和H2的管式炉中进行,退火温度为200℃,退火时间2h,得到大尺寸石墨烯/二维碲化铟异质结红外光电探测器。
实验例:
对上述实施例1-2的产品进行检测实验。
实施例1所述步骤(4)生长得到石墨烯的拉曼谱图如图2所示。由图2可以看出,实施例1生长得到石墨烯的拉曼特征峰2D峰和G峰都很明显,通过综合分析拉曼谱图中D峰和G峰的比值(IG/I2D=2)以及2D峰半峰宽FWHM的数值,得到石墨烯的层数为1-2层;同样实施例2类似。半峰宽与层数对应公式:FWHM=(-45×(1/n))+88(n为石墨烯层数)。
实施例1、实施例2步骤(5)生长得到碲化物的SEM图如图3所示,a是实施例1步骤(5)生长得到碲化物的SEM图,b是实施例2步骤(5)生长得到碲化物的SEM图,从图3中可以看出实施例1可以生长出六角形状的碲化钼,大小可达100-150μm;实施例2可以生长出规则的六角形状的碲化铟,大小可达100-150μm;并且碲化物的质量都很好。
为了进一步观察光电探测器在不同光谱内的响应情况,对器件的光谱响应进行了测试,实施例1生长得到的大尺寸石墨烯/二维碲化物异质结与石墨烯的光谱响应曲线如图4所示。结果表明器件在很宽的光谱内都有吸收,在240nm-2650nm都具有明显的吸收峰,在2600nm\850nm、1050nm和500nm左右吸收强度较大;跟纯的石墨烯的吸收峰比较可以看出,吸收峰的范围明显变宽,弥补了单石墨烯光电探测器吸收峰少的不足。
图5实施例1中大尺寸石墨烯/二维碲化物异质结光电探测器件在不同光强下的I-V曲线,图5a波长为405nm,图5b波长是625nm。波长为405nm、625nm下,都是随着功率的增强,反向I-V曲线不断下移。在零伏偏压下,通过测量不同光功率下的光电流,绘制出了在不同光功率密度下的光电流密度曲线(图6),从图6可以看出,随着光功率的增强,光电流也随之增加。接着对数据进行了拟合发现线性度可以达到0.98,计算得到35mWcm-2下的LDR为188.2dB。
综上所述,使用本发明的二维碲化物异质结近红外光电探测器及其制备方法,可以在市售的无极半导体衬底上用传统的CVD法制备出高质量的石墨烯/碲化物范德瓦耳斯异质结,通过传统的微电子器件工艺制作二维碲化物异质结红外光电探测器件,相比纯石墨烯的光电探测器响应度更好、响应范围更宽,且质量稳定,优势显著。

Claims (10)

