CN114520317A - 一种固态电池用高压实复合正极材料及其制备方法与应用 - Google Patents

一种固态电池用高压实复合正极材料及其制备方法与应用 Download PDF

Info

Publication number
CN114520317A
CN114520317A CN202111627603.0A CN202111627603A CN114520317A CN 114520317 A CN114520317 A CN 114520317A CN 202111627603 A CN202111627603 A CN 202111627603A CN 114520317 A CN114520317 A CN 114520317A
Authority
CN
China
Prior art keywords
positive electrode
solid
solid electrolyte
electrode material
electrolyte material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111627603.0A
Other languages
English (en)
Other versions
CN114520317B (zh
Inventor
柏祥涛
刘张波
杨容
魏潇博
弓胜民
王刘振
史碧梦
王建涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Automotive Battery Research Institute Co Ltd
China Automotive Innovation Co Ltd
Original Assignee
China Automotive Battery Research Institute Co Ltd
China Automotive Innovation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Automotive Battery Research Institute Co Ltd, China Automotive Innovation Co Ltd filed Critical China Automotive Battery Research Institute Co Ltd
Priority to CN202111627603.0A priority Critical patent/CN114520317B/zh
Publication of CN114520317A publication Critical patent/CN114520317A/zh
Application granted granted Critical
Publication of CN114520317B publication Critical patent/CN114520317B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及锂离子电池技术领域,尤其涉及一种固态电池用高压实复合正极材料及其制备方法与应用。本发明研究发现,使用一种特定粒径分布的电解质材料对正极材料进行包覆处理,能够改善正极材料与固体电解质材料的固固接触,并提升其压实密度;通过将包覆材料与其他一种或多种特殊粒径分布的固体电解质材料进行复配,能够进一步改善固固接触、进一步提升其压实密度,进而获得具有更高压实密度和性能的固态电池用复合正极材料。本发明的复合正极材料组成简单,原料易得,制备方法简单,生产成本低,同时具有较好的稳定性,可解决传统正极材料作为高性能全固态锂二次电池电解质的实际应用问题。

Description

一种固态电池用高压实复合正极材料及其制备方法与应用
技术领域
本发明涉及锂离子电池技术领域,尤其涉及一种固态电池用高压实复合正极材料及其制备方法与应用。
背景技术
锂离子二次电池自商业化以来,因其能量密度大、使用寿命长等优势得到了迅速的发展。但是,目前普遍使用的锂离子电池为液相电池,含有可燃性的有机电解液,因此存在严重的安全隐患。近几年来,在液相锂离子动力电池上频繁出现的安全事故使得该体系的进一步使用受到很大的限制;使用非可燃的无机固体材料作为锂离子电池电解质,不仅能排除电池使用过程中出现的有机电解液泄露及电池内部热失控导致的安全隐患,而且可以在高温、低温等极端条件下使用;进一步提升锂二次电池的价值,扩展其应用领域。因此,研发具有高压实密度的固态电池用正极材料以提高正极极片的负载量,是发展具有高能量密度的固态电池的关键。
在全固态电池中,固态电解质起到离子传导和隔膜的双重作用,因此固态电池正极极片由正极材料、固体电解质材料、导电剂、粘接剂及其他必要添加剂混合制成。与传统液态电池相比,增加了固体电解质材料,由此带来两方面的问题:一是正极材料颗粒和固态电解质颗粒之间为固固接触,其传质过程受界面结合紧密程度的影响;二是固态电解质的加入,导致正极极片的压实密度下降,造成正极负载量下降,不利用全固态电池能量密度的提升。
有鉴于此,有必要提供一种适合固态电池使用的复合正极材料,该复合正极材料中的活性材料含量应尽可能高,同时该复合正极材料的离子电导率应能满足全固态电池的使用需求。
发明内容
针对现有技术存在的不足,本发明提供一种高压实复合正极材料及其制备方法与应用。该复合正极材料使用不同粒度分布的电解质材料与正极材料进行复配,通过粒径匹配提高其压实密度,通过将合适粒径的电解质材料包覆在正极材料颗粒表面,改善固固界面接触的同时,进一步提升压实密度。该复合正极材料制备方法简单有效,生产成本低,同时具有较好的稳定性,锂离子传导率高,压实密度高,有望解决传统正极材料在高性能全固态锂二次电池中的实际应用问题。
本发明进一步研究发现,使用一种特定粒径分布的电解质材料对正极材料进行包覆处理,能够改善正极材料与固体电解质材料的固固接触,并提升其压实密度;通过将包覆材料与其他一种或多种特殊粒径分布的固体电解质材料进行复配,能够进一步改善固固接触、进一步提升其压实密度,进而获得具有更高压实密度和性能的固态电池用复合正极材料。
具体而言,本发明提供一种(固态电池用)复合正极材料,其包含正极材料C、固体电解质材料S1、固体电解质材料S2和固体电解质材料S3;
其中,上述四种材料的粒径分布满足如下关系:
电解质:1.2≤D(S1)90/D(S1)50≤5.0,1.6≤D(S2)90/D(S2)50≤2.3,1.1≤D(S3)90/D(S3)50≤1.4;
正极材料与固体电解质材料1:10≤D(C)50/D(S1)50≤100,5.0≤D(C)50/D(S1)90≤33;
正极材料与固体电解质材料2:1.0≤D(C)50/D(S2)50≤10,2.0≤D(C)50/D(S2)90≤5.0;
正极材料与固体电解质材料3:1.5≤D(C)50/D(S3)50≤3.5,1.3≤D(C)50/D(S3)90≤2.5;
各代号含义如下:
Figure BDA0003440351300000031
作为优选,四种材料的质量比满足:60%≤(a+b)/(a+b+c+d)<100%,0<c/(a+b+c+d)≤10%,0≤d/(a+b+c+d)≤10%;
进一步地,四种材料的质量比满足:85%≤(a+b)/(a+b+c+d)<100%,0<c/(a+b+c+d)≤7%,0≤d/(a+b+c+d)≤4%。
作为优选,三种材料的质量比满足:0<b/(a+b)≤20%;
进一步地,三种材料的质量比满足:0<b/(a+b)≤15%。
作为优选,所述正极材料C选自磷酸铁锂、锰酸锂、钴酸锂、三元正极材料中的一种或几种。
作为优选,所述固体电解质材料S1、固体电解质材料S2和固体电解质材料S3各自独立地选自卤化物、氧化物、硫化物中的一种或几种。
作为优选,所述固体电解质材料S1均匀包覆在所述正极材料C的表面。
本发明研究发现,随着固体电解质材料S1和正极材料C质量比及粒径匹配的调整,所获得复合正极材料具有更好的固固接触和更高的压实密度;进一步地,通过调节上述包覆后的正极材料、以及固体电解质材料S1和固体电解质材料S2三者之间的比例关系和粒径匹配,可以进一步调节该材料的固固接触和压实密度。
本发明同时提供以上所述的复合正极材料的制备方法,包括如下步骤:
(1)将正极材料C和固体电解质材料S1按比例称量,而后将所述固体电解质材料S1均匀包覆在所述正极材料C的表面,得中间品I;
(2)将所述中间品I、固体电解质材料S2和固体电解质材料S3按比例称量,而后混合均匀,得中间品II;
(3)将所述中间品II进行热处理。
作为优选,步骤(1)中,所述包覆的方式为湿法包覆或干法包覆。
作为优选,步骤(2)中,所述混合的方式为干法混合或湿法混合。
作为优选,步骤(3)中,所述热处理的温度为200-350℃,时间为3-48h。
作为优选,所述热处理在惰性气体的保护下进行。
与现有技术相比,本发明提供了一种新型的基于包覆和复配工艺提高固态电池用正极材料压实密度的方法,该方法简单有效,所获得的复合正极材料在没有采用任何特殊工艺的情况下能够提高压实密度;该类型材料制备简单,生产成本低;同时所获得的复合正极材料具有可控的离子传导率以及在全固态锂电池中作为正极材料使用具有优异的性能。
本发明还提供以上所述的复合正极材料在固态电池中的应用。
本发明提供一种正极层,其由以上所述的复合正极材料制备而成。
本发明同时提供一种全固态锂二次电池,包括正极层、负极层及固态电解质层,所述正极层为以上所述的正极层。
本发明具有以下优点:
(1)通过将特定粒径分布的固体电解质材料包覆于正极材料表面,能够极大地提升复合正极材料用于固态电池极片时的压实密度,并能提升界面稳定性;
(2)通过将包覆后的正极材料与特定粒径的固体电解质材料S2、固体电解质材料S3复配,能够进一步提升复合正极材料的压实密度;
(3)适用于固态电池的高压实复合正极材料的提出以及获得,在理论研究方面有利于进一步了解正极材料/电解质的界面稳定性问题,在实际应用上可以获得多种不同类型的复合正极材料,适用于不同的固态电池使用需求。
附图说明
图1为实施例1中所用正极材料裸料(图1a)和包覆有电解质1的正极材料(图1b)的SEM图像;
图2为以实施例4所获得的复合正极材料为正极层,组装形成的全固态二次电池的曲线。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过正规渠道商购买得到的常规产品。
以下实施例1-12、对比例1-10的复合正极材料的组成见表1;
表1实施例1-12、对比例1-10的复合正极材料的组成
Figure BDA0003440351300000051
Figure BDA0003440351300000061
实施例1
在手套箱中,按照比例分别称取LiNi0.6Co0.2Mn0.6O2(NCM622,10g)、电解质1(0.1g)、正庚烷(20g),将上述三种原料放置于50ml氧化锆球磨罐中,加入50g直径5mm的氧化锆小球;将密封好的球磨罐置于球磨机之上,设定转速50rpm,球磨5h。
球磨结束后,收集浆料,在通风橱中将溶剂蒸干,并将粉末置于100度真空烘箱中静置12h,得到电解质1包覆的正极材料。
再称取电解质2(0.2g)、电解质3(0.3g),与上述电解质1包覆的正极材料混合,放置于50ml聚氨酯球磨罐中,加入50g直径5mm的氧化锆小球;将密封好的球磨罐置于棒磨机之上,设定转速20rpm,混合5h;而后在280℃、惰性气体的保护下,热处理12h,得到复合正极材料。
图1为本实施例中所用正极材料裸料(图1a)和包覆有电解质1的正极材料(图1b)的SEM图像;由图1可知,正极材料裸料(图1a)表面光滑、一次粒子边界清晰、表面棱角明显;而包覆后的正极材料(图1b)表面能清晰观察到一层小颗粒包覆物,一次粒子表面变得模糊、棱角消失。
实施例2-12
除按照表1中的类型和重量称取正极材料、电解质1、电解质2和电解质3外,其他合成条件同实施例1。
对比例1-5
除按照表1中的类型和重量称取正极材料、电解质1、电解质2和电解质3外,其他合成条件同实施例1。
对比例6
在手套箱中,按照比例分别称取LiNi0.6Co0.2Mn0.6O2(NCM622,10g)、电解质1(0.8g),将上述两种原料放置于50ml聚氨酯球磨罐中,加入50g直径5mm的氧化锆小球;将密封好的球磨罐置于棒磨机之上,设定转速20rpm,混合5h。
再称取电解质2(0.8g)、电解质3(0.4g),添加到球磨罐中密封;将密封好的球磨罐置于棒磨机之上,设定转速20rpm,混合5h;而后在280℃、惰性气体的保护下,热处理12h,复合正极材料。
对比例7
在手套箱中,按照比例分别称取LiNi0.6Co0.2Mn0.6O2(NCM622,10g)、电解质1(0.8g)、电解质2(0.8g)、电解质3(0.4g),将上述四种原料放置于50ml聚氨酯球磨罐中,加入50g直径5mm的氧化锆小球;将密封好的球磨罐置于棒磨机之上,设定转速20rpm,混合10h;而后在280℃、惰性气体的保护下,热处理12h,得到复合正极材料。
对比例8
在手套箱中,按照比例分别称取LiNi0.6Co0.2Mn0.6O2(NCM622,10g)、电解质1(0.1g)、电解质2(0.2g)、电解质3(0.3g)、正庚烷(20g),将上述五种原料放置于50ml聚氨酯球磨罐中,加入50g直径5mm的氧化锆小球;将密封好的球磨罐置于棒磨机之上,设定转速20rpm,混合10h;而后在280℃、惰性气体的保护下,热处理12h,得到复合正极材料。
对比例9
除将热处理温度更改为340℃外,其他条件同实施例1。
对比例10
除不进行热处理外,其他条件同实施例1。
复合正极材料压实密度测试
将实施例1-12、对比例1-10所获得的复合正极材料进行压实密度测试;称取复合正极材料300mg,放入横截面面积为0.785cm2的模具中,以300MPa的压强进行压片,脱模后用千分尺测量片层厚度,计算压实密度。
模拟电池组装
将实施例1-12、对比例1-10所获得的复合正极材料,按照复合正极材料:乙炔碳=90:10(质量比)的配比,称取两种物料,并在手套箱内使用研钵研磨20分钟进行混合均匀;以上述混合物为正极粉体,以金属Li片为负极,以Li6PS5Cl为电解质层,组装形成全固态二次电池。
其中,图2为以实施例4所获得的复合正极材料为正极层,组装形成的全固态二次电池的曲线。
界面稳定性测试
将组装好的各全固态二次电池在室温下静置2h后,进行界面阻抗测试;随后,将各全固态二次电池采用0.1mA/cm2的电流密度进行充放电测试,截止电压为1.9-3.7V,循环100周后,再次测试其界面阻抗测试。
对实施例1-12、对比例1-10所获得的复合正极材料的压实密度、以及组装成全固态二次电池后的界面阻抗数据汇总见表2;
表2
Figure BDA0003440351300000091
由表2可知,本发明提供的复合正极材料压实密度高,固固接触良好,界面阻抗低,同时具有较好的稳定性。
如此,本发明的复合正极材料组成简单,原料易得,制备方法简单,生产成本低,同时具有较好的稳定性,可解决传统正极材料作为高性能全固态锂二次电池电解质的实际应用问题。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种复合正极材料,其特征在于,其包含正极材料C、固体电解质材料S1、固体电解质材料S2和固体电解质材料S3;
其中,上述四种材料的粒径分布满足如下关系:
电解质:1.2≤D(S1)90/D(S1)50≤5.0,1.6≤D(S2)90/D(S2)50≤2.3,1.1≤D(S3)90/D(S3)50≤1.4;
正极材料与固体电解质材料1:10≤D(C)50/D(S1)50≤100,5.0≤D(C)50/D(S1)90≤33;
正极材料与固体电解质材料2:1.0≤D(C)50/D(S2)50≤10,2.0≤D(C)50/D(S2)90≤5.0;
正极材料与固体电解质材料3:1.5≤D(C)50/D(S3)50≤3.5,1.3≤D(C)50/D(S3)90≤2.5;
各代号含义如下:
Figure FDA0003440351290000011
2.根据权利要求1所述的复合正极材料,其特征在于,60%≤(a+b)/(a+b+c+d)<100%,0<c/(a+b+c+d)≤10%,0≤d/(a+b+c+d)≤10%;
优选地,85%≤(a+b)/(a+b+c+d)<100%,0<c/(a+b+c+d)≤7%,0≤d/(a+b+c+d)≤4%。
3.根据权利要求1所述的复合正极材料,其特征在于,0<b/(a+b)≤20%;
优选地,0<b/(a+b)≤15%。
4.根据权利要求1-3任一项所述的复合正极材料,其特征在于,所述正极材料C选自磷酸铁锂、锰酸锂、钴酸锂、三元正极材料中的一种或几种;
和/或,所述固体电解质材料S1、固体电解质材料S2和固体电解质材料S3各自独立地选自卤化物、氧化物、硫化物中的一种或几种。
5.根据权利要求1-4任一项所述的复合正极材料,其特征在于,所述固体电解质材料S1均匀包覆在所述正极材料C的表面。
6.权利要求1-5任一项所述的复合正极材料的制备方法,其特征在于,包括如下步骤:
(1)将正极材料C和固体电解质材料S1按比例称量,而后将所述固体电解质材料S1均匀包覆在所述正极材料C的表面,得中间品I;
(2)将所述中间品I、固体电解质材料S2和固体电解质材料S3按比例称量,而后混合均匀,得中间品II;
(3)将所述中间品II进行热处理。
7.根据权利要求6所述的制备方法,其特征在于,步骤(1)中,所述包覆的方式为湿法包覆或干法包覆;
和/或,步骤(2)中,所述混合的方式为干法混合或湿法混合;
和/或,步骤(3)中,所述热处理的温度为200-350℃,时间为3-48h;所述热处理优选在惰性气体的保护下进行。
8.权利要求1-5任一项所述的复合正极材料在固态电池中的应用。
9.一种正极层,其特征在于,其由权利要求1-5任一项所述的复合正极材料制备而成。
10.一种全固态锂二次电池,包括正极层、负极层及固态电解质层,其特征在于,所述正极层为权利要求9所述的正极层。
CN202111627603.0A 2021-12-28 2021-12-28 一种固态电池用高压实复合正极材料及其制备方法与应用 Active CN114520317B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111627603.0A CN114520317B (zh) 2021-12-28 2021-12-28 一种固态电池用高压实复合正极材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111627603.0A CN114520317B (zh) 2021-12-28 2021-12-28 一种固态电池用高压实复合正极材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114520317A true CN114520317A (zh) 2022-05-20
CN114520317B CN114520317B (zh) 2023-08-15

Family

ID=81597381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111627603.0A Active CN114520317B (zh) 2021-12-28 2021-12-28 一种固态电池用高压实复合正极材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114520317B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190772A (ja) * 2011-02-25 2012-10-04 Idemitsu Kosan Co Ltd 全固体リチウムイオン電池及び正極合材
JP2016024907A (ja) * 2014-07-17 2016-02-08 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン(lithiumion)二次電池
CN107039634A (zh) * 2017-05-04 2017-08-11 北京科技大学 锂离子电池复合正极及柔性锂电池、固态锂电池制备方法
WO2017169126A1 (ja) * 2016-03-28 2017-10-05 株式会社日立製作所 リチウム二次電池
US20180013130A1 (en) * 2016-07-05 2018-01-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
CN108899486A (zh) * 2018-06-14 2018-11-27 中国人民解放军国防科技大学 包覆硫系电解质的正极活性材料及其制备方法、全固态锂硫电池及其制备方法
CN109449414A (zh) * 2018-11-01 2019-03-08 江西中汽瑞华新能源科技有限公司 一种锂离子电池正极复合材料以及含该材料的全固态电池
US20190198870A1 (en) * 2016-08-22 2019-06-27 Osaka Prefecture University Public Corporation Composite positive electrode active material for all-solid-state secondary battery, method for manufacturing same, positive electrode, and all-solid-state secondary battery
CN111276736A (zh) * 2020-02-06 2020-06-12 哈尔滨工业大学 正极、电解质与无机锂盐共烧结方法
CN111416115A (zh) * 2019-01-08 2020-07-14 三星电子株式会社 用于固态二次电池的正极、其制备方法、正极组件及固态二次电池
US20210135203A1 (en) * 2019-11-05 2021-05-06 Seiko Epson Corporation Positive electrode active material composite particle and powder

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190772A (ja) * 2011-02-25 2012-10-04 Idemitsu Kosan Co Ltd 全固体リチウムイオン電池及び正極合材
JP2016024907A (ja) * 2014-07-17 2016-02-08 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン(lithiumion)二次電池
WO2017169126A1 (ja) * 2016-03-28 2017-10-05 株式会社日立製作所 リチウム二次電池
US20180013130A1 (en) * 2016-07-05 2018-01-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
US20190198870A1 (en) * 2016-08-22 2019-06-27 Osaka Prefecture University Public Corporation Composite positive electrode active material for all-solid-state secondary battery, method for manufacturing same, positive electrode, and all-solid-state secondary battery
CN107039634A (zh) * 2017-05-04 2017-08-11 北京科技大学 锂离子电池复合正极及柔性锂电池、固态锂电池制备方法
CN108899486A (zh) * 2018-06-14 2018-11-27 中国人民解放军国防科技大学 包覆硫系电解质的正极活性材料及其制备方法、全固态锂硫电池及其制备方法
CN109449414A (zh) * 2018-11-01 2019-03-08 江西中汽瑞华新能源科技有限公司 一种锂离子电池正极复合材料以及含该材料的全固态电池
CN111416115A (zh) * 2019-01-08 2020-07-14 三星电子株式会社 用于固态二次电池的正极、其制备方法、正极组件及固态二次电池
US20210135203A1 (en) * 2019-11-05 2021-05-06 Seiko Epson Corporation Positive electrode active material composite particle and powder
CN111276736A (zh) * 2020-02-06 2020-06-12 哈尔滨工业大学 正极、电解质与无机锂盐共烧结方法

Also Published As

Publication number Publication date
CN114520317B (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
CN108346788B (zh) 一种碳包覆硅铁合金复合负极材料的制备方法
CN107452983B (zh) 一种锂离子电池复合电解质及其制备方法和锂离子电池
CN113471521B (zh) 一种无机硫化物固体电解质及其制备方法
CN105390673B (zh) 一种锂离子电池高容量低反弹石墨负极材料的制备方法
CN101908627B (zh) 锂离子二次电池负极材料及其制备方法
KR101930992B1 (ko) 황화물계 고체 전해질의 제조방법, 이로부터 제조된 황화물계 고체 전해질 및 이를 포함하는 전고체 리튬 이차전지
CN108493444A (zh) 一种锂锰扣式电池的正极及其制备方法
Tian et al. Synergistic effect of Li 2 MgTi 3 O 8 coating layer with dual ionic surface doping to improve electrochemical performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode materials
CN112103499B (zh) 一种石墨烯基负极材料及其制备方法
CN110931792B (zh) 一种包覆型硅基材料及其制备方法
KR20210132927A (ko) 리튬 이차전지용 음극재, 이의 제조방법 및 리튬 이차전지
CN114520317B (zh) 一种固态电池用高压实复合正极材料及其制备方法与应用
CN103258989A (zh) 用于锂二次电池的电极、制造方法及锂二次电池
CN104485440A (zh) 一种氧化铝包覆钴酸锂材料的制备方法、制品及其应用
CN114512710A (zh) 一种包覆型硫化物固态电解质材料及其制备方法和应用
CN110993916B (zh) 一种复合石墨负极材料及其制备方法
CN109962232B (zh) 正极活性材料、制备方法、正极和电池
CN111326727A (zh) 一种锂离子电池用多元硅氧负极材料及其制备方法
CN114497538B (zh) 一种梯度包覆的高性能磷酸铁锂复合材料及其制备方法
CN102820470A (zh) 一种可控式合成锂离子电池正极材料磷酸铁锂的方法
CN114927674B (zh) 钴酸锂正极材料及其制备方法和应用
CN114142084B (zh) 一种硫化物固体电解质及其制备方法和应用
Hao et al. Preparation and Electrochemical Performance of Spinel LiAl0. 08Co0. 05Mn1. 87O4 Cathode Materials for Long Cycle Life Lithium-ion Batteries
CN112542612B (zh) 一种具有自粘结效果的固态电解质及其制备方法
CN114122365A (zh) 一种锂离子电池用人造石墨负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant