CN114618565A - 壳核复合催化剂及制备方法与应用 - Google Patents

壳核复合催化剂及制备方法与应用 Download PDF

Info

Publication number
CN114618565A
CN114618565A CN202011461592.9A CN202011461592A CN114618565A CN 114618565 A CN114618565 A CN 114618565A CN 202011461592 A CN202011461592 A CN 202011461592A CN 114618565 A CN114618565 A CN 114618565A
Authority
CN
China
Prior art keywords
shell
composite catalyst
core composite
molecular sieve
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011461592.9A
Other languages
English (en)
Inventor
张志翔
刘殿华
徐显明
张忠涛
李玉龙
刘建
马立莉
万书宝
孟晨
李旻哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Petrochina Co Ltd
Original Assignee
East China University of Science and Technology
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology, Petrochina Co Ltd filed Critical East China University of Science and Technology
Priority to CN202011461592.9A priority Critical patent/CN114618565A/zh
Publication of CN114618565A publication Critical patent/CN114618565A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/334Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing molecular sieve catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/46Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明公开了一种壳核复合催化剂及制备方法与应用。该壳核复合催化剂包括外壳和内核,外壳为铜基金属氧化物和改性HZSM‑5分子筛的混合物,内核为氧化铝。壳核复合催化剂的壳核质量比为1:3‑1:8。本发明的催化剂在固定床管式反应器中实现了合成气一步法经甲醇制备芳烃,具有高催化活性,还提高了高值芳烃的选择性。

Description

壳核复合催化剂及制备方法与应用
技术领域
本发明属于合成气转化技术领域,具体涉及一种合成气一步法制备芳烃的壳核复合催化剂及其制备方法与应用。
背景技术
近年来,芳烃作为重要的基础化工原料,广泛应用于三大合成材料、精细化学品合成、有机溶剂、农药、炸药、军工等方面,具有较高的需求量。芳烃化合物中,轻芳烃包括苯、甲苯、二甲苯(BTX芳烃)与重芳烃如均四甲苯被称为一级有机原料,在化工领域应用较为广泛。
按照反应流程的差异,合成气制备芳烃的技术主要分为两步法和一步法。其中,两步法技术通常是将合成气在第一段反应器中转化为甲醇等中间产物,之后将中间产物转移到第二段反应器中进行芳构化反应。合成气两步法制芳烃技术已较为成熟,其优势在于可以分别调控两段反应器的催化条件,使两种催化剂皆处于最佳工作状态,操作简单,但反应步骤复杂、设备成本高,同时反应效果受到热力学平衡的限制,转化率和芳烃选择性相对较低。
相比于两步法,合成气一步法制芳烃技术通过整合一氧化碳转化工艺和芳构化工艺,得到合成气一步法制芳烃复合催化剂,使合成气经过一段反应器后直接转化为芳烃,大幅降低了设备复杂度和操作难度,同时打破了组分平衡,提高了芳烃最终收率。然而,由于两种催化剂工艺的整合存在困难,研究依旧停留在实验室探索阶段。专利文献CN104069870A公开了一种铜基催化剂用于催化合成气制备甲醇,一氧化碳转化率达到40%,甲醇选择性达到34%。专利文献CN110075908A公开的催化剂由硅铝分子筛和复合金属氧化物组成;硅铝分子筛的表面经过氧化硅沉积和金属修饰处理,修饰用金属选自Zn、Ga、Ag、Mo、Cu、Fe、Ni、Co、Mn、La、Pr、Nd中的至少一种;复合金属氧化物为氧化铈-氧化锆、氧化锌-氧化锆、氧化锌-氧化铬中的至少一种;制备方法为:首先对硅铝分子筛表面进行氧化硅沉积以及金属修饰,然后将其与复合金属氧化物均匀混合,造粒后制得该催化剂,CO转化率40%,CO2选择性44.2%。
从上述分析可以看出,一方面,一步法的催化剂的催化性能有待提高,另一方面,一步法面临的主要困难在于目前开发的催化剂处于无定型状态,无论采用何种反应器形式,均难以实现催化剂的直接工业应用,因此开发具有固定形态的复合催化剂体系,成为一步法合成气直接制芳烃技术开发的关键所在。
发明内容
本发明的一目的在于提供一种合成气一步法制备芳烃的壳核复合催化剂。
本发明的另一目的在于提供一种合成气一步法制备芳烃的壳核复合催化剂的制备方法。
为达上述目的,本发明采用的技术方案如下:
本发明的一方面提供了一种合成气一步法制备芳烃的壳核复合催化剂,该壳核复合催化剂包括外壳和内核,为铜基金属氧化物和改性HZSM-5分子筛的混合物,所述内核为氧化铝;所述壳核复合催化剂的外壳与内核的质量比为1:3-1:8。
本发明的铜基金属氧化物包含铜的氧化物与钠的氧化物、锌的氧化物中的至少一种。
本发明的铜基金属氧化物和改性分子筛的质量比为(0.1-10):1。
在复合催化剂的铜基金属氧化物中,铜系金属氧化物的主要形态为CuO,锌系金属氧化物的主要形态为ZnO,钠系金属氧化物的主要形态为Na2O。
本发明的改性HZSM-5分子筛的硅铝摩尔比为10-400。
本发明的改性HZSM-5分子筛是通过锌、钼、钴、铌、镍中的至少一种对HZSM-5改性制得。
本发明的壳核复合催化剂的内核为氧化铝,尤其为非活性氧化铝球,经过充分细磨、以原晶尺寸大小1μm-5μm的α-Al2O3为基本组成的煅烧氧化铝球。
本发明的壳核复合催化剂的外壳和内核的质量比为1:3-1:8,优选1:4-1:6。
本发明的另一方面提供了一种合成气一步法制备芳烃的壳核复合催化剂的制备方法,包括以下步骤:
将铜基金属氧化物和改性HZSM-5分子筛粉碎至200目以下,加入5-15%的硅胶溶液,搅拌10-30min使其混合均匀,过滤、洗涤,在80-120℃下干燥1-5h,之后在400-500℃下焙烧2-6h,经研磨筛分后,与非活性氧化铝球、造孔剂、15-30%的硅胶溶液混合后干燥焙烧,获得所述合成气一步法制芳烃的壳核复合催化剂。
本发明的铜基金属氧化物的制备方法包括以下步骤:
将摩尔比为(5-20):(1-20):(0-8)的铜硝酸盐、锌硝酸盐和铝硝酸盐溶于去离子水中,加入硝酸酸化,在恒温条件下滴加碱性沉淀剂,当pH达到6.5-11.5时,停止加入沉淀剂,继续恒温搅拌,老化1.5-5h,抽滤分离,用蒸馏水洗涤三次,之后在110-120℃的条件下干燥5-12h,温度为300-600℃的条件下焙烧3-12h,得到所述金属氧化物。
本发明的碱性沉淀剂为氢氧化钠、碳酸钠、碳酸氢钠中的至少一种,配置成水溶液,水溶液的浓度为0.1-20mol/L。
本发明的改性HZSM-5分子筛的制备方法包括以下步骤:
改性HZSM-5分子筛是通过锌、钼、钴、铌、镍等金属进行修饰,通过浸渍法修饰所述ZSM-5分子筛。
本发明的硅胶溶液浓度为15-30%,优选20-25%。
本发明的再一方面提供了壳核复合催化剂在合成气一步法制备芳烃反应中的应用。
相较于现有技术,本发明具有以下优点和有益效果:
本发明的壳核复合催化剂,通过将铜基金属氧化物和改性HZSM-5分子筛共同作为催化剂外壳,非活性氧化铝球作为复合催化剂的内核,实现了合成气一步法直接转化为芳烃的工艺过程。
本发明的HZSM-5分子筛的改性工艺,通过多种金属助剂的修饰,并在硅溶胶的作用下将其与铜基金属氧化物复合,有效降低了HZSM-5分子筛的活性温度,提高了复合催化剂的活性和高值芳烃的选择性。
具体实施方式
为了更清楚地说明本发明的内容,下面结合优选实施例对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
实施例1
第一步,铜基金属氧化物的制备,包括以下步骤:
将0.4mol的三水合硝酸铜、0.3mol的六水合硝酸锌与0.1mol的九水合硝酸铝溶解于196mL去离子水中,并加入4mL硝酸酸化,加热至70℃搅拌0.5h使其完全溶解。配置1mol/L的碳酸钠溶液,在70℃恒温水浴下,向混合盐溶液中缓慢滴加(加入量根据终点pH确定)并持续搅拌,当pH达到8.0-8.1时,停止加入碳酸钠溶液,继续在70℃恒温水浴搅拌,使沉淀老化1.5h。将所得沉淀抽滤分离,并使用800mL蒸馏水洗涤三次(通过洗涤的水量和次数来控制Na的残余量),洗涤后的沉淀在110℃下干燥12h,之后在300℃下焙烧3h,得到所述铜基金属氧化物催化剂。
金属氧化物中,氧化铜、氧化锌、氧化铝和氧化钠的摩尔比为4:3:0.5:0.12。
第二步,改性HZSM-5分子筛的制备,包括以下步骤:
将未改性的HZSM-5分子筛置于120℃下干燥12h,取出后冷却至室温,向分子筛缓慢滴加水溶液至吸附饱和,得到HZSM-5分子筛的饱和吸水量为0.55mL/g;
称取4.96g六水合硝酸锌溶于10mL去离子水中,将所得溶液缓慢滴入2gHZSM-5分子筛中至吸附饱和,在室温下静置12h,所得产物在110℃下干燥12h,在500℃的条件下焙烧4h,得到锌改性的HZSM-5分子筛。之后称取2.01g四水合钼酸铵溶于10mL去离子水中,将所得溶液缓慢滴入2g锌改性的HZSM-5分子筛中至吸附饱和,在室温下静置12h,所得产物在110℃下干燥12h,在500℃的条件下焙烧4h,得到钼与锌共同改性的HZSM-5分子筛。以活性金属的质量计,钼与锌的修饰量均为HZSM-5分子筛质量的3%。
钼与锌共同改性的HZSM-5分子筛硅铝比为50。
第三步,合成气一步法制芳烃的壳核复合催化剂的制备,包括以下步骤:
将1g铜基金属氧化物和1g钼与锌共同改性的HZSM-5分子筛粉碎至200目以下,加入15%的硅胶溶液,搅拌20min使其混合均匀,过滤、洗涤并在110℃下干燥12h,之后在500℃下焙烧2h,经研磨筛分后与非活性氧化铝球、造孔剂、20%硅胶溶液混合后干燥焙烧,获得所述合成气一步法制芳烃的壳核复合催化剂。壳核复合催化剂的外观为规则球状颗粒径为2mm。
第四步,壳核复合催化剂的应用:
将上述4g壳核复合催化剂装载于固定床管式反应器中,合成气中H2与CO的体积比值为2,温度为330℃、压力为4MPa、空速为2010h-1、反应时间为12h,反应结果如表1所示。
实施例2
第一步,金属氧化物的制备,包括以下步骤:
将0.4mol的三水合硝酸铜、0.3mol的六水合硝酸锌与0.1mol的九水合硝酸铝溶解于196mL去离子水中,并加入4mL硝酸酸化,加热至70℃搅拌0.5h使其完全溶解。配置1mol/L的碳酸钠溶液,在70℃恒温水浴下,向混合盐溶液中缓慢滴加(加入量根据终点pH确定)并持续搅拌,当pH达到8.0-8.1时,停止加入碳酸钠溶液,继续在70℃恒温水浴搅拌,使沉淀老化1.5h。将所得沉淀抽滤分离,并使用800mL蒸馏水洗涤三次(通过洗涤的水量和次数来控制Na的残余量),洗涤后的沉淀在110℃下干燥12h,之后在300℃下焙烧3h,得到所述铜基金属氧化物催化剂。
金属氧化物中,氧化铜、氧化锌、氧化铝和氧化钠的摩尔比为4:3:0.5:0.12。
第二步,改性HZSM-5分子筛的制备,包括以下步骤:
将未改性的HZSM-5分子筛置于120℃下干燥12h,取出后冷却至室温,向分子筛缓慢滴加水溶液至吸附饱和,得到HZSM-5分子筛的饱和吸水量为0.55mL/g;
称取5.41g六水合硝酸镍溶于10mL去离子水中,将所得溶液缓慢滴入2gHZSM-5分子筛中至吸附饱和,在室温下静置12h,所得产物在110℃下干燥12h,在500℃的条件下焙烧4h,得到镍改性的HZSM-5分子筛。之后称取4.96g六水合硝酸锌溶于10mL去离子水中,将所得溶液缓慢滴入2g镍改性的HZSM-5分子筛中至吸附饱和,在室温下静置12h,所得产物在110℃下干燥12h,在500℃的条件下焙烧4h,得到锌与镍共同改性的HZSM-5分子筛。以活性金属的质量计,锌与镍的修饰量均为HZSM-5分子筛质量的3%。
锌与镍共同改性的HZSM-5分子筛的硅铝比为50。
第三步,合成气一步法制芳烃的壳核复合催化剂的制备,包括以下步骤:
将1g铜基金属氧化物和1g锌与镍共同改性的HZSM-5分子筛粉碎至200目以下,加入15%的硅胶溶液,搅拌20min使其混合均匀,过滤、洗涤并在110℃下干燥12h,之后在500℃下焙烧2h,经研磨筛分后与非活性氧化铝球、造孔剂、25%硅胶溶液混合后干燥焙烧,获得所述合成气一步法制芳烃的壳核复合催化剂。壳核复合催化剂的外观为规则球状颗粒径2.5mm。
第四步,壳核复合催化剂的应用:
将上述4g合成气一步法制芳烃的壳核复合催化剂装载于固定床管式反应器中,合成气中H2与CO的体积比值为2,温度为330℃、压力为4MPa、空速为2010h-1、反应时间为12h,反应结果如表1示。
实施例3
第一步,金属氧化物的制备,包括以下步骤:
将0.4mol的三水合硝酸铜、0.3mol的六水合硝酸锌与0.1mol的九水合硝酸铝溶解于196mL去离子水中,并加入4mL硝酸酸化,加热至70℃搅拌0.5h使其完全溶解。配置1mol/L的碳酸钠溶液,在70℃恒温水浴下,向混合盐溶液中缓慢滴加(加入量根据终点pH确定)并持续搅拌,当pH达到8.0-8.1时,停止加入碳酸钠溶液,继续在70℃恒温水浴搅拌,使沉淀老化1.5h。将所得沉淀抽滤分离,并使用800mL蒸馏水洗涤三次(通过洗涤的水量和次数来控制Na的残余量),洗涤后的沉淀在110℃下干燥12h,之后在300℃下焙烧3h,得到所述铜基金属氧化物催化剂。
金属氧化物中,氧化铜、氧化锌、氧化铝和氧化钠的摩尔比为4:3:0.5:0.12。
第二步,改性HZSM-5分子筛的制备,包括以下步骤:
将未改性的HZSM-5分子筛置于120℃下干燥12h,取出后冷却至室温,向分子筛缓慢滴加水溶液至吸附饱和,得到HZSM-5分子筛的饱和吸水量为0.55mL/g;
称取5.39g六水合硝酸钴溶于10mL去离子水中,将所得溶液缓慢滴入2gHZSM-5分子筛中至吸附饱和,在室温下静置12h,所得产物在110℃下干燥12h,在500℃的条件下焙烧4h,得到钴改性的HZSM-5分子筛。之后称取2.01g四水合钼酸铵溶于10mL去离子水中,将所得溶液缓慢滴入2g钴改性的HZSM-5分子筛中至吸附饱和,在室温下静置12h,所得产物在110℃下干燥12h,在500℃的条件下焙烧4h,得到钼与钴共同改性的HZSM-5分子筛。以活性金属的质量计,钼与钴的修饰量均为HZSM-5分子筛质量的3%。
钼与钴共同改性的HZSM-5分子筛的硅铝比为50。
第三步,合成气一步法制芳烃的壳核复合催化剂的制备,包括以下步骤:
将1g铜基金属氧化物和1g钼与钴共同改性的HZSM-5分子筛粉碎至200目以下,加入15%的硅胶溶液,搅拌20min使其混合均匀,过滤、洗涤并在110℃下干燥12h,之后在500℃下焙烧2h,经研磨筛分后与非活性氧化铝球、造孔剂、20%硅胶溶液混合后干燥焙烧,获得所述合成气一步法制芳烃的壳核复合催化剂。壳核复合催化剂的外观为规则球状颗粒径2.5mm。
第四步,合成气一步法制芳烃的壳核复合催化剂的应用:
将上述4g合成气一步法制芳烃的壳核复合催化剂装载于固定床管式反应器中,合成气中H2与CO的体积比值为2,温度为330℃、压力为4MPa、空速为2010h-1、反应时间为12h,反应结果如表1所示。
表1反应结果
Figure BDA0002822332820000071
由表1的结果可以看出,使用本发明的壳核复合催化剂CO转化率可以达到82.8%以上,而现有技术催化剂的CO转化率为40%,与现有技术相比本发明的壳核复合催化剂大大提高了CO转化率,具有高催化活性;同时本发明的壳核复合催化剂还提高了高值芳烃的选择性。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本发明的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明权利要求书所界定的范围内。

Claims (13)

1.一种壳核复合催化剂,其特征在于,包括外壳和内核,所述外壳为铜基金属氧化物和改性HZSM-5分子筛的混合物,所述内核为氧化铝;所述壳核复合催化剂的外壳与内核的质量比为1:3-1:8。
2.根据权利要求1所述的壳核复合催化剂,其特征在于,所述壳核复合催化剂的外壳与内核的质量比为1:4-1:6。
3.根据权利要求1所述的壳核复合催化剂,其特征在于,所述铜基金属氧化物和改性HZSM-5分子筛的质量比为(0.1-10):1。
4.根据权利要求1所述的壳核复合催化剂,其特征在于,所述铜基金属氧化物包含铜的氧化物、以及钠的氧化物和锌的氧化物中的至少一种。
5.根据权利要求1所述的壳核复合催化剂,其特征在于,所述改性HZSM-5分子筛由以下方法制备:使用浸渍法通过金属对HZSM-5分子筛进行改性;所述金属为锌、钼、钴、铌、镍中的至少一种。
6.根据权利要求1所述的壳核复合催化剂,其特征在于,所述改性HZSM-5分子筛的硅铝摩尔比为10-400。
7.根据权利要求1所述的壳核复合催化剂,其特征在于,所述氧化铝为:非活性氧化铝球经细磨、以原晶尺寸为1μm-5μm的α-Al2O3为基本组成的煅烧氧化铝球。
8.一种根据权利要求1-7任一所述的壳核复合催化剂的制备方法,其特征在于,包括以下步骤:
将铜基金属氧化物和改性HZSM-5分子筛进行粉碎,加入硅胶溶液,搅拌、过滤、洗涤,干燥、焙烧、筛分,与非活性氧化铝球、造孔剂、硅胶溶液混合后干燥焙烧,得到壳核复合催化剂。
9.根据权利要求8所述的壳核复合催化剂的制备方法,其特征在于,所述铜基金属氧化物由以下方法制备:将铜硝酸盐、锌硝酸盐和铝硝酸盐溶于去离子水,加入硝酸酸化,在恒温条件下滴加碱性沉淀剂至pH6.5-11.5时停止加入沉淀剂,继续恒温搅拌,老化1.5-5h,抽滤、洗涤,然后在温度为110-120℃干燥5-12h,温度为300-600℃焙烧3-12h,得到所述铜基金属氧化物。
10.根据权利要求9所述的壳核复合催化剂的制备方法,其特征在于,所述铜硝酸盐、锌硝酸盐和铝硝酸盐的摩尔比为(5-20):(1-20):(0-8)。
11.根据权利要求9所述的壳核复合催化剂的制备方法,其特征在于,所述沉淀剂为氢氧化钠、碳酸钠和碳酸氢钠溶液中的至少一种;所述沉淀剂的浓度为0.1-20mol/L。
12.根据权利要求8所述的壳核复合催化剂的制备方法,其特征在于,所述硅胶溶液的浓度为15-30%,优选20-25%。
13.一种根据权利要求1-7任一所述的壳核复合催化剂在合成气一步法制备芳烃反应中的应用。
CN202011461592.9A 2020-12-08 2020-12-08 壳核复合催化剂及制备方法与应用 Pending CN114618565A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011461592.9A CN114618565A (zh) 2020-12-08 2020-12-08 壳核复合催化剂及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011461592.9A CN114618565A (zh) 2020-12-08 2020-12-08 壳核复合催化剂及制备方法与应用

Publications (1)

Publication Number Publication Date
CN114618565A true CN114618565A (zh) 2022-06-14

Family

ID=81896365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011461592.9A Pending CN114618565A (zh) 2020-12-08 2020-12-08 壳核复合催化剂及制备方法与应用