1.一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法,包括如下步骤:
(1)提供一半导体衬底,对半导体衬底清洗、除杂、干燥,得到除杂后衬底;
(2)在除杂后衬底表面沉积一层厚度为100~800nm的溶碳、析碳的金属,然后在沉积的金属表面沉积一层厚度为10~100nm的金属铜,得半导体/复合金属复合衬底;
(3)将步骤(2)得到的半导体/复合金属复合衬底置于CVD炉腔中,金属面朝上,预处理后,炉腔抽真空,快速升温至600-700℃,保温1~5min,然后通入高纯氩气,压力控制在100~300mbar,继续升温至950-1150℃,保温10-30min,复合金属在半导体衬底表面形成合金;
然后通入高纯氢气和外部碳源气体,压力控制在100-300mbar,保温10-30min进行生长石墨烯;
石墨烯生长完成后,关闭碳源气体和氢气,继续通高纯氩气,快速降温至600-700℃,然后自然降温到室温,在半导体衬底与金属夹层中生长出石墨烯;
(4)将步骤(3)生长出石墨烯的半导体/复合金属复合衬底除去复合金属,清洗,干燥,得到生长石墨烯的半导体衬底;
(5)将生长石墨烯的半导体衬底平放到双温区CVD管式炉中下游区的石英舟中,石墨烯面朝上,旁边放入MoO3粉或In2O3粉;在上游区的石英舟中放入碲粉,对双温区CVD管式炉抽真空,通入高纯氩气和高纯氢气,压力控制在100-300mbar;上游区升温至700-800℃,下游区升温至600-800℃,保温生长10-60min;生长完成后,继续通高纯氩气和高纯氢气,自然降温到室温,在生长石墨烯的半导体衬底上生长出碲化物,与石墨烯形成范德瓦耳斯异质结,得到石墨烯/二维碲化物异质结衬底;
(6)将步骤(5)石墨烯/二维碲化物异质结衬底,在石墨烯/二维碲化物异质结衬底上制作石墨烯/二维碲化物异质结背栅场效应晶体管,然后退火处理,得到大尺寸石墨烯/二维碲化物异质结红外光电探测器。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述的半导体衬底为表面覆有300nm厚SiO2的N型Si片或N型轻掺杂锗片(Ge)或N型轻掺杂砷化镓(GaAs);所述的清洗为将衬底依次放入丙酮、酒精、去离子水进行超声清洗。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,溶碳、析碳的金属为金属镍,厚度为400-600nm,金属铜的厚度为20-50nm,使得铜镍的质量比为1:10-1:5000;所述的沉积为采用电子束蒸发、热蒸发或等离子体溅射沉积。
4.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述的预处理为:先用机械泵和分子泵对炉腔抽真空度至10-4Pa,并升温至1200-1300℃,对半导体/复合金属复合衬底及反应腔体内部进行预烘烤,使半导体/复合金属复合衬底表面及腔体内部吸附的气体脱附并排出腔体。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,炉腔抽真空真空度为10-4-10-6Pa,升温至600-700℃的升温速率为300-600℃/min;高纯氩气通入流量为10-100sccm;升温至950-1150℃的升温速率为10-60℃/min。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,高纯氢气通入流量为4-20sccm;高纯氩气、高纯氢气为5N以上的氩气、氢气;外部碳源气体为5N及以上的CH4或C3H8气体,外部碳源气体的通入流量为1-20sccm;继续通氩气的通入流量为10-100sccm,压力控制在100-300mbar,降温至600-700℃的降温速率为600-900℃/min。
7.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,除去复合金属为:将生长出石墨烯的半导体/复合金属复合衬底放入1mol/L的FeCl3与硝酸混合溶液中,FeCl3与硝酸混合溶液中FeCl3与硝酸质量比为1:1,浸泡2h-10h,除去复合金属;所述的清洗、干燥为:用载玻片捞出衬底到去离子水中,分别用去离子水、酒精进行清洗,最后用氮气枪吹干。
8.根据权利要求1所述的制备方法,其特征在于,步骤(5)中,MoO3粉的放入量为10-20mg,In2O3粉的放入量为15-30mg,当放入MoO3粉时,碲粉的放入量为20-40 mg;当放入In2O3粉时,碲粉的放入量为30-50mg;抽真空真空度为10-4-10-6Pa;高纯氩气通入流量为2-100sccm,高纯氢气通入流量为1-20sccm,上游区、下游区升温速率分别为10-30℃/min;高纯氩气、高纯氢气为5N以上的氩气、氢气。
9.根据权利要求1所述的制备方法,其特征在于,步骤(6)中,制作石墨烯/二维碲化物异质结背栅场效应晶体管包括样品图形化和金属电极制备,具体如下:首先制备定位用标记(mark),在mark点区域找到要曝光的样品区域;在样品上,旋涂一层电子束光刻胶 PMMA;利用记录的定位坐标进行源漏电极图案的曝光,显影后,采用电子束蒸发系统进行 20nmTi金属的沉积,之后采用磁控溅射系统进行 100nmAu 金属的沉积进行制作金属电极,经过lift-off 工艺后,得到背栅场效应晶体管器件。
10.根据权利要求1所述的制备方法,其特征在于,步骤(6)中退火处理在通有高纯 Ar和 H2 的管式炉中进行,退火温度为 200℃,退火时间 2h。
CN201910561872.8A 2019-06-26 2019-06-26 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法 Active CN110277468B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910561872.8A CN110277468B (zh) 2019-06-26 2019-06-26 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910561872.8A CN110277468B (zh) 2019-06-26 2019-06-26 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法

Publications (2)

Publication Number Publication Date
CN110277468A CN110277468A (zh) 2019-09-24
CN110277468B true CN110277468B (zh) 2021-03-02

Family

ID=67963388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910561872.8A Active CN110277468B (zh) 2019-06-26 2019-06-26 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法

Country Status (1)

Country Link
CN (1) CN110277468B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111115590B (zh) * 2019-11-26 2023-04-18 华南师范大学 一种二维碲化铟纳米片及其制得的偏振光探测器
CN113284975B (zh) * 2021-05-26 2023-05-02 哈尔滨工业大学 一种异质结中长波红外探测器及其制备方法
CN113782416B (zh) * 2021-09-13 2024-03-05 安徽光智科技有限公司 碲镉汞液相外延生长源衬底及其制备方法、碲镉汞液相外延生长方法
CN113937618B (zh) * 2021-11-18 2024-04-09 西北工业大学 基于少层二维半导体材料形成布拉格激子极化激元的方法
CN114807848A (zh) * 2022-04-20 2022-07-29 南京大学 一种大面积二碲化钼的pld制备方法
CN114990520B (zh) * 2022-05-20 2023-08-22 中国科学院长春光学精密机械与物理研究所 硒碲合金薄膜、光导型红外光探测器及制备方法
CN117293209A (zh) * 2023-09-07 2023-12-26 中国科学院重庆绿色智能技术研究院 一种复合异质结光电探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108101028A (zh) * 2017-09-18 2018-06-01 山东大学 一种在6H/4H-SiC硅面上利用复合金属辅助生长石墨烯的方法
CN109004016A (zh) * 2018-06-04 2018-12-14 国家纳米科学中心 非对称范德华异质结器件、其制备方法及用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532310B1 (ko) * 2013-02-18 2015-06-29 삼성전자주식회사 2차원 소재 적층 플렉서블 광센서

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108101028A (zh) * 2017-09-18 2018-06-01 山东大学 一种在6H/4H-SiC硅面上利用复合金属辅助生长石墨烯的方法
CN109004016A (zh) * 2018-06-04 2018-12-14 国家纳米科学中心 非对称范德华异质结器件、其制备方法及用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Near-Infrared Photodetectors Based on MoTe2/Graphene》;Wenzhi Yu,et al.;《ADVANCED SCIENCE NEWS》;20170411(第13期);全文 *

Also Published As

Publication number Publication date
CN110277468A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
CN110277468B (zh) 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法
Olgar Optimization of sulfurization time and temperature for fabrication of Cu2ZnSnS4 (CZTS) thin films
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
CN112126897B (zh) 一种alpha相氧化镓薄膜的制备方法
CN110565052B (zh) 一种二维硫化钨基垂直异质结构材料的制备方法
Peng et al. Influences of the RF power ratio on the optical and electrical properties of GZO thin films by DC coupled RF magnetron sputtering at room temperature
Yu et al. Structure, composition and properties of p-type CuCrO2 thin films
CN108314019B (zh) 一种层数均匀的大面积高质量石墨烯薄膜的制备方法
Jiang et al. Preparation of Cu2ZnSnS4 thin films by sulfurization of metallic precursors evaporated with a single source
Olgar et al. Impact of sulfurization parameters on properties of CZTS thin films grown using quaternary target
Singh et al. Effect of sputter deposited Zn precursor film thickness and annealing time on the properties of Cu2ZnSnS4 thin films deposited by sequential reactive sputtering of metal targets
CN114990520A (zh) 硒碲合金薄膜、光导型红外光探测器及制备方法
Ullah et al. Continuous large area few layers MoS2 films by pulsed laser deposition and effect of annealing in sulfur environment
Otieno et al. Role of oxygen concentrations on structural and optical properties of RF magnetron sputtered ZnO thin films
CN111206230A (zh) 一种新型二维硫化铬材料的制备方法
US9136423B1 (en) Method and apparatus for depositing copper—indiumgalliumselenide (CuInGaSe2-CIGS) thin films and other materials on a substrate
Du et al. Single-phase indium-doped cupric oxide films prepared through DC reactive magnetron sputtering: Influence of substrate temperature on microstructure, optical and electrical behavior
CN107230735A (zh) 具有缓冲层的CdZnTe薄膜光电探测器的制备方法
Maistruk et al. Optical properties of thin films CZTSe produced by RF magnetron sputtering and thermal evaporation
Jung et al. Structural and electrical properties of radio frequency magnetron sputtered Cu (InxGa1− x) Se2 thin films with additional post-heat treatment
KR20230000470A (ko) 유기금속화학기상증착 방법을 이용한 Bi2O2Se 박막 제조방법 및 이를 위한 전구체
Wang et al. Improved structural and optical properties of β-Ga 2 O 3 films by face-to-face annealing
CN114182230A (zh) 一种制备二维碲烯薄膜的化学气相沉积方法
Singh et al. One step deposition of Cu2ZnSnSe4 thin films using a ceramic quaternary target
Hegazy et al. Preparation and characterization of copper zinc tin sulfide-selenide thin films using a single target RF sputtering method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant