CN117293209A - 一种复合异质结光电探测器及其制备方法 - Google Patents

一种复合异质结光电探测器及其制备方法 Download PDF

Info

Publication number
CN117293209A
CN117293209A CN202311155810.XA CN202311155810A CN117293209A CN 117293209 A CN117293209 A CN 117293209A CN 202311155810 A CN202311155810 A CN 202311155810A CN 117293209 A CN117293209 A CN 117293209A
Authority
CN
China
Prior art keywords
pbte
photoelectric detector
graphene
composite
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311155810.XA
Other languages
English (en)
Inventor
于乐泳
汤林龙
冯双龙
史浩飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University, Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing University
Priority to CN202311155810.XA priority Critical patent/CN117293209A/zh
Publication of CN117293209A publication Critical patent/CN117293209A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供一种复合异质结光电探测器及其制备方法,其中,光电探测器包括:硅基底和位于硅基底上表面的SiO2绝缘层,硅基底和SiO2绝缘层上刻蚀有硅孔,硅孔内外延制备有PbTe材料,PbTe材料上沉积有位于硅孔内的三维石墨烯,得到PbTe‑graphene/Si复合异质结,硅基底的底面和所述SiO2绝缘层的上表面上均设置有电极,形成PbTe‑graphene/Si复合异质结结构的光电探测器。本发明实现了PbTe材料与三维石墨烯材料优势复合,延长了载流子寿命,提高了器件的增益,降低了器件暗电流,操作简单,室温制备,成本低廉,为制备具有宽光谱响应、高响应度和高灵敏度的光电探测器提供了研究思路。

Description

一种复合异质结光电探测器及其制备方法
技术领域
本发明涉及光电探测技术领域,尤其涉及一种复合异质结光电探测器及其制备方法。
背景技术
PbTe材料属于IV-VI族半导体,为直接带隙半导体材料,带隙较窄,其禁带宽度比Ⅲ-Ⅴ族带隙最窄的InSb材料还要小。该材料是原子通过内部较强的离子键相互作用而形成的极性半导体,材料的介电常数高,可以有效的减少杂质散射和缺陷引起的负面效应,同时,PbTe的能带结构对称性好,价带中有效质量大的重空穴带是非简并的,俄歇复合率很小,具有较高的发光效率。该材料是理想的中波红外材料,被广泛应用于红外光电探测器、激光二极管、太阳能电池等领域。
目前,PbTe材料与一些常见的半导体材料如CdTe,GaAs,Si,Ge等所组成的异质结结构成为了人们研究的热点。在Si衬底上外延PbTe材料可以实现与现有微电子技术结合制作红外焦平面阵列,但是Si的晶格常数与PbTe/> 相差较大,在Si衬底上外延PbTe材料容易形成晶格失配,而且两者的热膨胀系数也相差较大,这使得在Si衬底上很难生长出高质量的PbTe材料外延层。
石墨烯是一种具有光谱吸收范围宽、载流子迁移率高和响应速度快等优异性能的新型零带隙半金属二维材料,在电子信息、材料、微纳加工、能源、生物医学等领域具有重要的应用前景,被认为是未来革命性的材料。然而,石墨烯零带隙能带结构,使其光吸收能力相对较弱(在较宽波长范围内吸收率仅为2.3%),并且还存在增益机制小以及载流子复合速率较快等不足,从而限制了纯石墨烯在光电探测器方面的应用。
发明内容
基于此,有必要针对上述技术问题,提供一种复合异质结光电探测器及其制备方法。
一种复合异质结光电探测器,包括:硅基底和位于所述硅基底上表面的SiO2绝缘层,所述硅基底和SiO2绝缘层上刻蚀有硅孔,所述硅孔内外延制备有PbTe材料,所述PbTe材料上沉积有位于硅孔内的三维石墨烯,得到PbTe-graphene/Si复合异质结,所述硅基底的底面和所述SiO2绝缘层的上表面上均设置有电极,形成PbTe-graphene/Si复合异质结结构的光电探测器。
在其中一个实施例中,所述硅基底为P型硅,制备得到的PbTe材料为N型,三维石墨烯在室温状态直接沉积在PbTe上形成复合材料,SiO2绝缘层的厚度为300nm。
在其中一个实施例中,所述电极组成为5nm Cr和50nm Au。
一种复合异质结光电探测器的制备方法,包括以下步骤:利用二元曝光机对硅基底和SiO2绝缘层进行光刻,露出待刻蚀的硅孔部分;采用RIE等离子刻蚀机对所述待刻蚀的硅孔部分进行干法刻蚀,得到硅孔;通过电化学原子层外延沉积技术在硅孔内外延制备PbTe材料,形成PbTe/Si异质结结构;基于微波等离子体化学气相沉积技术在PbTe上沉积三维石墨烯;利用氧气等离子体刻蚀多余的三维石墨烯,保留位于硅孔中的三维石墨烯,形成PbTe-graphene/Si复合异质结结构;采用磁控溅射镀金方法,对制备的PbTe-graphene/Si复合异质结结构进行加工,得到器件电极,形成PbTe-graphene/Si复合异质结结构的光电探测器。
在其中一个实施例中,所述制备过程中所需沉积溶液均采用去离子水配置,采用的沉积溶液配置原料包括10mM TiO2、5mM Pb(NO3)2和100mM NaOH;在沉积时,设置沉积电位为-1.3V~-1.45V,沉积时间为20~30min。
在其中一个实施例中,所述沉积溶液配置具体过程为:将5mM的Pb(NO3)2和10mMTiO2分别溶于1000ml含有100mM NaOH的溶液中,并分别命名为铅溶液和碲溶液;将配置好的铅溶液与碲溶液按照1:1的体积比混合倒入电解池中。
在其中一个实施例中,所述光刻胶为LOR5A与AZ3100光刻胶,显影液为AZ300;采用的涂胶参数包括匀胶机的参数,设置为转速500rpm,5s;1500rpm,25s;3000rpm,3s;首先旋涂LOR5A光刻胶,涂胶完毕后,将Si/SiO2片放在恒温烘干机上,170℃烘12min;LOR5A烘干后旋涂AZ3100光刻胶,烘干温度改为115℃;设置曝光时间为25s,显影时间为2min。
在其中一个实施例中,在进行刻蚀时,设置刻蚀参数为:CHF3:100sccm;SF6:20sccm;位置:40%;刻蚀功率:160W;刻蚀时间15min~30min。
在其中一个实施例中,在电化学原子层外延沉积技术中,包括三电极体系,所述三电极体系由工作电极、对电极和参比电极组成;其中,所述工作电极为刻蚀后的Si孔,所述对电极为铂箔,所述参比电极为Ag/AgCl。
在其中一个实施例中,在采用微波等离子体化学气相沉积技术沉积三维石墨烯时,设置功率为800W,生长温度为室温,气体为CH4:H2=10:6sccm,沉积时间5-30min。
相比于现有技术,本发明的优点及有益效果在于:通过在硅基底和SiO2绝缘层上刻蚀硅孔,在硅孔内直接外延制备PbTe材料,并利用MPCVD在PbTe上室温沉积三维石墨烯材料,成功制备了PbTe-graphene/Si复合结构异质结,形成了PbTe-graphene/Si复合异质结结构的光电探测器。在直接对材料图形化的基础上,实现了PbTe材料与三维石墨烯材料优势复合,延长了载流子寿命,提高了器件的增益,降低了器件暗电流。本发明操作简单,室温制备,成本低廉,为制备具有宽光谱响应、高响应度和高灵敏度的光电探测器提供了研究思路。
附图说明
图1为一个实施例中一种复合异质结光电探测器的结构示意图;
图2为一个实施例中一种复合异质结光电探测器的制备方法的流程示意图;
图3为实施例一刻蚀时间为20min的硅孔深度图;
图4为实施例一沉积制备的PbTe/graphene复合材料形貌图;
图5为实施例一制备的探测器的时间分辨光响应图;
图6为实施例一制备的探测器的时间分辨光响应光谱中提取的器件的响应和恢复时间图;
图7为实施例二沉积制备的材料形貌图;
图8为实施例二制备的探测器的时间分辨光响应图;
图9为实施例二制备的探测器的时间分辨光响应光谱中提取的器件的响应和恢复时间图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本发明做进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在一个实施例中,如图1所示,提供了一种复合异质结光电探测器,包括:硅基底1和位于硅基底上表面的SiO2绝缘层2,硅基底1和SiO2绝缘层2上刻蚀有硅孔,硅孔内外延制备有PbTe材料,PbTe材料上沉积有位于硅孔内的三维石墨烯,得到PbTe-graphene/Si复合异质结3,硅基底1的底面和SiO2绝缘层2的上表面上均设置有电极4,形成PbTe-graphene/Si复合异质结结构的光电探测器。
在本实施例中,通过设置硅基底1和位于硅基底上表面的SiO2绝缘层2,在硅基底1和SiO2绝缘层2上刻蚀有硅孔,在硅孔内外延制备有PbTe材料,利用MPCVD成功制备了PbTe-graphene/Si复合结构异质结3,并设置上下结构的电极4,形成了PbTe-graphene/Si复合异质结结构的光电探测器,在直接对材料图形化的基础上,实现了PbTe材料与三维石墨烯材料优势复合,延长了载流子寿命,提高了器件的增益,降低了器件暗电流,操作简单,室温制备,成本低廉,为制备具有宽光谱响应、高响应度和高灵敏度的光电探测器提供了研究思路。
本发明采用三维结构的石墨烯与PbTe复合,三维结构的石墨烯,除去具有二维石墨烯的优异性能之外,三维石墨烯还具有三维空间网状结构,具有非常高的比表面积和良好的孔结构,有利于离子传输和电极反应,与PbTe能够形成均匀的导电网络,有利于提高器件的电荷收集效率和稳定性,从而在电化学应用中有更好的表现,有助于提高复合材料的整体性能。
其中,硅基底为P型硅,制备得到的PbTe材料为N型,三维石墨烯在室温状态直接沉积在PbTe上形成复合材料,SiO2绝缘层的厚度为300nm。
具体地,由于硅基底为P型硅,制备得到的PbTe材料为N型,因此两种材料能够在硅孔内形成PbTe-graphene/Si复合异质结,实现两种材料之间的结合。
其中,电极的组成为5nm Cr和50nm Au。
在一个实施例中,如图2所示,提供了一种复合异质结光电探测器的制备方法,用于制备上述实施例中的一种复合异质结光电探测器,包括以下步骤:
步骤S1,利用二元曝光机对硅基底和SiO2绝缘层进行光刻,露出待刻蚀的硅孔部分。
具体地,SiO2绝缘层是硅基底氧化得到,在SiO2绝缘层上涂抹光刻胶,根据设定的图案,采用二元曝光机对硅基底和SiO2绝缘层进行光刻,在硅基底上露出待刻蚀的硅孔部分。
步骤S2,采用RIE等离子刻蚀机对待刻蚀的硅孔部分进行干法刻蚀,得到硅孔。
具体地,基于待刻蚀的硅孔部分,采用RIE等离子刻蚀机对硅孔部分进行干法刻蚀,刻蚀时需要穿透SiO2绝缘层,进入硅基底部分,在硅基底上形成未穿透的硅孔,刻蚀后,硅表面不平整。
步骤S3,通过电化学原子层外延沉积技术在硅孔内外延制备PbTe材料,形成PbTe/Si异质结结构。
具体地,采用电化学原子层外延沉积技术,基于电化学工作站和三电极体系在得到的硅孔内进行恒电位沉积,实现在硅孔内外延制备PbTe材料,形成PbTe/Si异质结结构。
步骤S4,基于微波等离子体化学气相沉积技术在PbTe上沉积三维石墨烯。
具体地,基于微波等离子体化学气相沉积技术(Microwave Plasma ChemicalVapor Deposition,MPCVD),在得到的PbTe材料上沉积三维石墨烯graphene,能够在较低的温度下沉积,避免了高温对衬底的损伤,且低温工艺适配大多数半导体工艺流程。
步骤S5,利用氧气等离子体刻蚀多余的三维石墨烯,保留位于硅孔中的三维石墨烯,形成PbTe-graphene/Si复合异质结结构。
具体地,由于沉积的三维石墨烯可能会位于硅孔外,因此,需要采用氧气等离子体刻蚀多余的三维石墨烯,仅保留位于硅孔内的三维石墨烯,从而形成PbTe-graphene/Si复合异质结结构,实现了PbTe-graphene/Si材料的图形化,有助于开发高性能小型化PbTe-graphene/Si红外光电探测器。
步骤S6,采用磁控溅射镀金方法,对制备的PbTe-graphene/Si复合异质结结构进行加工,得到器件电极,形成PbTe-graphene/Si复合异质结结构的光电探测器。
具体地,采用磁控溅射镀金方法,对制备得到的PbTe-graphene/Si复合异质结结构进行加工,形成上下结构的电极,得到PbTe-graphene/Si复合异质结结构的光电探测器,结合了三维石墨烯与PbTe复合材料的优点,延长了载流子寿命,提高了器件增益,有助于研究具备宽光谱响应、高响应度和高灵敏度等优点的光电探测器。
在本实施例中,通过二元曝光机对硅基底和SiO2绝缘层进行光刻,露出待刻蚀的硅孔部分,采用RIE等离子刻蚀机对待刻蚀的硅孔部分进行干法刻蚀,得到硅孔,通过电化学原子层外延沉积技术在硅孔内外延制备PbTe材料,形成PbTe/Si异质结结构,基于微波等离子体化学气相沉积技术在PbTe上沉积三维石墨烯,利用氧气等离子体刻蚀多余的三维石墨烯,保留位于硅孔中的三维石墨烯,形成PbTe-graphene/Si复合异质结结构,采用磁控溅射镀金方法,对制备的PbTe-graphene/Si复合异质结结构进行加工,得到器件电极,形成PbTe-graphene/Si复合异质结结构的光电探测器,能够在直接对材料图形化的基础上,实现PbTe材料与三维石墨烯材料优势复合,延长了载流子寿命,提高了器件的增益,降低了器件暗电流。
本发明光电探测器的制备方法操作简单,能够在室温状态下制备光电探测器,且无需大型设备,成本低廉,实现了复合材料的图形化,能够精准沉积PbTe-graphene/Si材料,且提高了复合异质结构光电探测器的响应度、比探测率和响应速度,降低了器件的暗电流,为制备具有宽光谱响应、高响应度和高灵敏度的光电探测器提供了研究思路。
在一个实施例中,制备过程中所需的沉积溶液均采用去离子水配置,采用的沉积溶液配置原料包括10mM TiO2、5mM Pb(NO3)2和100mM NaOH;在沉积时,设置沉积电位为-1.3V~-1.45V,沉积时间为20~30min。
在一个实施例中,沉积溶液配置具体过程为:将5mM的Pb(NO3)2和10mM TiO2分别溶于1000ml含有100mM NaOH的溶液中,并分别命名为铅溶液和碲溶液;将配置好的铅溶液与碲溶液按照1:1的体积比混合倒入电解池中。
在一个实施例中,光刻胶为LOR5A与AZ3100光刻胶,显影液为AZ300;采用的涂胶参数包括匀胶机的参数,设置为转速500rpm,5s;1500rpm,25s;3000rpm,3s;首先旋涂LOR5A光刻胶,涂胶完毕后,将Si/SiO2片放在恒温烘干机上,170℃烘12min;LOR5A烘干后旋涂AZ3100光刻胶,烘干温度改为115℃;设置曝光时间为25s,显影时间为2min。
在一个实施例中,在进行刻蚀时,设置刻蚀参数为:CHF3:100sccm;SF6:20sccm;位置:40%;刻蚀功率:160W;刻蚀时间15min~30min。
在一个实施例中,在电化学原子层外延沉积技术中,包括三电极体系,三电极体系由工作电极、对电极和参比电极组成;其中,工作电极为刻蚀后的Si孔,对电极为铂箔,参比电极为Ag/AgCl。
在一个实施例中,在采用微波等离子体化学气相沉积技术沉积三维石墨烯时,设置功率为800W,生长温度为室温,气体为CH4:H2=10:6sccm,沉积时间5-30min。
实施例一
在制备复合异质结光电探测器时,硅孔刻蚀时间设置为20min,外延沉积PbTe材料时,采用-1.4V的沉积电位,沉积时间为20min,获得金字塔型的PbTe材料;采用MPCVD技术沉积graphene。
制备完成后,利用4200-SCS半导体特性分析系统,对得到的复合异质结光电探测器性能进行测试,激光器波长为1550nm,时间周期为10s,偏置电压0V,器件结构如图1所示。
试验结果:利用扫描电镜进行表征,可知刻蚀20min的Si孔深度为1.78μm,如图3所示;沉积所得的PbTe/graphene复合材料为金字塔型,形貌图如图4所示;器件在不同的激光功率照射下的PbTe-graphene/Si光电探测器的时间分辨光响应光谱如图5所示,不断重复的方波证明器件具有良好的重复性,并且电流随着激光功率的增加而增加。激光功率为180mW时,器件的净光电流为1.1×10-7A,暗电流为0.6×10-9A,计算得PbTe-graphene/Si光电探测器的响应度为2.8×10-3A/W,比探测率为1.8×109Jones。
图6为本实施例制得的光电探测器在光源打开和关闭时,从时间分辨光响应光谱中提取的器件的响应和恢复时间图,从图可以看出,PbTe-graphene/Si探测器的响应时间和回复时间分别为0.19s和0.15s,响应速度较快。
实施例二
在制备复合异质结光电探测器时,硅孔刻蚀时间设置为20min,外延沉积PbTe材料时,采用-1.4V的沉积电位,沉积时间为30min,获得纳米线型的PbTe材料;沉积graphene与实施例一相同。
制备完成后,利用4200-SCS半导体特性分析系统,对制得的复合异质结光电探测器性能进行测试,激光器波长为1550nm,时间周期为10s,偏置电压0V。
试验结果:利用扫描电镜进行表征,可知沉积时间为30min时,所得的PbTe材料为纳米线型,形貌图如图7所示;本实施例制得的光电探测器在不同的激光功率照射下的PbTe-graphene/Si光电探测器的时间分辨光响应光图如图8所示;激光功率为180mW时,器件的净光电流为1.5×10-8A,暗电流为5.2×10-10A,计算得PbTe-graphene/Si光电探测器的响应度为3.9×10-4A/W,比探测率为2.8×108Jones。
图9为本实施例制得的光电探测器在光源打开和关闭时,从时间分辨光响应光谱中提取的器件的响应和恢复时间图,从图可以看出,沉积时间为30min的PbTe-graphene/Si探测器的响应时间和回复时间分别为0.16s和0.15s,响应速度较快。
以上内容是结合具体的实施方式对本发明所做的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种复合异质结光电探测器,其特征在于,包括:硅基底和位于所述硅基底上表面的SiO2绝缘层,所述硅基底和SiO2绝缘层上刻蚀有硅孔,所述硅孔内外延制备有PbTe材料,所述PbTe材料上沉积有位于硅孔内的三维石墨烯,得到PbTe-graphene/Si复合异质结,所述硅基底的底面和所述SiO2绝缘层的上表面上均设置有电极,形成PbTe-graphene/Si复合异质结结构的光电探测器。
2.根据权利要求1所述的复合异质结光电探测器,其特征在于,所述硅基底为P型硅,制备得到的PbTe材料为N型,三维石墨烯在室温状态直接沉积在PbTe上形成复合材料,SiO2绝缘层的厚度为300nm。
3.根据权利要求1所述的复合异质结光电探测器,其特征在于,所述电极组成为5nm Cr和50nm Au。
4.一种复合异质结光电探测器的制备方法,其特征在于,包括以下步骤:
利用二元曝光机对硅基底和SiO2绝缘层进行光刻,露出待刻蚀的硅孔部分;
采用RIE等离子刻蚀机对所述待刻蚀的硅孔部分进行干法刻蚀,得到硅孔;
通过电化学原子层外延沉积技术在硅孔内外延制备PbTe材料,形成PbTe/Si异质结结构;
基于微波等离子体化学气相沉积技术在PbTe上沉积三维石墨烯;
利用氧气等离子体刻蚀多余的三维石墨烯,保留位于硅孔中的三维石墨烯,形成PbTe-graphene/Si复合异质结结构;
采用磁控溅射镀金方法,对制备的PbTe-graphene/Si复合异质结结构进行加工,得到器件电极,形成PbTe-graphene/Si复合异质结结构的光电探测器。
5.根据权利要求4所述的复合异质结光电探测器的制备方法,其特征在于,所述制备过程中所需沉积溶液均采用去离子水配置,采用的沉积溶液配置原料包括10mM TiO2、5mM Pb(NO3)2和100mM NaOH;在沉积时,设置沉积电位为-1.3V~-1.45V,沉积时间为20~30min。
6.根据权利要求5所述的复合异质结光电探测器的制备方法,其特征在于,所述沉积溶液配置具体过程为:将5mM的Pb(NO3)2和10mM TiO2分别溶于1000ml含有100mM NaOH的溶液中,并分别命名为铅溶液和碲溶液;将配置好的铅溶液与碲溶液按照1:1的体积比混合倒入电解池中。
7.根据权利要求4所述的复合异质结光电探测器的制备方法,其特征在于,所述光刻胶为LOR5A与AZ3100光刻胶,显影液为AZ300;采用的涂胶参数包括匀胶机的参数,设置为转速500rpm,5s;1500rpm,25s;3000rpm,3s;首先旋涂LOR5A光刻胶,涂胶完毕后,将Si/SiO2片放在恒温烘干机上,170℃烘12min;LOR5A烘干后旋涂AZ3100光刻胶,烘干温度改为115℃;设置曝光时间为25s,显影时间为2min。
8.根据权利要求4所述的复合异质结光电探测器的制备方法,其特征在于,在进行刻蚀时,设置刻蚀参数为:CHF3:100sccm;SF6:20sccm;位置:40%;刻蚀功率:160W;刻蚀时间15min~30min。
9.根据权利要求4所述的复合异质结光电探测器的制备方法,其特征在于,在电化学原子层外延沉积技术中,包括三电极体系,所述三电极体系由工作电极、对电极和参比电极组成;其中,所述工作电极为刻蚀后的Si孔,所述对电极为铂箔,所述参比电极为Ag/AgCl。
10.根据权利要求4所述的复合异质结光电探测器的制备方法,其特征在于,在采用微波等离子体化学气相沉积技术沉积三维石墨烯时,设置功率为800W,生长温度为室温,气体为CH4:H2=10:6sccm,沉积时间5-30min。
CN202311155810.XA 2023-09-07 2023-09-07 一种复合异质结光电探测器及其制备方法 Pending CN117293209A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311155810.XA CN117293209A (zh) 2023-09-07 2023-09-07 一种复合异质结光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311155810.XA CN117293209A (zh) 2023-09-07 2023-09-07 一种复合异质结光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN117293209A true CN117293209A (zh) 2023-12-26

Family

ID=89252700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311155810.XA Pending CN117293209A (zh) 2023-09-07 2023-09-07 一种复合异质结光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN117293209A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120223291A1 (en) * 2009-09-29 2012-09-06 Research Triangle Institute, International Quantum dot-fullerene junction based photodetectors
CN107706265A (zh) * 2017-09-26 2018-02-16 合肥工业大学 一种外尔半金属异质结红外探测器及其制备方法
CN110277468A (zh) * 2019-06-26 2019-09-24 山东大学 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法
CN111048621A (zh) * 2020-01-13 2020-04-21 重庆理工大学 一种基于石墨烯/二硒化铂/硅复合异质结的光电探测器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120223291A1 (en) * 2009-09-29 2012-09-06 Research Triangle Institute, International Quantum dot-fullerene junction based photodetectors
CN107706265A (zh) * 2017-09-26 2018-02-16 合肥工业大学 一种外尔半金属异质结红外探测器及其制备方法
CN110277468A (zh) * 2019-06-26 2019-09-24 山东大学 一种大尺寸石墨烯/二维碲化物异质结红外光电探测器的制备方法
CN111048621A (zh) * 2020-01-13 2020-04-21 重庆理工大学 一种基于石墨烯/二硒化铂/硅复合异质结的光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
Wu et al. In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio
Wang et al. Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors
Salim et al. Effect of silicon substrate type on Nb2O5/Si device performance: an answer depends on physical analysis
CN109950403B (zh) 一种铁电场调控的二维材料pn结光电探测器及制备方法
KR100847741B1 (ko) p-n접합 계면에 패시베이션층을 구비하는 점 접촉 이종접합 실리콘 태양전지 및 그의 제조방법
CN104157721B (zh) 基于石墨烯/硅/石墨烯的雪崩光电探测器及其制备方法
CN107146830B (zh) 一种制备柔性透明的石墨烯/硅金属-半导体-金属光电探测器的方法
Wu et al. Defect-induced broadband photodetection of layered γ-In 2 Se 3 nanofilm and its application in near infrared image sensors
CN209929345U (zh) 一种铁电场调控的二维材料pn结光电探测器
US11605743B2 (en) Photodetector based on PtSe2 and silicon nanopillar array and preparation method thereof
Xie et al. p-CdTe nanoribbon/n-silicon nanowires array heterojunctions: photovoltaic devices and zero-power photodetectors
Sun et al. SbSI whisker/PbI 2 flake mixed-dimensional van der Waals heterostructure for photodetection
Li et al. Broadband InSb/Si heterojunction photodetector with graphene transparent electrode
Nie et al. Piezo-phototronic effect enhanced photodetectors based on MAPbI 3 perovskite
CN113972262B (zh) 氧化镓-二维p型范德华隧穿晶体管、双波段光电探测器件及制备方法
CN111525036B (zh) 一种自驱动钙钛矿光电探测器及其制备方法
US20230098095A1 (en) PHOTODIODE BASED ON STANNOUS SELENIDE SULFIDE NANOSHEET/GaAs HETEROJUNCTION AND PREPARATION METHOD AND USE THEREOF
Chang et al. Narrow-bandgap Sn–Pb mixed perovskite single crystals for high-performance near-infrared photodetectors
CN108807678B (zh) 一种pcbm受体增强型量子点光电探测单元及其制备方法和探测器
CN107808819A (zh) 一种液态石墨烯应用于GaN基材料及器件的方法
Luo et al. A self-powered ultraviolet photodetector with van der Waals Schottky junction based on TiO2 nanorod arrays/Au-modulated V2CTx MXene
Yang et al. Visible and infrared photodiode based on γ-InSe/Ge van der Waals heterojunction for polarized detection and imaging
CN116130529B (zh) 一种具有宽频光电响应的探测器件及其制备方法
Xu et al. Graphene for Post-Moore Silicon Optoelectronics
CN111900253A (zh) 一种基于钙钛矿的新型异质结光电器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination