CN113284975B - 一种异质结中长波红外探测器及其制备方法 - Google Patents

一种异质结中长波红外探测器及其制备方法 Download PDF

Info

Publication number
CN113284975B
CN113284975B CN202110580050.1A CN202110580050A CN113284975B CN 113284975 B CN113284975 B CN 113284975B CN 202110580050 A CN202110580050 A CN 202110580050A CN 113284975 B CN113284975 B CN 113284975B
Authority
CN
China
Prior art keywords
heterojunction
quantum dot
graphene quantum
medium
wave infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110580050.1A
Other languages
English (en)
Other versions
CN113284975A (zh
Inventor
王东博
刘东昊
肖淑丹
王金忠
胡云飞
张冰珂
矫淑杰
李政昊
张雨琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110580050.1A priority Critical patent/CN113284975B/zh
Publication of CN113284975A publication Critical patent/CN113284975A/zh
Application granted granted Critical
Publication of CN113284975B publication Critical patent/CN113284975B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种异质结中长波红外探测器及其制备方法,所述探测器包括Si衬底、WS2/石墨烯量子点异质结和金电极,Si衬底上生长WS2/石墨烯量子点异质结,金电极设置在WS2/石墨烯量子点异质结上,制备步骤如下:一、在Si衬底上磁控溅射沉积WS2薄膜;二、制备WS2/石墨烯量子点异质结;三、利用磁控溅射技术在异质结表面沉积Au电极。本发明的探测器为光电导型器件,通过合成WS2/石墨烯量子点异质结使材料的带隙处于中长波红外波段,当入射光子能量大于异质结禁带宽度,材料中光生载流子可以实现跃迁,整个材料体系的电导率增大,从而实现器件在中长波红外波段的响应,材料制备工艺简单,便于工业化大规模生产。

Description

一种异质结中长波红外探测器及其制备方法
技术领域
本发明属于红外光电成像探测技术领域,涉及一种红外探测器及其制备方法,具体涉及一种基于二硫化钨/石墨烯量子点异质结红外探测器及其制备方法。
背景技术
光电探测器是将光子能量转换为电信号的传感器。由红外探测成像的机理可知,任何温度高于绝对零度的物体都会由内部分子热运动不停向外界发射红外辐射,红外成像正是通过目标和背景的温差来成像。红外成像探测属于被动探测的一种,相比雷达探测具有隐蔽性强和抗干扰能力强的优点,相比可见光探测具有全天候和探测距离远的优点。此外,由于红外探测系统体积小、质量轻、功耗低,因此相比雷达更有利于装载红外探测器的预警卫星和无人预警机的发展和运用。红外探测技术在天基预警卫星、预警飞机、无人侦察机、警戒舰艇以及红外制导导弹等武器中发挥着十分重要的作用。红外探测技术从总的发展趋势看,红外线列及面阵的元数愈来愈多,其性能已接近背景限,抗辐照能力也得到很大加强。探测波段也已从短波红外、中波红外一直覆盖到长波红外。探测手段也从单色探测发展到多色探测。
能实现红外探测的材料主要包括HgCdTe (MCT)、红外量子阱 (QWIP)和锑化物II型超晶格(InAs/Ga(In)Sb)。虽然经过多年的努力,基于碲镉汞(MCT)材料和AlGaAs/GaAsIII-V族量子阱材料的红外探测器和红外焦平面器件在长波红外波段的性能有了很大改善。但是,受材料本身和器件物理机制的限制,到目前为止,在应用方面仍然存在一些难以克服的问题。MCT材料主要表现在组分均匀性差,器件漏电流大,工作温度低(一般在77K),尤其是在探测波长大于10μm的红外波段,器件性能指标急剧下降。后者存在的主要问题,一是受量子禁戒作用影响,器件量子效率低(一般小于20%,而HgCdTe器件量子效率为70~80%),二是器件工作温度低(一般小于65K)。所以基于上述两种材料体系的长波红外探测器和红外焦平面器件都面临着器件暗电流大、积分时间短、工作温度低的物理性能制约,以致成为限制它们在相关武器装备系统中应用的最大障碍。
近年来,以InAs/GaSb为代表的II类超晶格红外探测器发展十分迅速,II类超晶格是一种典型的能带工程材料,在一些重要参数如 R 0 A、量子效率及噪声等效温差方面与第二代HgCdTe红外探测器性能相当。尽管InAs/Ga(In)Sb II型超晶格红外探测器已获得了长足发展,其长波红外探测性能已接近标准碲镉汞探测器,但是与理论预测值相比仍有差距,主要体现为较大的暗电流,以及由此导致的工作温度低,成为制约其进一步发展的瓶颈。
以石墨烯(Graphene)为代表的二维材料的出现和成功制备为各领域的发展注入了新的活力,也为红外探测器的发展带来了新的方向。单原子层石墨烯从红外到可见光的波段范围的吸收可达2.3%,而达到同样的吸收效率需要15 nm厚的Si材料或20 nm厚的GaAs材料。同时,石墨烯材料还具有非常高的载流子迁移率(室温下可超过200000 cm2/Vs)和光生载流子倍增效应,因而是极具应用前景的高响应频率、高响应度和宽响应光谱光电探测材料。但是,石墨烯材料无带隙,较大的暗电流不利于施加大的偏压,明显制约了其响应度的提升。
过渡金属二硫化物(TMDs)由于其良好的半导体带隙和比石墨烯更强的光-物质相互作用,在光电探测方面取得了重大突破。WS2为深灰色带有金属光泽的细结晶粉末,晶体结构为六方晶系层状结构,WS2块体材料是单层WS2之间通过弱范德瓦尔斯力结合而成。WS2禁带宽度与层数有关,随着层数的增多禁带宽度逐渐变小。
从电子学上讲,块状WS2是一种带隙在近红外频率范围(约1.3eV)中的间接带隙半导体。相反,单层WS2是带隙在可见频率范围(约2.1 eV)中的直接带隙半导体。载流子在平面外方向上的约束导致带隙随着厚度的减小而逐渐增加。
TMDC可以以半导体2H和金属1T两种常见形式存在。1T相与 2H相不同点在于,1T相的二硫化钨的硫钨硫面绕着c轴旋转了60°,每个硫钨硫单元构成一个晶胞。在一般意义上,1T相位不稳定,并转换为2H相位。对于轻量级TMDC,此现象更严重。无论如何,当在基材上沉积定义明确的单层或多层TMDC时,已经研究了这些相,因为1T相在散装材料中的稳定性较差。例如,在电化学应用中,金属1T相可能更有利,但几乎所有本体合成的样品都是半导体TMDC。当然,在一系列光电探测应用中,需要半导体性能。
另一方面,与典型的直接带隙半导体相比,TMDs还显示出额外的优势,如透明性、机械灵活性和易于光电处理。二硫化钨(WS2),TMDs组的典型成员,在广泛的应用中表现出优异的热稳定性。此外,如理论计算所示,WS2具有较小的电子有效质量,因此具有比其它TMD材料更高的载流子迁移率。因此,基于WS2的光电探测器可以用于许多有吸引力的应用。
发明内容
为了解决受限于制备工艺等问题,以及高质量红外中长波探测材料制备工艺复杂、成本高的问题,本发明提供了一种低成本异质结中长波红外探测器及其制备方法。
本发明的目的是通过以下技术方案实现的:
一种异质结中长波红外探测器,包括Si衬底、WS2/石墨烯量子点异质结和金电极,Si衬底上生长WS2/石墨烯量子点异质结,金电极设置在WS2/石墨烯量子点异质结上。
本发明中,所述Si衬底厚度为1μm,WS2厚度约为1.2μm,量子点非常薄,可以近似WS2/石墨烯量子点异质结整体为1.2μm,金电极的厚度为50μm,电极之间间距2mm。
本发明中,所述探测器为光电导型器件,通过合成WS2/石墨烯量子点异质结使材料的带隙处于中长波红外波段,当入射光子能量大于异质结禁带宽度,材料中光生载流子可以实现跃迁,整个材料体系的电导率增大,从而实现器件在中长波红外波段的响应。
一种上述异质结中长波红外探测器的制备方法,包括如下步骤:
步骤一、在Si衬底上磁控溅射沉积WS2薄膜,磁控溅射工艺参数如下:Ar气流量为40~45sccm,压强为1.5~1.8Pa,功率为150~180W,溅射时间为10~30min;
步骤二、制备WS2/石墨烯量子点异质结:使用匀胶机在WS2薄膜上旋涂石墨烯量子点水溶液,得到WS2/石墨烯量子点异质结,控制匀胶机转速为2000~4000转/分,旋涂时间为10~30s,石墨烯量子点水溶液的浓度为1mol/L;
步骤三、利用磁控溅射技术在WS2/石墨烯量子点异质结表面沉积Au电极,控制磁控溅射的功率为30~50W,压强为0.5~1.0 Pa,氩气流量为20~40sccm,溅射时间为1~2 min。
相比于现有技术,本发明具有如下优点:
1、本发明将石墨烯与WS2相结合,构建复合结构的光电探测器,不但可以实现两种材料的优势互补,还衍生出以下优点:(1)石墨烯作为吸收层能有效将WS2光电器件的工作波段拓展至红外区域;(2)WS2与石墨烯构成异质时,会发生电子的转移,从而导致体材料能带在交界面处发生弯曲,形成内建电场,而内建电场的产生大大提高了器件对光生电子空穴对的分离能力,可使器件表现出优异的响应率和响应速度。
2、本发明设计的Si衬底上WS2/石墨烯量子点异质结中波红外光探测器在3微米波段有明显的峰值响应,响应度为0.04A/W,结果表明本发明所设计的中波红外探测器具有良好的光电探测性能。
3、本发明利用磁控溅射生长WS2,再制备石墨烯量子点异质结,与传统红外探测材料的分子束外延、分子有机气相沉积技术等方法相比,材料制备工艺简单,便于工业化大规模生产。
附图说明
图1为WS2薄膜样品的XRD图;
图2为WS2样品透射光谱;
图3为WS2/GQDs异质结XRD图;
图4为器件结构图;
图5为探测材料中波红外光致发光谱。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
本发明提供了一种基于WS2/石墨烯量子点异质结中波红外光探测器,如图4所示,包括Si衬底、WS2/石墨烯量子点异质结和金电极,Si衬底上生长WS2/石墨烯量子点异质结,金电极设置在WS2/石墨烯量子点异质结上。具体制备步骤如下:
步骤一、Si衬底上WS2薄膜的合成。
在Si衬底上磁控溅射沉积WS2薄膜,Si衬底大小为2×1.5cm,溅射工艺参数如下:Ar气流量42sccm,压强1.6pa,功率160W,溅射时间20min。
WS2薄膜样品的XRD图如图1所示,由图1可知,2H-WS2的(100)晶面峰位分别对应2θ的32.8°,WS2沿(100)与(002)方向生长,无杂峰。
WS2薄膜样品的扫射谱如图2所示,由图2可知,产物几乎不透过紫外光,从550nm开始透射率逐渐上升,在近红外区透射率达到近70%。
步骤二、制备WS2/石墨烯量子点异质结。
石墨烯量子点(GQD)采用60ml EAA(乙酰乙酸乙酯)与100mg NaOH,超声搅拌30分钟,过滤离心,加入200mg石墨粉,细胞粉碎3小时,超声搅拌2小时,得到深棕色混合物10000转离心去除沉淀,取上清液用注射器过滤,透析24小时,干燥滤液。使用匀胶机在WS2薄膜上旋涂GQD水溶液(1mol/L),即:使用移液枪吸取30微升GQD水溶液均匀滴加在WS2薄膜表面,匀胶机转速3000转/分旋涂20s,得到WS2/GQDs异质结。
WS2/GQDs异质结XRD图如图3所示,由图3可以看出,WS2/GQDs在26°~27°之间均不存在衍射峰,证明石墨粉已经被切割成为极小份,大概率为石墨烯及GQDs。
步骤三、制备光电器件并研究其性能。
使用金属Au作为电极材料,利用磁控溅射技术(溅射功率40W,压强0.7 Pa,氩气流量30sccm,溅射时间1.5 min)在WS2/石墨烯量子点异质结表面沉积Au电极制作光电导型探测器,电极厚度50nm。
器件红外光谱如图5所示,由图5可以看出,样品在波段有明显的峰值响应,响应度为,有良好的中波红外探测特性。

Claims (5)

1.一种异质结中长波红外探测器的制备方法,其特征在于所述探测器包括Si衬底、WS2/石墨烯量子点异质结和金电极,Si衬底上生长WS2/石墨烯量子点异质结,金电极设置在WS2/石墨烯量子点异质结上,所述制备方法包括如下步骤:
步骤一、在Si衬底上磁控溅射沉积WS2薄膜,磁控溅射工艺参数如下:Ar气流量为40~45sccm,压强为1.5~1.8Pa,功率为150~180W,溅射时间为10~30min;
步骤二、制备WS2/石墨烯量子点异质结:使用匀胶机在WS2薄膜上旋涂石墨烯量子点水溶液,石墨烯量子点水溶液的浓度为1mol/L,得到WS2/石墨烯量子点异质结;
步骤三、利用磁控溅射技术在WS2/石墨烯量子点异质结表面沉积Au电极,磁控溅射的功率为30~50W,压强为0.5~1.0 Pa,氩气流量为20~40sccm,溅射时间为1~2 min。
2.根据权利要求1所述的异质结中长波红外探测器的制备方法,其特征在于所述步骤二中,控制匀胶机转速为2000~4000转/分,旋涂时间为10~30s。
3.根据权利要求1所述的异质结中长波红外探测器的制备方法,其特征在于所述Si衬底的厚度为1μm。
4.根据权利要求1所述的异质结中长波红外探测器的制备方法,其特征在于所述WS2/石墨烯量子点异质结的厚度为1.2μm。
5.根据权利要求1所述的异质结中长波红外探测器的制备方法,其特征在于所述金电极的厚度为50μm,电极之间间距2mm。
CN202110580050.1A 2021-05-26 2021-05-26 一种异质结中长波红外探测器及其制备方法 Active CN113284975B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110580050.1A CN113284975B (zh) 2021-05-26 2021-05-26 一种异质结中长波红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110580050.1A CN113284975B (zh) 2021-05-26 2021-05-26 一种异质结中长波红外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN113284975A CN113284975A (zh) 2021-08-20
CN113284975B true CN113284975B (zh) 2023-05-02

Family

ID=77281899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110580050.1A Active CN113284975B (zh) 2021-05-26 2021-05-26 一种异质结中长波红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113284975B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817808A (zh) * 2019-01-11 2019-05-28 电子科技大学 一种范德瓦尔斯异质结型光电探测器及制备方法
CN110277468A (zh) * 2019-06-26 2019-09-24 山东大学 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680038B2 (en) * 2013-03-13 2017-06-13 The Regents Of The University Of Michigan Photodetectors based on double layer heterostructures
ES2749694T3 (es) * 2014-07-15 2020-03-23 Fundacio Inst De Ciencies Fotòniques Aparato optoelectrónico y método de fabricación del mismo
EP3346508B1 (en) * 2017-01-10 2023-03-01 Samsung Electronics Co., Ltd. Optical sensor and image sensor including graphene quantum dots
CN107611215B (zh) * 2017-04-11 2020-06-30 电子科技大学 硅/二维半导体异质结型光电探测器及制备方法
CN110085700B (zh) * 2019-05-08 2021-01-22 湘潭大学 一种极化与量子点共调控的高光电响应探测器单元

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817808A (zh) * 2019-01-11 2019-05-28 电子科技大学 一种范德瓦尔斯异质结型光电探测器及制备方法
CN110277468A (zh) * 2019-06-26 2019-09-24 山东大学 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法

Also Published As

Publication number Publication date
CN113284975A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
Reddy et al. Characterisation of CdO thin films deposited by activated reactive evaporation
CN109285911B (zh) 一种短波/中波/长波三波段红外探测器及其制备方法
CN110335908B (zh) 异质结分波段探测器及其制备方法与应用
Allouche et al. Influence of aluminum doping in CuInS2 prepared by spray pyrolysis on different substrates
Asar et al. Structural and electrical characterizations of InxGa1-xAs/InP structures for infrared photodetector applications
Miles et al. Electronic band structure of far-infrared Ga1-xInxSb/InAs superlattices
Liu et al. Development of long-wavelength infrared detector and its space-based application requirements
Shuihab et al. Fabrication and characterization of nickel oxide nanoparticles/silicon NiO NPS/Si
CN114990520B (zh) 硒碲合金薄膜、光导型红外光探测器及制备方法
Muhammad et al. Structural, optical and electrical investigation of low-temperature processed zinc oxide quantum dots based thin films using precipitation-spin coating on flexible substrates
CN113284975B (zh) 一种异质结中长波红外探测器及其制备方法
Ma et al. A new approach for broadband photosensing based on Ag2Se/Si heterojunction tuned by Pyro-phototronic effect
Ananthakumar et al. Synthesis of Cu2ZnSnSe4 hierarchical nanostructures by colloidal method
Wang et al. Molecular-beam epitaxy-grown HgCdTe infrared detector: Material physics, structure design, and device fabrication
CN109524491B (zh) 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法
CN113257933B (zh) 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法
CN113299778B (zh) 硒化铋/碲化铋超晶格红外双波段探测器及其制备方法
Zhao et al. Broadband photodetectors with enhanced performance in UV–Vis–NIR band based on PbS quantum dots/ZnO film heterostructure
Muniandy et al. An investigation on NiO for hole transport material in perovskite solar cells
Miyazaki et al. Surface etching of CZTS absorber layer by Br‐related solution
CN112670366A (zh) GeSn/钙钛矿异质结宽光谱探测器及其制作方法
CN108323212A (zh) 太阳能电池及其制备方法
Bodnar et al. Preparation and properties of laser-evaporated CuGa0. 1In0. 9Se2 thin films
CN107591457B (zh) 一种3d树枝状结构的光电探测器及其制作方法
Gupta et al. Consequence on Optical Properties of ZnS Thin-Film Deposited by RF Magnetron Sputtering with Varying Substrate Temperatures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant