CN114669301A - 三维石墨烯凝胶复合材料及其制备、应用方法 - Google Patents

三维石墨烯凝胶复合材料及其制备、应用方法 Download PDF

Info

Publication number
CN114669301A
CN114669301A CN202210407044.0A CN202210407044A CN114669301A CN 114669301 A CN114669301 A CN 114669301A CN 202210407044 A CN202210407044 A CN 202210407044A CN 114669301 A CN114669301 A CN 114669301A
Authority
CN
China
Prior art keywords
composite material
gel composite
reaction
dimensional graphene
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210407044.0A
Other languages
English (en)
Inventor
安伟佳
胡金山
杨涛
刘畅
崔文权
梁英华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Science and Technology
Original Assignee
North China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Science and Technology filed Critical North China University of Science and Technology
Priority to CN202210407044.0A priority Critical patent/CN114669301A/zh
Publication of CN114669301A publication Critical patent/CN114669301A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

一种三维石墨烯凝胶复合材料的制备方法,以石墨为原料,采用改进的Hummers法制备氧化石墨烯溶液;称取一定量的催化剂加入到溶液中,在室温下超声处理;在混合溶液中加入还原性物质,超声处理后转移至内衬为聚四氟乙烯的反应釜中进行反应;将反应液冷却至室温后采用去离子水充分浸泡,后置于冰箱中进行冷冻处理;将样品在真空冷冻干燥机进行冷冻干燥,得到三维石墨烯凝胶复合材料。本发明不仅体现了三维石墨烯凝胶优异的吸附性能,实现吸附富集‑光催化芬顿多场耦合协同降解有机污染物;三维石墨烯优异的导电性能可加快光生电荷的传输,提高光催化芬顿催化降解效率,解决了催化剂难以回收利用的问题。

Description

三维石墨烯凝胶复合材料及其制备、应用方法
技术领域
本发明涉及多场耦合与强化处理有机废水技术领域,具体涉及一种吸附-光催化芬顿催化降解多场耦合处理废水的催化剂,即三维石墨烯凝胶复合材料及其制备方法。
背景技术
水体污染,尤其是难降解的有机污染物对人体健康具有较大的威胁,亟需开发高效的污染物处理新技术以及新型催化材料。现有污染物分子去除主要集中在吸附法和高级氧化技术,其中高级氧化技术可以组合使用强化过程中产生的活性自由基,提高催化降解效率。吸附法作为染物分子快速吸附去除的有效方法,其传统吸附剂如活性炭、水滑石等存在着吸附容量有限,吸附速度慢,吸附不能真正降解矿化废水、难以回收利用的问题。经过多方研究表明,光催化与芬顿氧化技术耦合与协同,有利于氧化处理能力的提升,可实现对废水污染物分子的高效降解。而光催化芬顿材料也存在容易团聚,降低比表面积造成催化降解效率的下降的问题。
单一的吸附法或光催化芬顿耦合技术均难以完美解决污染物分子的高效去除,将吸附-光催化芬顿多场耦合与过程强化,实现对有机污染物快速吸附富集与光芬顿催化氧化的协同,有望突破焦化废水中有机污染物深度去除的关键核心技术,但如今并没有可靠方案的记载。
发明内容
本发明是针对背景技术中提及的技术缺陷,一是提供一种吸附-光催化芬顿催化降解多场耦合处理废水的催化剂,即三维石墨烯凝胶复合材料,二是提供了这种复合材料的制备方法。这种技术方案,将光催化芬顿催化材料修饰在三维石墨烯凝胶表面,可利用二维石墨烯的片层阻隔作用有效避免催化材料团聚的问题,同时石墨烯优异的导电性可加快光生载流子的分离效率。
为实现上述技术目的,本发明所采用的技术方案是:一种三维石墨烯凝胶复合材料的制备方法,制备步骤如下:
(1)以石墨为原料,采用改进的Hummers法制备氧化石墨烯溶液;
(2)称取一定量的光芬顿催化剂加入到步骤(1)溶液中,在室温下超声处理;
(3)在步骤(2)所得的混合溶液中加入还原性物质,超声处理后转移至内衬为聚四氟乙烯的反应釜中进行反应;
(4)将反应液冷却至室温后采用去离子水充分浸泡,后置于冰箱中进行冷冻处理;
(5)将步骤(4)冷冻所得的样品在真空冷冻干燥机进行冷冻干燥,得到三维石墨烯凝胶复合材料。
作为优选的技术方案:步骤(1)所得氧化石墨烯溶液在去离子水中超声2~5 h,溶度为5~20 mg/mL。
作为优选的技术方案:步骤(2)中,氧化石墨烯溶液所含石墨烯与光芬顿催化剂的质量比在0.1~1:1;光芬顿催化剂均匀分散在氧化石墨烯表面。
作为优选的技术方案:步骤(2)所述的光芬顿催化剂包括铁酸盐体系MFe2O4(其中M=Co、Zn、Cu等)、铋酸铜、铁酸铋、钒酸铁、Fe掺杂Bi系材料中的一种。
作为优选的技术方案:步骤(3)所述的还原性物质包括抗坏血酸、葡萄糖、硼氢化钠等;所述还原性物质与步骤(2)溶液中所含氧化石墨烯的质量比为5~15:1;超声处理时间控制在2~5 h;反应釜中反应温度120~180℃,反应时间在4~12 h。
作为优选的技术方案:步骤(4)所述的冰箱冷冻温度为-20~-10℃,冷冻时间控制在12~24 h。
作为优选的技术方案:步骤(5)所述的冷冻干燥温度为-40~-20℃,真空度为20~200 pa,冷冻时间控制在12~24 h。
一种三维石墨烯凝胶复合材料,如权利要去1-8中任一项所述方法制备的三维石墨烯凝胶复合材料;所述三维石墨烯凝胶复合材料呈现出三维宏观结构,压缩后可迅速恢复原状。
一种三维石墨凝胶复合材料的应用,所述三维石墨凝胶复合材料用于吸附-光催化芬顿催化降解多场耦合处理废水的催化剂;所述催化剂既有光催化降解活性,也可进行芬顿反应。
与现有技术相比,本发明利用光催化和芬顿产生的协同作用,不仅加快了羟基自由基的产生,促进了催化降解效率;同时还避免了铁泥的产生,可将光催化-芬顿耦合体系推向废水污染物处理实际应用中;不仅解决了传统吸附材料吸附容量有限且难以回收利用的关键问题,攻克了当前光催化芬顿催化材料容易团聚造成催化降解性能下降的问题,同时吸附与催化降解位点的一致性使其具有高效的处理效率;
这种催化剂/三维石墨烯凝胶复合材料,不仅体现了三维石墨烯凝胶优异的吸附性能,同时附着在石墨烯表面的光芬顿催化材料可以原位催化降解吸附的污染物分子,实现吸附富集-光催化芬顿多场耦合协同降解有机污染物;三维石墨烯优异的导电性能可加快光生电荷的传输,提高光催化芬顿催化降解效率,同时其宏观结构有效解决了催化剂难以回收利用的问题。
本发明提出制备催化剂/三维石墨烯凝胶复合材料,在有机污染物吸附-光催化芬顿协同降解方面展现出广阔的应用前景。
附图说明
图1为本发明实施例1制备得到的不同CuBi2O4含量修饰三维石墨烯凝胶样品对苯酚的吸附性能线性图。
图2为本发明实施例1制备得到的不同CuBi2O4含量修饰三维石墨烯凝胶样品对苯酚的吸附平衡后的光催化芬顿催化降解性能线性图。
图3为本发明实施例1制备样品的不同CuBi2O4含量修饰三维石墨烯凝胶样品对苯酚的吸附-光催化芬顿多场耦合协同处理性能线性图。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
本发明公开了一种三维石墨烯凝胶复合材料,并具体公开了这种复合材料的制备方法和应用方法。
这种三维石墨烯凝胶复合材料应用于吸附-光催化芬顿催化降解多场耦合处理废水的催化剂,不仅解决了传统吸附材料吸附容量有限且难以回收利用的关键问题,还攻克了当前光催化芬顿催化材料容易团聚造成催化降解性能下降的问题,同时吸附与催化降解位点的一致性使其具有高效的处理效率。
这种三维石墨烯凝胶复合材料呈现出三维宏观结构,具有良好的机械性能,可承受100-1000 g重物,并在压缩结束后迅速恢复原状。石墨烯片层不仅避免了光芬顿催化剂的团聚现象,同时其优异的导电性还可高效促进光生载流子的分离;石墨烯特有面吸附特性进行吸附富集的同时,可进一步结合石墨烯表面的光芬顿催化剂进行原位催化降解,利用吸附-催化降解活性位点的一致性,构建吸附富集-原位光催化芬顿多场耦合协同处理体系,提高对污染物的降解效率。
下面结合附图和具体实施方式对本发明中复合材料的制备方法作进一步详细的说明。本发明的实施例是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显而易见的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。
实施例1
本实施例具体公开了一种三维石墨烯凝胶复合材料的制备方法,具体制备步骤如下:
(1)以石墨为原料,采用改进的Hummers法制备氧化石墨烯溶液;将所得的氧化石墨烯溶液在去离子水中超声处理2 h,溶度为20 mg/mL;
(2)称取一定量的光芬顿催化剂加入到步骤(1)溶液中,在室温下超声处理;氧化石墨烯溶液中所含的石墨烯与光芬顿催化剂的质量比为0.1:1;光芬顿催化剂均匀分散在石墨烯表面;本实施例中,光芬顿催化剂优选铁酸盐体系MFe2O4(其中M=Co、Zn、Cu等);
(3)在步骤(2)所得的混合溶液中加入还原性物质,超声处理后转移至内衬为聚四氟乙烯的反应釜中进行反应;本实施例中,还原性物质选用葡萄糖;葡萄糖与步骤(2)所得溶液中所含氧化石墨烯的质量之比为15:1;超声处理时间控制在2 h;反应釜中反应温度120℃,反应时间在12 h;
(4)将反应液冷却至室温后采用去离子水充分浸泡,后置于冰箱中进行冷冻处理;本实施例中,冰箱冷冻温度为-20℃,冷冻时间控制12 h;
(5)将步骤(4)冷冻所得的样品在真空冷冻干燥机进行冷冻干燥,得到三维石墨烯凝胶复合材料;本实施例中,冷冻干燥温度为-40℃,真空度为20 pa,冷冻时间控制在12 h。
实施例2
本实施例具体公开了一种三维石墨烯凝胶复合材料的制备方法,具体制备步骤如下:
(1)以石墨为原料,采用改进的Hummers法制备氧化石墨烯溶液;所得氧化石墨烯溶液在去离子水中超声5 h所得,溶度为10 mg/mL;
(2)称取一定量的光芬顿催化剂加入到步骤(1)溶液中,在室温下超声处理;氧化石墨烯溶液中所含石墨烯与光芬顿催化剂的质量比为0.8:1;光芬顿催化剂均匀分散在石墨烯表面;本实施例中,光芬顿催化剂优选铋酸铜;
(3)在步骤(2)所得的混合溶液中加入还原性物质,超声处理后转移至内衬为聚四氟乙烯的反应釜中进行反应;本实施例中,还原性物质选用抗坏血酸;抗坏血酸与步骤(2)所得溶液中所含氧化石墨烯的质量之比为5:1;超声处理时间控制在5 h;反应釜中反应温度180℃,反应时间在4 h;
(4)将反应液冷却至室温后采用去离子水充分浸泡,后置于冰箱中进行冷冻处理;本实施例中,冰箱冷冻温度为-10℃,冷冻时间控制23h;
(5)将步骤(4)冷冻所得的样品在真空冷冻干燥机进行冷冻干燥,得到三维石墨烯凝胶复合材料;本实施例中,冷冻干燥温度为-20℃,真空度为180 pa,冷冻时间控制在24h。
实施例3
本实施例具体公开了一种三维石墨烯凝胶复合材料的制备方法,具体制备步骤如下:
(1)以石墨为原料,采用改进的Hummers法制备氧化石墨烯溶液;将所得氧化石墨烯溶液在去离子水中超声处理4 h,溶度为16 mg/mL;
(2)称取一定量的光芬顿催化剂加入到步骤(1)溶液中,在室温下超声处理;氧化石墨烯溶液中所含石墨烯与光芬顿催化剂的质量比为1:1;光芬顿催化剂均匀分散在石墨烯表面;本实施例中,光芬顿催化剂优选铁酸铋;
(3)在步骤(2)所得的混合溶液中加入还原性物质,超声处理后转移至内衬为聚四氟乙烯的反应釜中进行反应;本实施例中,还原性物质选用硼氢化钠;硼氢化钠与步骤(2)所得溶液中含有的氧化石墨烯的质量之比为10:1;超声处理时间控制在3 h;反应釜中反应温度150℃,反应时间在8 h;
(4)将反应液冷却至室温后采用去离子水充分浸泡,后置于冰箱中进行冷冻处理;本实施例中,冰箱冷冻温度为-16℃,冷冻时间控制20h;
(5)将步骤(4)冷冻所得的样品在真空冷冻干燥机进行冷冻干燥,得到三维石墨烯凝胶复合材料;本实施例中,冷冻干燥温度为-25℃,真空度为100 pa,冷冻时间控制在20h。
实施例4
本实施例具体公开了一种三维石墨烯凝胶复合材料的制备方法,具体制备步骤如下:
(1)以石墨为原料,采用改进的Hummers法制备氧化石墨烯溶液;将所得氧化石墨烯溶液在去离子水中超声处理3 h,溶度为10 mg/mL;
(2)称取一定量的光芬顿催化剂加入到步骤(1)溶液中,在室温下超声处理;氧化石墨烯溶液中所含石墨烯与光芬顿催化剂的质量比为0.5:1;光芬顿催化剂均匀分散在石墨烯表面;本实施例中,光芬顿催化剂优选钒铁酸;
(3)在步骤(2)所得的混合溶液中加入还原性物质,超声处理后转移至内衬为聚四氟乙烯的反应釜中进行反应;本实施例中,还原性物质选用抗坏血酸;抗坏血酸与步骤(2)所得溶液中所含氧化石墨烯的质量之比为8:1;超声处理时间控制在4 h;反应釜中反应温度120℃,反应时间在10 h;
(4)将反应液冷却至室温后采用去离子水充分浸泡,后置于冰箱中进行冷冻处理;本实施例中,冰箱冷冻温度为-10℃,冷冻时间控制18h;
(5)将步骤(4)冷冻所得的样品在真空冷冻干燥机进行冷冻干燥,得到三维石墨烯凝胶复合材料;本实施例中,冷冻干燥温度为-35℃,真空度为80 pa,冷冻时间控制在24 h。
实施例5
本实施例具体公开了一种三维石墨烯凝胶复合材料的制备方法,具体制备步骤如下:
(1)以石墨为原料,采用改进的Hummers法制备氧化石墨烯溶液,将制备的石墨烯溶液在去离子水中超声4h,控制浓度在15mg/mL;
(2)称取一定量的铁酸铋作为光芬顿催化剂加入到上述氧化石墨烯溶液中,控制氧化石墨烯溶液中石墨烯与催化剂质量比在0.8:1,继续在室温下超声处理3.5h;
(3)在步骤(2)所得的混合溶液中加入硼氢化钠作为还原性物质,控制还原性物质与与溶液所含氧化石墨烯的质量比为10:1,在超声4h后转移至内衬为聚四氟乙烯的反应釜中进行反应,控制反应温度在145℃之间,反应时间在8h;
(4)将步骤(3)得到的反应液却至室温后采用去离子水充分浸泡,后置于冰箱中进行冷冻处理,冰箱冷冻温度在-15~-10℃之间,冷冻时间控制在16~18 h;
(5)将步骤(4)冷冻所得的样品在真空冷冻干燥机进行冷冻干燥,冷冻干燥温度在-40~-35℃度之间,真空度在100~150 pa,冷冻时间控制在18~20 h,最后得到三维石墨烯凝胶复合材料。
显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域及相关领域的普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。本发明中未具体描述和解释说明的结构、装置以及操作方法,如无特别说明和限定,均按照本领域的常规手段进行实施。

Claims (9)

1.一种三维石墨烯凝胶复合材料的制备方法,其特征在于:
制备步骤如下:
(1)以石墨为原料,采用改进的Hummers法制备氧化石墨烯溶液;
(2)称取一定量的光芬顿催化剂加入到步骤(1)溶液中,在室温下超声处理;
(3)在步骤(2)所得的混合溶液中加入还原性物质,超声处理后转移至内衬为聚四氟乙烯的反应釜中进行反应;
(4)将反应液冷却至室温后采用去离子水充分浸泡,后置于冰箱中进行冷冻处理;
(5)将步骤(4)冷冻所得的样品在真空冷冻干燥机进行冷冻干燥,得到三维石墨烯凝胶复合材料。
2.根据权利要求1所述的三维石墨烯凝胶复合材料的制备方法,其特征在于:步骤(1)所得氧化石墨烯溶液在去离子水中超声2~5 h,溶度为5~20 mg/mL。
3.根据权利要求1所述的三维石墨烯凝胶复合材料的制备方法,其特征在于:步骤(2)中,氧化石墨烯溶液所含石墨烯与光芬顿催化剂的质量比在0.1~1:1;光芬顿催化剂均匀分散在氧化石墨烯表面。
4.根据权利要求1所述的三维石墨烯凝胶复合材料的制备方法,其特征在于:步骤(2)所述的光芬顿催化剂包括铁酸盐体系MFe2O4(其中M=Co、Zn、Cu等)、铋酸铜、铁酸铋、钒酸铁、Fe掺杂Bi系材料中的一种。
5.根据权利要求1所述的三维石墨烯凝胶复合材料的制备方法,其特征在于:步骤(3)所述的还原性物质包括抗坏血酸、葡萄糖、硼氢化钠等;
所述还原性物质与步骤(2)溶液中所含氧化石墨烯的质量之比为5~15:1;超声处理时间控制在2~5 h;反应釜中反应温度120~180℃,反应时间在4~12 h。
6.根据权利要求1所述的三维石墨烯凝胶复合材料的制备方法,其特征在于:步骤(4)所述的冰箱冷冻温度为-20~-10℃,冷冻时间控制在12~24 h。
7.根据权利要求1所述的三维石墨烯凝胶复合材料的制备方法,其特征在于:步骤(5)所述的冷冻干燥温度为-40~-20℃,真空度为20~200 pa,冷冻时间控制在12~24 h。
8.一种三维石墨烯凝胶复合材料,其特征在于,如权利要去1-8中任一项所述方法制备的三维石墨烯凝胶复合材料;所述三维石墨烯凝胶复合材料呈现出三维宏观结构,压缩后可迅速恢复原状。
9.一种根据权利要求9所述三维石墨凝胶复合材料的应用,其特征在于:所述三维石墨凝胶复合材料用于吸附-光催化芬顿催化降解多场耦合处理废水的催化剂;所述催化剂既有光催化降解活性,也可进行芬顿反应。
CN202210407044.0A 2022-04-19 2022-04-19 三维石墨烯凝胶复合材料及其制备、应用方法 Pending CN114669301A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210407044.0A CN114669301A (zh) 2022-04-19 2022-04-19 三维石墨烯凝胶复合材料及其制备、应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210407044.0A CN114669301A (zh) 2022-04-19 2022-04-19 三维石墨烯凝胶复合材料及其制备、应用方法

Publications (1)

Publication Number Publication Date
CN114669301A true CN114669301A (zh) 2022-06-28

Family

ID=82078444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210407044.0A Pending CN114669301A (zh) 2022-04-19 2022-04-19 三维石墨烯凝胶复合材料及其制备、应用方法

Country Status (1)

Country Link
CN (1) CN114669301A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888771A (zh) * 2022-10-11 2023-04-04 厦门伟然新碳科技有限公司 一种可光催化voc气体的红磷/石墨烯气凝胶的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105854860A (zh) * 2016-03-22 2016-08-17 江苏大学 一种高比表面积二氧化钛/石墨烯气凝胶的制备方法
CN106242015A (zh) * 2016-08-03 2016-12-21 同济大学 基于铁酸铋复合材料构建光芬顿体系降解四环素的方法
CN107185546A (zh) * 2017-05-10 2017-09-22 浙江工业大学 一种铁酸铋‑氧化石墨烯复合材料制备方法
CN107705998A (zh) * 2017-10-16 2018-02-16 浙江工业大学 一种铁酸盐@石墨烯水凝胶复合材料及其在电化学储能领域的应用
CN108620060A (zh) * 2018-04-26 2018-10-09 江南大学 一种钼酸铋石墨烯气凝胶复合物及其制备方法
CN110102303A (zh) * 2019-04-25 2019-08-09 浙江大学 一种负载铁酸钴石墨烯气凝胶催化剂及其制备方法
CN110237810A (zh) * 2019-05-21 2019-09-17 河南师范大学 一种协同吸附-光催化降解土霉素废水的氯氧化铋/石墨烯三维气凝胶的制备方法
KR20200099858A (ko) * 2019-02-15 2020-08-25 영남대학교 산학협력단 그래핀 상에서의 아연페라이트 제조방법 및 이를 이용한 태양광 하에서의 광촉매 활성
CN112774680A (zh) * 2020-12-23 2021-05-11 南京工业大学 一种铁酸锌-石墨烯复合气凝胶的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105854860A (zh) * 2016-03-22 2016-08-17 江苏大学 一种高比表面积二氧化钛/石墨烯气凝胶的制备方法
CN106242015A (zh) * 2016-08-03 2016-12-21 同济大学 基于铁酸铋复合材料构建光芬顿体系降解四环素的方法
CN107185546A (zh) * 2017-05-10 2017-09-22 浙江工业大学 一种铁酸铋‑氧化石墨烯复合材料制备方法
CN107705998A (zh) * 2017-10-16 2018-02-16 浙江工业大学 一种铁酸盐@石墨烯水凝胶复合材料及其在电化学储能领域的应用
CN108620060A (zh) * 2018-04-26 2018-10-09 江南大学 一种钼酸铋石墨烯气凝胶复合物及其制备方法
KR20200099858A (ko) * 2019-02-15 2020-08-25 영남대학교 산학협력단 그래핀 상에서의 아연페라이트 제조방법 및 이를 이용한 태양광 하에서의 광촉매 활성
CN110102303A (zh) * 2019-04-25 2019-08-09 浙江大学 一种负载铁酸钴石墨烯气凝胶催化剂及其制备方法
CN110237810A (zh) * 2019-05-21 2019-09-17 河南师范大学 一种协同吸附-光催化降解土霉素废水的氯氧化铋/石墨烯三维气凝胶的制备方法
CN112774680A (zh) * 2020-12-23 2021-05-11 南京工业大学 一种铁酸锌-石墨烯复合气凝胶的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. MUTHUKRISHNARAJ ET AL.: "Development of reduced graphene oxide/CuBi2O4 hybrid for enhanced photocatalytic behavior under visible light irradiation", 《CERAMICS INTERNATIONAL》, vol. 41, pages 6164 - 6168, XP029147778, DOI: 10.1016/j.ceramint.2014.12.113 *
JIQUAN LI ET AL.: "Significant Enhancement of the Visible Light Photocatalytic Properties in 3D BiFeO3/Graphene Composites", 《NANOMATERIALS》, vol. 9, pages 65 *
LILING HU ET AL.: "Solvothermal synthesis of octahedral and magnetic CoFe2O4–reduced graphene oxide hybrids and their photo-Fenton-like behavior under visiblelight irradiation", 《RSC ADVANCES》, vol. 11, pages 22250 - 22263 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888771A (zh) * 2022-10-11 2023-04-04 厦门伟然新碳科技有限公司 一种可光催化voc气体的红磷/石墨烯气凝胶的制备方法

Similar Documents

Publication Publication Date Title
CN111569878B (zh) 一种丝瓜络遗态多孔碳负载类芬顿催化剂的制备方法及应用
CN108675431B (zh) 一种制备多孔碳包覆磁性纳米铁水处理复合材料的方法
CN106633863B (zh) 具有高效吸附活性的3d聚苯胺/石墨烯气凝胶复合吸油材料及其制备方法
CN110172709B (zh) 基于金属离子与有机物吸附的MOFs碳化材料电化学阴极的制备方法及应用
CN114669301A (zh) 三维石墨烯凝胶复合材料及其制备、应用方法
CN113617351A (zh) 类石墨相氮化碳/石墨烯/氧化石墨烯复合气凝胶及方法
CN108940310B (zh) 一种Pd/Fe@Fe3O4复合催化剂及其制备方法与应用
CN114632520A (zh) 一种铝碳复合高级氧化催化剂的制备方法及其应用
CN109985616A (zh) 一种光催化降解有机废水的催化剂及其制备方法
CN107081137B (zh) 木质素接枝膨润土负载纳米零价铁复合材料及其制备方法
CN113134373B (zh) 一种用于水中磺胺类抗生素高级氧化处理的复合催化剂及其制备方法
CN108249550B (zh) 一种用于有机污染地下水修复的多效修复材料的制备方法
CN108217919B (zh) 一种用于有机污染地下水修复的多效复合修复材料
CN117138842A (zh) 一种酚醛树脂基复合光催化剂及其制备方法和应用
CN113731507B (zh) 一种石墨烯基三维复合催化剂及其制备方法和在连续流过硫酸盐废水处理中的应用
CN115445645B (zh) Cu2+1O@MXene类芬顿催化剂及其制备方法和应用
CN114588917A (zh) 一种硫掺杂碳骨架包裹八硫化七铁纳米颗粒双反应中心类芬顿催化剂的制备方法及应用
CN117443372B (zh) 一种锰氧化微藻-碳基pms催化剂及其制备方法、应用
CN114870790B (zh) 一种再生活性炭及其制备方法
CN116747867B (zh) 一种用于氧化法去除水中有机污染物的Co基催化剂的制备及其应用
CN113477219B (zh) 一种利用废弃烟蒂制备炭基吸附材料的方法及其应用
CN114772700A (zh) 利用铁锰双金属有机框架/改性还原氧化石墨烯复合材料去除磺胺二甲基嘧啶的方法
CN113209939B (zh) 一种金属硫化物-氧化镁-改性生物质炭复合材料及其制备方法和应用
CN110773119B (zh) 一种多价态共存铁基柱撑蒙脱石及其制备方法和应用
CN117299153A (zh) 水处理活化过硫酸盐的碳负载金属硫化物复合催化剂制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220628

RJ01 Rejection of invention patent application after publication