CN111115590B - 一种二维碲化铟纳米片及其制得的偏振光探测器 - Google Patents

一种二维碲化铟纳米片及其制得的偏振光探测器 Download PDF

Info

Publication number
CN111115590B
CN111115590B CN201911176005.9A CN201911176005A CN111115590B CN 111115590 B CN111115590 B CN 111115590B CN 201911176005 A CN201911176005 A CN 201911176005A CN 111115590 B CN111115590 B CN 111115590B
Authority
CN
China
Prior art keywords
polarized light
light detector
indium telluride
dimensional
nanosheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911176005.9A
Other languages
English (en)
Other versions
CN111115590A (zh
Inventor
李京波
杨淮
魏钟鸣
霍能杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Xinke Semiconductor Co Ltd
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201911176005.9A priority Critical patent/CN111115590B/zh
Publication of CN111115590A publication Critical patent/CN111115590A/zh
Application granted granted Critical
Publication of CN111115590B publication Critical patent/CN111115590B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于纳米功能材料技术领域,公开了一种二维碲化铟纳米片及其制得的偏振光探测器,所述碲化铟纳米片是将铟粉和碲粉混合后加热至480~520℃并保温,然后降温至460~480℃并保温,再冷却至室温,在不同温度下反应朝不同方向进行生长制得。该二维碲化铟纳米片具有低面内对称性,由其制得的偏振光探测器依次包括重掺杂硅、二氧化硅绝缘层和二维材料碲化铟纳米片,在所述二维材料碲化铟纳米片的两侧制作金属电极。由于二维材料碲化铟纳米片具有各向异性等特点,使得偏振光探测器可以探测多角度的线偏振光。

Description

一种二维碲化铟纳米片及其制得的偏振光探测器
技术领域
本发明属于纳米功能材料技术领域,更具体地,涉及一种二维碲化铟纳米片及其制得的偏振光探测器。
背景技术
自从2010年曼彻斯特大学的盖姆和诺沃肖洛夫由于发现了从石墨中通过机械剥离法得到了单层石墨烯而获得诺贝尔奖来,实验发现单层的石墨烯相比于其体材料具有更加优良的力学、热学和电学性能,并且在纳米电子学、能源、功能材料等方面都具有广阔的应用前景。随着多种类石墨烯的二维材料(如:过渡金属硫族化合物,氮化硼等)相继被制备出来。二维材料相比与其母体材料表现出更多新奇的物理化学性质,在未来的电子、信息、能源等领域具有巨大的应用潜力。
光电探测器的原理是利用光照引起具有光电效应的材料及异质结产生额外的光生载流子,进而被人们探测到。将二维材料应用到光探测器中可以提高探测器的光强敏感度,减少探测器的响应时间,拓展探测光范围等。将拥有面内各向异性的二维材料应用到光探测器中,可以制备出角度敏感的偏振光探测器。然而由于材料本身性能的限制,偏振光探测器的种类少,光敏感性较弱,器件响应速度较慢,各向异性不强等缺点。半导体纳米片作为高性能低维功能材料的一种,在电子,光电子和纳电子机械器械中起重要作用,它同时还可以作为合成物中的添加物、量子器械中的连线、场发射器和生物分子纳米感应器。半导体纳米片由于属于较大的表面积/体积比的量子结构,具备特殊的光、电、磁等物理化学性质尤其在光电器件中有着重要的用途。光电探测器在军事和国民经济的各个领域有着广泛的用途,在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等,在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。偏振光探测器具有可探测偏振光方向等特点有着更丰富的应用,尤其是开发可拓展到宽波段范围的新型偏振光探测器十分有意义。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明目的在于提供了一种二维碲化铟纳米片。
本发明的另一目的在于提供一种上述二维碲化铟纳米片制得的偏振光探测器。
本发明的再一目的在于提供一种上述偏振光探测器的应用。
本发明的目的通过下述技术方案来实现:
一种二维材料碲化铟纳米片,所述碲化铟纳米片是将铟粉和碲粉混合后加热至480~520℃并保温,然后降温至460~480℃并保温,再冷却至室温,在不同温度下反应朝不同方向进行生长制得。
优选地,所述铟粉和碲粉的质摩尔比为1:(2~3)。
优选地,所述保温的时间均为24~48h。
优选地,所述降温至460~480℃的速率为1~2℃/h;所述冷却至室温的速率为5~10℃/h。
优选地,所述生长的时间为10~30天。
一种偏振光探测器,所述偏振光探测器是采用光刻对所述的二维材料碲化铟纳米片的两侧制作电极制得。
进一步地,所述偏振光探测器依次包括重掺杂硅、二氧化硅绝缘层、二维材料碲化铟纳米片和金属电极。
优选地,所述二氧化硅绝缘层的厚度为280~300nm;所述二维材料碲化铟纳米片的厚度为1~30nm。
优选地,所述金属电极为金或铂。
所述的偏振光探测器在可见-红外光探测或成像领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明的新型二维碲化铟纳米片属于空间群为C2/c的单斜晶系结构,其在室温下极为稳定,单层带隙为1.4eV左右;晶体结晶质量高,光电探测器性能优异,开关比高,响应时间快,可作为偏振光探测器和多功能晶体管等器件的潜在应用材料。
2.本发明将二维碲化铟单晶材料进行机械剥离形成纳米片,其在重掺杂硅、二氧化硅绝缘层的衬底上制作得二维碲化铟光电探测器,该光电探测器可对 266-808nm波长的光进行吸收,并且在此波段具有明显的偏振特性,光沿着不同方向具有明显的光电信号的差异,而且十分稳定。
3.本发明的方法简单,成本低,能够大规模可重复地生产,对环境无污染。
附图说明
图1为实施例1生长的碲化铟晶体的扫描电子显微镜图;
图2为实施例2制得的偏振光探测器的X射线衍射图;
图3为实施例4制得的偏振光探测器的原子力显微镜图;
图4为实施例4使用532nm在激光不同功率下偏振光探测器的光电流开态和关态随时间的变化示意图。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
将摩尔比为1:2.5的铟粉和碲粉混合均匀;通过化学气相输运法将上述混合材料真空封入容器中,将其置于管式炉单温区中,在10h内加热到500℃,并在此温度下保持24h,然后以2℃/h的速率逐渐降至470℃并保持24h,最后以 10℃/h的速率冷却至室温20℃,化学可逆反应在不同温度下反应朝不同方向进行而生长晶体生长30天后,得到层状碲化铟半导体单晶。
图1为实施例1生长的碲化铟晶体的扫描电子显微镜图,从图1中可知,碲化铟纳米片结晶度良好且为层状的二维结构。
实施例2
对实施例1所得的层状碲化铟半导体单晶进行机械剥离,在Si/SiO2(厚度为300nm)基底上制得单层碲化铟纳米片。通过光刻工艺制作包括旋涂,软烘,曝光,显影,蒸镀,去胶等步骤制作两端金属电极,从而组装二维碲化铟偏振光探测器。
图2为实施例1所得碲化铟纳米片制得的偏振光探测器的X射线衍射图,从图2中可知,碲化铟(In2Te5)为无杂质的单晶且其空间群为C2/c。面内通过共价键连接,面间通过范德瓦尔斯力结合。通过配比In和Te单质粉末进行生长以形成空间群为C2/c的斜方晶系结构,通过高温烧结即可直接获得,所获碲化铟纳米片材料制作的偏振光探测器性能优异,开关比高,响应时间快,可以用于高集成度的光探测器中。
实施例3
1.将0.53克铟粉,1.47克碲粉(纯度均为99.99%)进行混合,将混合粉体装入试管中,使用试管搅拌机充分搅拌均匀。
2.备干净烧制好的石英管,使用丙酮和去离子水依次超声清洗30min,置入高温管式炉,设置800℃保温1h以彻底去除石英管中的杂质,将试管中的2g混合材料置入石英管内并接入真空系统,通过机械泵与分子泵将石英管抽真空至 10-4帕后,利用氢氧焰进行真空封口,放置一段时间待其冷却。
3.将封口好的石英管置入高温管式炉装置中进行化学气相输运法生长,将管式炉在10h内加热到500℃,并在此温度下保持24h,然后以2℃/h速率逐渐降至470℃并保持24h,最后将熔炉以10℃/h的速率冷却至室温20℃,降温时间约为2天,化学可逆反应在不同温度下反应朝不同方向进行而生长晶体生长10 天后,以获得高质量的二维碲化铟单晶。
实施例4
将实施例3所得的二维碲化铟单晶放置在剥离胶带上,反复机械剥离直至胶带上的薄片颜色变浅,将胶带粘贴至重掺杂硅、二氧化硅绝缘层(厚度为280nm) 的衬底上,放置一段时间后缓慢撕开胶带,可得到位于硅片上不同厚度和尺寸的二维碲化铟纳米片,通过光刻工艺制作包括旋涂,软烘,曝光,显影,蒸镀,去胶等步骤制作两端金属电极,从而组装二维碲化铟偏振光探测器。
图3为实施例4中的二维碲化铟偏振光探测器的原子力显微镜图,从图3中可知,二维碲化铟纳米片厚度约为12.4nm,证明其可以进一步剥离为二维薄层纳米片。图4为实施例4使用532nm在激光不同功率下铟偏振光探测器的光电流开态和关态随时间的变化示意图。从图4可知,该偏振光探测器可对266-808nm 波长的光进行吸收,并且在此波段具有明显的偏振特性,光沿着不同方向具有明显的光电信号的差异,而且十分稳定。说明偏振光探测器具有良好的开关比和光响应性能。由于二维薄层纳米片结构上的各向异性,其进一步用作探测多角度的线偏振光探测器。
除了上述具体列举的化学气相输运法(化学可逆反应在不同温度下反应朝不同方向进行而生长晶体的方法)生长二维半导体碲化铟纳米片之外,还可以采用常规的化学气相沉积法(利用含有薄膜元素的一种或几种气相化合物或单质、在衬底表面上进行化学反应生成薄膜的方法)来进行单晶生长,同样可以得到同时具备高性能偏振光探测性能的二维碲化铟半导体纳米片材料。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种偏振光探测器,其特征在于,所述偏振光探测器依次包括重掺杂硅、二氧化硅绝缘层和二维材料碲化铟纳米片,采用光刻对二维材料碲化铟纳米片的两侧制作金属电极制得;所述碲化铟纳米片是将铟粉和碲粉混合后加热至480~520℃并保温,然后降温至460~480℃并保温,再冷却至室温,在不同温度下反应朝不同方向进行生长10~30天制得;所述铟粉和碲粉的摩尔比为1:2.5。
2.根据权利要求1所述的偏振光探测器,其特征在于,所述二氧化硅绝缘层的厚度为280~300nm;所述二维材料碲化铟纳米片的厚度为1~30nm。
3.根据权利要求1所述的偏振光探测器,其特征在于,所述金属电极为金或铂。
4.根据权利要求1所述的偏振光探测器,其特征在于,所述保温的时间均为24~48h。
5.根据权利要求1所述的偏振光探测器,其特征在于,所述降温至460~480℃的速率为1~2℃/h;所述冷却至室温的速率为5~10℃/h。
6.权利要求1-5任一项所述的偏振光探测器在可见-红外光探测或成像领域中的应用。
CN201911176005.9A 2019-11-26 2019-11-26 一种二维碲化铟纳米片及其制得的偏振光探测器 Active CN111115590B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911176005.9A CN111115590B (zh) 2019-11-26 2019-11-26 一种二维碲化铟纳米片及其制得的偏振光探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911176005.9A CN111115590B (zh) 2019-11-26 2019-11-26 一种二维碲化铟纳米片及其制得的偏振光探测器

Publications (2)

Publication Number Publication Date
CN111115590A CN111115590A (zh) 2020-05-08
CN111115590B true CN111115590B (zh) 2023-04-18

Family

ID=70496737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911176005.9A Active CN111115590B (zh) 2019-11-26 2019-11-26 一种二维碲化铟纳米片及其制得的偏振光探测器

Country Status (1)

Country Link
CN (1) CN111115590B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111441080B (zh) * 2020-05-26 2021-03-16 中国科学院兰州化学物理研究所 一种In2Te5单晶及其制备方法
CN114351238B (zh) * 2022-01-10 2023-03-31 广东工业大学 一种二维四元原子层单晶的制备及其在光电子器件中的应用
CN114843356B (zh) * 2022-05-06 2024-07-02 陕西科技大学 晶圆级iii-vi族化合物薄膜材料、制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107021784A (zh) * 2017-04-20 2017-08-08 中山大学 一种实现p型层状碲化镓纳米片自组装纳米花的可控制备方法
CN108190847A (zh) * 2018-02-14 2018-06-22 中国科学技术大学 一种碲化铟纳米线的制备方法
CN108313987A (zh) * 2018-02-09 2018-07-24 深圳大学 二维碲纳米片及其制备方法和应用
CN110277468A (zh) * 2019-06-26 2019-09-24 山东大学 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107021784A (zh) * 2017-04-20 2017-08-08 中山大学 一种实现p型层状碲化镓纳米片自组装纳米花的可控制备方法
CN108313987A (zh) * 2018-02-09 2018-07-24 深圳大学 二维碲纳米片及其制备方法和应用
CN108190847A (zh) * 2018-02-14 2018-06-22 中国科学技术大学 一种碲化铟纳米线的制备方法
CN110277468A (zh) * 2019-06-26 2019-09-24 山东大学 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jat,Suraj Karan等.Microwave Assisted Preparation and Synthesis of Bi2Se3 Nanosheets Solid State Reaction.《Advanced Science Engineering and Medicine》.2013,第5卷(第12期), *
Microwave Assisted Preparation and Synthesis of Bi2Se3 Nanosheets Solid State Reaction;Jat,Suraj Karan等;《Advanced Science Engineering and Medicine》;20131231;第5卷(第12期);第2.1部分 *

Also Published As

Publication number Publication date
CN111115590A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
CN111115590B (zh) 一种二维碲化铟纳米片及其制得的偏振光探测器
Qi et al. Highly stable lead-free Cs 3 Bi 2 I 9 perovskite nanoplates for photodetection applications
Gu et al. Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films
Liu et al. High performance visible photodetectors based on thin two-dimensional Bi2Te3 nanoplates
Timoumi et al. Fabrication and characterization of In2S3 thin films deposited by thermal evaporation technique
Kamijoh et al. Single crystal growth and characterization of LiInSe2
CN109402739A (zh) 一种二维铋氧硒原子晶体材料、及其制备方法和用途
Bianco et al. Large-area ultrathin Te films with substrate-tunable orientation
Shen et al. A low-temperature n-propanol gas sensor based on TeO 2 nanowires as the sensing layer
Aousgi et al. Structural and optical properties of amorphous Sb2S3 thin films deposited by vacuum thermal evaporation method
Ho et al. Fabrication of highly oriented (002) ZnO film on glass by sol–gel method
Keskenler et al. Evaluation of structural and optical properties of Mn-doped ZnO thin films synthesized by sol-gel technique
Li et al. Synthesis of Submillimeter‐Scale Single Crystal Stannous Sulfide Nanoplates for Visible and Near‐Infrared Photodetectors with Ultrahigh Responsivity
Liu et al. Fabrication and properties of ZnO nanorods on silicon nanopillar surface for gas sensor application
Chen et al. Wafer‐scale growth of vertical‐structured SnSe2 nanosheets for highly sensitive, fast‐response UV–Vis–NIR broadband photodetectors
Wen et al. Free-standing [0 0 1]-oriented one-dimensional crystal-structured antimony selenide films for self-powered flexible near-infrared photodetectors
CN110156077A (zh) 一维硫碘化锑半导体纳米线光电探测器及其制备方法
Song et al. Synthesis of large-area uniform Si 2 Te 3 thin films for p-type electronic devices
Gantassi et al. Physical investigations on (In2S3) x (In2O3) y and In2S3− xSex thin films processed through In2S3 annealing in air and selenide atmosphere
CN110190154B (zh) 准一维硫化锡纳米线的宽波段偏振光探测器及其制备方法
Jia et al. Effect of anneal temperature on electrical and optical properties of SnS: Ag thin films
Kim et al. Optimal temperature of the sol–gel solution used to fabricate high-quality ZnO thin films via the dip-coating method for highly sensitive UV photodetectors
Baek et al. Growth and characterization of the CdIn2S4/GaAs epilayers by hot wall epitaxy method
Chou et al. The study of humidity sensor based on Li-doped ZnO nanorods by hydrothermal method
CN115650182A (zh) 一种正交型/单斜型PdSe2同质结及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230626

Address after: Station 511, No. 3, Gongwang Road, Dongzhou Street, Fuyang District, Hangzhou City, Zhejiang Province, 310000

Patentee after: Hangzhou Hanhong Equity Investment Partnership (L.P.)

Address before: 510630 Guangdong city of Guangzhou province Tianhe District Zhongshan Shipai Road West No. 55

Patentee before: SOUTH CHINA NORMAL University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230720

Address after: 310000 room 706, building 23, No. 68 Jiangnan Road, Chunjiang street, Fuyang District, Hangzhou City, Zhejiang Province

Patentee after: Zhejiang Xinke Semiconductor Co.,Ltd.

Address before: Station 511, No. 3, Gongwang Road, Dongzhou Street, Fuyang District, Hangzhou City, Zhejiang Province, 310000

Patentee before: Hangzhou Hanhong Equity Investment Partnership (L.P.)