CN114621008A - 一种多元系锆钛酸铅基热释电陶瓷材料及其制备方法 - Google Patents

一种多元系锆钛酸铅基热释电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114621008A
CN114621008A CN202011467644.3A CN202011467644A CN114621008A CN 114621008 A CN114621008 A CN 114621008A CN 202011467644 A CN202011467644 A CN 202011467644A CN 114621008 A CN114621008 A CN 114621008A
Authority
CN
China
Prior art keywords
ceramic material
zirconate titanate
lead zirconate
ceramic
pyroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011467644.3A
Other languages
English (en)
Inventor
郭少波
姚春华
董显林
王根水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202011467644.3A priority Critical patent/CN114621008A/zh
Publication of CN114621008A publication Critical patent/CN114621008A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种多元系锆钛酸铅基热释电陶瓷材料及其制备方法,所述多元系锆钛酸铅基热释电陶瓷材料的组成通式为δPbTiO3‑ηPb(Mg1/3Nb2/3)O3‑φPb(Mn1/3Sb2/3)O3‑(1‑δ‑η‑φ)PbZrO3+xwt.%MnO2,其中:0.05≤δ≤0.20,0<η≤0.05,0<φ≤0.05,1≤x≤3。

Description

一种多元系锆钛酸铅基热释电陶瓷材料及其制备方法
技术领域
本发明涉及一种热释电陶瓷材料及其制备方法,具体涉及一种多元系锆钛酸铅基热释电陶瓷材料及其制备方法。
背景技术
热释电效应是指具有自发极化的材料在温度变化后产生电荷的效应,具有这一性质的材料被用于红外探测、热-电能量转换、热焦耳应用等方面,而其中热释电陶瓷,由于性能稳定、成本低廉、制备简单等优势,应用最为广泛。
锆钛酸铅(PbZr1-xTixO3,PZT)是ABO3型钙钛矿结构的二元系固溶体,其铁电性是在研究各种钙钛矿型化合物固溶体性能时发现的。1954年,B.Jaffe首先揭示了PZT陶瓷优异的压电性能,迄今为止该体系一直在压电陶瓷的研究和应用领域占据主导地位。富锆PZT陶瓷由于具有适中的热释电系数、稳定且较低的介电常数和介电损耗,在热释电应用方面具有得天独厚的优势,目前以PZT陶瓷作为核心敏感元的热释电传感器在军用和民用方面应用广泛。
研究结果表明,采用离子掺杂和引入多元系等技术途径能够显著改善PZT陶瓷的烧结特性和电学性能,尤其是多元系的引入能够使得体系在特定温度下的相界由点扩展为线,从而能够在更大范围调节材料的性能。实际上,经第三组元改性的PZT压电陶瓷具有不同的技术特点,如锆钛酸铅-铌镁酸铅(PZT-PMN)体系具有高径向压电耦合系数kp、高介电常数εr、较大的机械品质因子Qm值;锆钛酸铅-铌锌酸铅(PZT-PZN)体系温度稳定性好、致密度高、绝缘性能好;锆钛酸铅-锑锰酸铅(PZT-PMnS)体系具有介电损耗tanδ小、稳定性良好以及Qm可大范围调节等优点。
在上述经验的启发下,为了获得更为优异的综合性能和改善烧结性能,离子掺杂和引入第三组元成为富锆PZT热释电陶瓷改性的常见手段。如S.T.Liu等[文献1:Ferroelectrics,3,281,1972]制备了掺La的PZT陶瓷,其热释电系数可提高到18×10-8C·cm-2·K-1,远高于纯PZT陶瓷的数值。R.W.Whatmore等在PZT体系中引入铌铁酸铅(PFN)第三组元[专利:US4869840A]形成PZT-PFN三元系,显著改善了PZT陶瓷的综合热释电性能和烧结性能。英国GEC-Marconi公司使用混成式技术,以PZT-PFN陶瓷作为敏感材料,推出了不同像元的红外焦平面阵列器件,均获得极大成功,奠定了该公司在民用热释电成像领域的领先地位。引入第三组元并结合掺杂改性的PZT基热释电陶瓷还包括PZT-PZN体系[专利:US5141903]、PZT-PMN体系[专利:US6329656B1]、PZT-PMnS体系[专利:CN1583665A]等。
近年来,四元系乃至更多元系的PZT压电陶瓷不断涌现,这是因为多元系能更有效地综合各个组元的特点。如锆钛酸铅-铌镁酸铅-铌锰酸铅(PZT-PMN-PMnN)四元系具有高kp、高Qm、低介电损耗、力学性能优异等优点,是大功率压电变压器及其他功率型器件的优选材料体系。但是,四元系PZT陶瓷在热释电探测方面的研究及应用报道尚未出现,对此方面的研究及应用是这一领域的重要研究方向。
发明内容
本发明旨在开发具有更优异热释电性能的陶瓷材料,本发明提供一种多元系锆钛酸铅基热释电陶瓷材料及其制备方法,以填补四元系PZT陶瓷在热释电探测方面的研究及应用领域的空白。
一方面,本发明提供了一种多元系锆钛酸铅基热释电陶瓷材料,所述多元系锆钛酸铅基热释电陶瓷材料的组成通式为
Figure BDA0002834989370000021
Figure BDA0002834989370000022
其中:0.05≤δ≤0.20,0<η≤0.05,
Figure BDA0002834989370000023
1≤x≤3。
本发明中,四元系PZT热释电陶瓷材料是在在富锆PZT陶瓷基体中引入铌镁酸铅(PMN)和锑锰酸铅(PMnS)形成四元系固溶体,同时采用Mn离子掺杂改性,获得了一种综合性能优异的热释电陶瓷材料,拓展了现有富锆PZT热释电陶瓷的种类,可应用于非制冷红外热释电探测领域。
较佳的,所述热释电陶瓷材料极化后在1kHz频率下测试的室温介电常数小于250,介电损耗小于0.02。
较佳的,所述热释电陶瓷材料极化后在1kHz频率下测试的室温介电常数为190~240,介电损耗为0.008~0.015。
较佳的,所述多元系锆钛酸铅基热释电陶瓷材料的热释电系数为3.2~5.7×10- 8C/cm2·K。
另一方面,本发明还提供了一种制备上述的多元系锆钛酸铅基热释电陶瓷材料的方法,包括:
(1)以ZrO2、TiO2、Pb3O4、Nb2O5、Mg2(OH)2CO3、Sb2O3及Mn源作为原料,按照所述多元系锆钛酸铅基热释电陶瓷材料的组成通式进行配料并混合,得到原料粉体;
(2)将所得原料粉体于800~900℃下进行煅烧,得到陶瓷粉体;
(3)将所得陶瓷粉体压制成型,得陶瓷坯体;
(4)将所得陶瓷坯体在1150~1250℃下进行烧结,得到所述多元系锆钛酸铅基热释电陶瓷材料。
较佳的,所述Mn源为Mn的氧化物、或Mn的碳酸盐。
较佳的,所述煅烧的时间为2~4小时;所述烧结的时间为1~3小时。
较佳的,在压制成型之前,将陶瓷粉体和粘结剂混合进行造粒;且在压制成型之后,先将陶瓷坯体在700~900℃下进行排塑,再进行烧结;优选地,所述粘结剂选自聚乙烯醇PVA和聚乙烯醇缩丁醛酯PVB中的至少一种,加入量为陶瓷粉体的2~8wt%。
较佳的,在烧结之前,采用与陶瓷坯体相同组成的陶瓷粉体覆盖所述陶瓷坯体,然后放入密闭氧化铝坩埚中。
较佳的,将所得多元系锆钛酸铅基热释电陶瓷材料披覆银电极后,置于80~95℃的硅油中,在4~8kV/mm的电压下极化10~30分钟。
又,较佳的,将所得多元系锆钛酸铅基热释电陶瓷材料陶瓷材料加工成所需尺寸的样品,采用丝网印刷被覆银浆,烘干,然后将烘干的样品在700~800℃温度下烧银,得到银电极。再将所得表面披覆银电极的样品放入硅油中在一定温度下进行高压极化,样品极化完成清洗干净,进行性能测试。
有益效果:
与现有技术相比,本发明的热释电陶瓷材料具有以下优点:具有较大的热释电系数、较低的介电常数和介电损耗,在热释电应用方面具有一定优势。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,多元系锆钛酸铅基热释电陶瓷材料的组成通式为:
Figure BDA0002834989370000031
Figure BDA0002834989370000032
其中:0.05≤δ≤≤0.25,0<η≤0.05,
Figure BDA0002834989370000033
1≤x≤3。具体地讲,本发明通过在富锆PZT陶瓷基体中引入铌镁酸铅(PMN)和锑锰酸铅(PMnS)形成四元系固溶体,同时采用Mn离子掺杂改性,获得了综合性能优异的热释电陶瓷材料。
在本发明一实施方式中,采用固相反应法制备得到所述多元系锆钛酸铅基热释电陶瓷材料,其制备方法简单,可大规模应用。
混料。按多元系锆钛酸铅基热释电陶瓷材料的化学计量比配制ZrO2、TiO2、Pb3O4、Nb2O5、Mg2(OH)2CO3、Sb2O3及Mn源(Mn的氧化物或碳酸盐)并混合,得到混合粉体(也可称原料粉体)。其中,混合方式可为球磨混合等。例如,按一定料、球、水之比例湿法球磨使之混合均匀。
合成(或煅烧)。将混合粉体在800~900℃温度下保温2~4小时,得到陶瓷粉体。优选,在煅烧之前,也可进行压块处理。在煅烧完成之后,进行细磨,得到一定粒径的陶瓷粉体。该细磨可为二次球磨混合。例如按一定料、球、水比例进行湿法球磨,浆料烘干。
造粒。在陶瓷粉体中添加粘结剂,进行造粒处理和陈化,得到造粒粉体。其中,粘结剂可为聚乙烯醇PVA、PVB等。粘结剂的加入量可为陶瓷粉体的2~8wt%。陈化的温度可为室温,时间可为24~48小时,使粘结剂扩散均匀。
压制成型。将造粒粉体或陶瓷粉体进行压制成型,得到陶瓷素坯。所述压制成型的方式包括但不仅限于干压成型、等静压成型等。
将加入粘结剂进行造粒和压制成型所得陶瓷坯体进行排塑。其中排塑的温度可为700~900℃。
烧结。将陶瓷素坯在1150~1250℃下保温1~3小时,得到所述多元系锆钛酸铅基热释电陶瓷材料。
将所得陶瓷材料加工成所需尺寸的样品,采用丝网印刷被覆银浆,烘干,将烘干的样品在700~800℃温度下烧银。
将烧好银电极的样品放入硅油中在一定温度下进行高压极化,样品极化完成清洗干净,进行性能测试。其中极化可为:将烧好银电极的样品置于80~95℃的硅油中,在4~8kV/mm的电压下极化10~30分钟。该热释电陶瓷材料极化后在1kHz频率下测试的室温介电常数可优选≥210且小于250,介电损耗小于0.02。所述热释电陶瓷材料的热释电系数为3.2~5.7×10-8C/cm2·K。所述热释电陶瓷材料的的压电系数可为58~63。若无特殊说明,所得热释电陶瓷材料的性能测试基本是在室温下完成。
综上所述,本发明所得多元系锆钛酸铅基热释电陶瓷材料具有较大的热释电系数、较低的介电常数和介电损耗,拓展了现有富锆PZT热释电陶瓷的种类,具有非常优异的综合性能,可应用于非制冷红外探测领域。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
PZT热释电陶瓷材料组成为:0.05PbTiO3-0.05Pb(Mg1/3Nb2/3)O3-0.05Pb(Mn1/3Sb2/3)O3-0.85PbZrO3+2wt.%MnO2,制备和测试该组成的陶瓷材料的步骤为:
a)按配方组成计算各组成物质量,采用玛瑙球作为球磨子,球磨介质为去离子水,原料:玛瑙球:去离子水=1:1:0.6,球磨混合24小时,使各组分混合均匀;浆料烘干,加入10wt.%的去离子水压块,在850℃保温2小时合成。粉碎,过30目筛,得到陶瓷粉体;
b)再用湿法球磨细磨,原料:玛瑙球:去离子水=1:2:0.6,细磨24小时。浆料烘干,加入6wt.%PVA粘结剂,造粒,陈化24小时,过30目筛,压制成型,在800℃下排塑后得到陶瓷坯体;
c)为了防止铅组分挥发,将素坯用具有相同组成的陶瓷粉料将坯体覆盖,放入密闭氧化铝坩埚,以2℃/min的速率升温至1200℃,保温2小时烧结,冷却即得陶瓷材料;
d)将烧结好陶瓷材料的样品磨平、清洗,烘干,烧银电极;
e)在90℃硅油中,施加6kV/mm的电压对样品极化20min,放置24小时后测试样品的热释电性能,测试结果见表1。
实施例2
PZT热释电陶瓷材料组成为:0.10PbTiO3-0.05Pb(Mg1/3Nb2/3)O3-0.01Pb(Mn1/3Sb2/3)O3-0.84PbZrO3+2wt.%MnO2,按配方组成计算各组成物质量,根据实施例1中的制备方法得到测试样品,测试结果见表1。
实施例3
PZT热释电陶瓷材料组成为:0.15PbTiO3-0.01Pb(Mg1/3Nb2/3)O3-0.05Pb(Mn1/3Sb2/3)O3-0.79PbZrO3+3wt.%MnO2,按配方组成计算各组成物质量,根据实施例1中的制备方法得到测试样品,测试结果见表1。
实施例4:
PZT热释电陶瓷材料组成为:0.20PbTiO3-0.03Pb(Mg1/3Nb2/3)O3-0.02Pb(Mn1/3Sb2/3)O3-0.75PbZrO3+1wt.%MnO2,按配方组成计算各组成物质量,根据实施例1中的制备方法得到测试样品,测试结果见表1。
对比例1
PZT热释电陶瓷材料组成为:0.1PbTiO3-0.05Pb(Mn1/3Sb2/3)O3-0.85PbZrO3+1wt.%MnO2,按配方组成计算各组成物质量,根据实施例1中的制备方法得到测试样品,测试结果见表1。
表1为实施例1-4所得多元系锆钛酸铅基热释电陶瓷材料的配方及其性能参数:
ε<sub>r</sub>(@1kHz) Tanδ(@1kHz) P(×10<sup>-8</sup>C/m<sup>2</sup>K) Tc(℃) d<sub>33</sub>(pC/N)
实施例1 238 0.008 5.7 149 62
实施例2 198 0.01 3.5 241 63
实施例3 210 0.009 4.2 215 58
实施例4 215 0.015 3.2 255 60
对比例1 232 0.008 4.5 189 67
本发明通过在富锆PZT陶瓷基体中引入铌镁酸铅(PMN)和锑锰酸铅(PMnS)形成四元系固溶体,同时采用Mn离子掺杂改性,获得了一种综合性能优异的热释电陶瓷材料,拓展了现有富锆PZT热释电陶瓷的种类,可应用于非制冷红外热释电探测领域。

Claims (10)

1.一种多元系锆钛酸铅基热释电陶瓷材料,其特征在于,所述多元系锆钛酸铅基热释电陶瓷材料的组成通式为δPbTiO3-ηPb(Mg1/3Nb2/3)O3-φPb(Mn1/3Sb2/3)O3-(1-δ-η-φ)PbZrO3+xwt.%MnO2,其中:0.05≤δ≤0.20,0<η≤0.05,0<φ≤0.05,1≤x≤3。
2.根据权利要求1所述的多元系锆钛酸铅基热释电陶瓷材料,其特征在于,所述热释电陶瓷材料极化后在1kHz频率下测试的室温介电常数小于250,介电损耗小于0.02。
3.根据权利要求2所述的多元系锆钛酸铅基热释电陶瓷材料,其特征在于,所述热释电陶瓷材料极化后在1kHz频率下测试的室温介电常数为190~240,介电损耗为0.008~0.015。
4.根据权利要求1-3中任一项所述的多元系锆钛酸铅基热释电陶瓷材料,其特征在于,所述多元系锆钛酸铅基热释电陶瓷材料的热释电系数为3.2~5.7×10-8C/cm2·K。
5.一种制备权利要求1-4中任一所述的多元系锆钛酸铅基热释电陶瓷材料的方法,其特征在于,包括:
(1)以ZrO2、TiO2、Pb3O4、Nb2O5、Mg2(OH)2CO3、Sb2O3及Mn源作为原料,按照所述多元系锆钛酸铅基热释电陶瓷材料的组成通式进行配料并混合,得到原料粉体;
(2)将所得原料粉体于800~900℃下进行煅烧,得到陶瓷粉体;
(3)将所得陶瓷粉体压制成型,得陶瓷坯体;
(4)将所得陶瓷坯体在1150~1250℃下进行烧结,得到所述多元系锆钛酸铅基热释电陶瓷材料。
6.根据权利要求5所述的方法,其特征在于,所述Mn源为Mn的氧化物、或Mn的碳酸盐。
7.根据权利要求5或6所述的方法,其特征在于,所述煅烧的时间为2~4小时;所述烧结的时间为1~3小时。
8.根据权利要求5-7中任一项所述的方法,其特征在于,在压制成型之前,将陶瓷粉体和粘结剂混合进行造粒;且在压制成型之后,先将陶瓷坯体在700~900℃下进行排塑,再进行烧结;优选地,所述粘结剂选自聚乙烯醇PVA和聚乙烯醇缩丁醛酯PVB中的至少一种,加入量为陶瓷粉体的2~8wt%。
9.根据权利要求5-8中任一项所述的方法,其特征在于,在烧结之前,采用与陶瓷坯体相同组成的陶瓷粉体覆盖所述陶瓷坯体,然后放入密闭氧化铝坩埚中。
10.根据权利要求5-9中任一项所述的方法,其特征在于,将所得多元系锆钛酸铅基热释电陶瓷材料披覆银电极后,置于80~95℃的硅油中,在4~8kV/mm的电压下极化10~30分钟。
CN202011467644.3A 2020-12-14 2020-12-14 一种多元系锆钛酸铅基热释电陶瓷材料及其制备方法 Pending CN114621008A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011467644.3A CN114621008A (zh) 2020-12-14 2020-12-14 一种多元系锆钛酸铅基热释电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011467644.3A CN114621008A (zh) 2020-12-14 2020-12-14 一种多元系锆钛酸铅基热释电陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114621008A true CN114621008A (zh) 2022-06-14

Family

ID=81897545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011467644.3A Pending CN114621008A (zh) 2020-12-14 2020-12-14 一种多元系锆钛酸铅基热释电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114621008A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410505A (en) * 1987-07-02 1989-01-13 Murata Manufacturing Co Pyroelectric porcelain composition material
CN1927766A (zh) * 2006-09-27 2007-03-14 华中科技大学 一种制备热释电陶瓷的方法
CN101333109A (zh) * 2008-07-11 2008-12-31 华中科技大学 宽温区相变型热释电陶瓷材料的制备方法
CN102491751A (zh) * 2011-12-05 2012-06-13 中国科学院上海硅酸盐研究所 一种热释电陶瓷材料及其制备方法
CN102515757A (zh) * 2012-01-10 2012-06-27 中国科学院上海硅酸盐研究所 一种抗温度老化的低电阻率热释电陶瓷材料及其制备方法
WO2013035975A1 (ko) * 2011-09-09 2013-03-14 (주)아이블포토닉스 단결정 재료를 사용한 초전형 적외선 센서
CN104557038A (zh) * 2014-12-30 2015-04-29 中国科学院声学研究所 一种复合体系热释电陶瓷材料及其制备方法
CN104725042A (zh) * 2014-12-30 2015-06-24 中国科学院声学研究所 一种多元复合热释电陶瓷材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410505A (en) * 1987-07-02 1989-01-13 Murata Manufacturing Co Pyroelectric porcelain composition material
CN1927766A (zh) * 2006-09-27 2007-03-14 华中科技大学 一种制备热释电陶瓷的方法
CN101333109A (zh) * 2008-07-11 2008-12-31 华中科技大学 宽温区相变型热释电陶瓷材料的制备方法
WO2013035975A1 (ko) * 2011-09-09 2013-03-14 (주)아이블포토닉스 단결정 재료를 사용한 초전형 적외선 센서
CN102491751A (zh) * 2011-12-05 2012-06-13 中国科学院上海硅酸盐研究所 一种热释电陶瓷材料及其制备方法
CN102515757A (zh) * 2012-01-10 2012-06-27 中国科学院上海硅酸盐研究所 一种抗温度老化的低电阻率热释电陶瓷材料及其制备方法
CN104557038A (zh) * 2014-12-30 2015-04-29 中国科学院声学研究所 一种复合体系热释电陶瓷材料及其制备方法
CN104725042A (zh) * 2014-12-30 2015-06-24 中国科学院声学研究所 一种多元复合热释电陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭婷等: "锰掺杂对PMN-PZT陶瓷介电性能的影响", 《功能材料》 *

Similar Documents

Publication Publication Date Title
CN109180178B (zh) 一种高储能密度钛酸锶钡基无铅弛豫铁电陶瓷及其制备方法
CN106220169B (zh) 改性铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
CN114262228B (zh) 铌酸钾钠基无铅压电陶瓷及其制备方法和应用
EP2610233B1 (en) Piezoelectric ceramic and piezoelectric device
Chen et al. Electromechanical properties and morphotropic phase boundary of Na 0.5 Bi 0.5 TiO 3-K 0.5 Bi 0.5 TiO 3-BaTiO 3 lead-free piezoelectric ceramics
US8502435B2 (en) Piezoelectric ceramic composition and piezoelectric device
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN113307619A (zh) 一种铁酸铋-钛酸铅-铌镁酸铋三元体系高温压电陶瓷的制备方法
US8231803B2 (en) Piezoelectric ceramic and piezoelectric ceramic composition
CN100360466C (zh) 一种掺杂改性钛酸铋钠钾压电陶瓷及其制备方法
CN114133243A (zh) 一种高介电常数高压电应变发射型压电陶瓷材料及制备方法
JP2007084408A (ja) 圧電セラミックス
CN108358626B (zh) 一种bnt基无铅热释电陶瓷材料及其制备方法
JP2007119269A (ja) 圧電磁器組成物および圧電素子
CN114292102B (zh) 一种铁酸铋-钛酸钡基无铅压电陶瓷材料及其制备方法
CN106957174A (zh) Bnt-ba-knn无铅铁电相变陶瓷及其制备方法
CN114621008A (zh) 一种多元系锆钛酸铅基热释电陶瓷材料及其制备方法
CN115894020A (zh) 一种高压电系数的pmnzt基压电陶瓷及其制备方法和应用
CN115403375A (zh) 一种锆钛酸铅压电陶瓷材料及其制备方法
Bai et al. Lanthanum‐Induced Morphotropic Phase Boundary in BiFeO3–BaTiO3‐Based Lead‐Free Piezoelectric Ceramics
CN113248247A (zh) 一种三元压电陶瓷及其制备方法和应用
CN107311643A (zh) 宽工作温区高介电性能的无铅电子陶瓷材料及制备方法
CN113800904A (zh) 一种高能量低损耗的BNT-SBT-xSMN陶瓷材料及其制备方法
CN112851329A (zh) 一种铁酸铋钛酸铅基功能陶瓷材料及其制备方法
CN116082034B (zh) 一种高储能特性的钛酸铋钠基高熵陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220614

WD01 Invention patent application deemed withdrawn after publication