Country Status (1)

Country Link
CN (1) CN114618565A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245622A1 (en) * 2004-04-30 2005-11-03 Beijense Cornelis R Supported catalyst
CN108295892A (zh) * 2018-01-30 2018-07-20 贵州大学 一种γ-Al2O3@CuO-ZnO@ZSM-5双核壳催化剂的制备方法
CN109701620A (zh) * 2017-10-26 2019-05-03 中国石油化工股份有限公司 催化剂体系及其使用方法
CN109701604A (zh) * 2017-10-26 2019-05-03 中国石油化工股份有限公司 核壳结构多功能催化剂体系及用途
CN110201709A (zh) * 2019-06-17 2019-09-06 华东理工大学 合成气直接制高值芳烃的复合催化剂及制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245622A1 (en) * 2004-04-30 2005-11-03 Beijense Cornelis R Supported catalyst
CN109701620A (zh) * 2017-10-26 2019-05-03 中国石油化工股份有限公司 催化剂体系及其使用方法
CN109701604A (zh) * 2017-10-26 2019-05-03 中国石油化工股份有限公司 核壳结构多功能催化剂体系及用途
CN108295892A (zh) * 2018-01-30 2018-07-20 贵州大学 一种γ-Al2O3@CuO-ZnO@ZSM-5双核壳催化剂的制备方法
CN110201709A (zh) * 2019-06-17 2019-09-06 华东理工大学 合成气直接制高值芳烃的复合催化剂及制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MINZHE LI, ET AL: "A one-step synthesis method of durene directly from syngas using integrated catalyst of Cu/ZnO/Al2O3 and Co-Nb/HZSM-5", CHEMICAL ENGINEERING SCIENCE, vol. 200, pages 104 *
WENTAO XIAO, ET AL: "Integrated Catalyst of CuZnAl-Zr and Nb-HZSM-5 for One-Step Synthesis of Aromatics from Syngas", CHINESE JOURNAL OF CHEMISTRY, vol. 38, no. 11, pages 1314 *

Similar Documents

Publication Publication Date Title
CN112169799B (zh) 采用铁基催化剂进行二氧化碳加氢合成低碳烯烃的方法
CN111889132B (zh) 一种金属氧化物-分子筛催化剂及其制备方法和应用
CN103394367B (zh) 利用粉煤灰制备zsm-5分子筛核壳双层催化剂的方法
NZ210549A (en) Modified copper- and zinc- containing catalyst and methanol production
CN110407221B (zh) 一种菱沸石分子筛的制备方法、scr催化剂的制备方法
JPH0336571B2 (zh)
CN104624196B (zh) 一种高比表面积费托合成催化剂及其制备方法与应用
CN113600199B (zh) 一种金属铜催化剂及其制备方法和应用
CN109201096B (zh) Co2加氢制低碳混合醇的催化剂及其用途
RU2624015C2 (ru) Каталитически активное тело для синтеза простого диметилового эфира из синтез-газа
WO2012065326A1 (zh) 一种助剂改性的二氧化碳催化加氢制甲醇的催化剂及制备方法
CN110280302B (zh) 一种将甲烷转化为芳烃的催化剂及其制备方法和应用
CN113751080A (zh) 一种改性氧化铝载体及其制备方法和应用
CN111111761B (zh) 制低碳烯烃的催化剂及其应用
CN114618565A (zh) 壳核复合催化剂及制备方法与应用
CN114433059A (zh) Co2加氢合成低碳烯烃化合物的催化剂及制备和应用
CN110354854A (zh) 一种液相选择性加氢糠醛制备糠醇的催化剂
CN114602539A (zh) 铜基-分子筛复合催化剂及其制备方法与应用
CN111715227A (zh) 一种铜系中温变换催化剂及其制备方法
CN108855126B (zh) 一种合成间苯二胺的壳核式催化剂及制备方法
JP5258617B2 (ja) 銅系触媒の製造方法
CN112619652B (zh) 合成气制低碳烯烃的催化剂及其制备方法
CN114950424A (zh) 一种循环气两段式脱硫催化剂、制备方法及其应用
CN110563592B (zh) 一种由二氧化碳、氢气和氨气一步制备二甲胺的方法
CN109289853B (zh) 费托合成铁基催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination